NEESWood Capstone Testing Report

to the

Ministry of Housing and Social Development British Columbia, Canada

> John W. van de Lindt Colorado State University

> > February 19, 2010

Executive Summary

In July 2009 a full-scale mid-rise light-frame wood apartment building was subjected to a series of earthquakes at the world's largest shake table in Miki, Japan. The test program consisted of two major phases: the building tested in the first phase had a single story steel special moment frame with six stories of wood on top, and the second phase consisted of locking down the steel story and testing the six-story light-frame wood building by itself. This report focuses on the test results for the six-story light-frame wood building. The objectives of the test program were to (1) demonstrate that the performance-based seismic design procedure developed as part of the NEESWood project worked on the full scale building, i.e. validate the design philosophy to the extent one test can; and (2) gain a better understanding of how mid-rise light-frame wood buildings respond, in general, to a major earthquake while providing a landmark data set to the seismic engineering research community. The building consisted of 1350 square meters of living space and had twenty-three apartment units; approximately half one-bedroom units and half twobedroom units. The building was constructed over a 14 week period and lifted to the shake table where it was subjected to three earthquakes ranging from seismic intensities corresponding to the 72 year event to the 2500 year event for Los Angeles, CA. A continuous anchor tie-down system (ATS), a combination of steel rods and shrinkage compensating devices running from the bottom of building to roof level at the ends of each shear wall, was used to prevent overturning and allow the shear walls to fully engage rather than uplift. The building, known as the NEESWood Capstone building, was instrumented with just over 300 sensors and 50 LED optical tracking points to measure the component and global responses, respectively. In this report the test specimen is explained and the resulting seismic response in terms of base shears, selected wall drifts, global inter-story drifts, accelerations, hold-down forces, and roof drifts are presented. Detailed damage inspection was performed following each test and those results are The building was found to perform excellently with little damage even summarized also. following the 2500 year earthquake. The global drift at roof level was approximately 0.25 meters and maximum inter-story drifts were approximately 2% for the floor average with individual wall drifts reaching just over 3% in one corner of the building at the fifth story.

Table of Contents

	Page
Executive Summary	2
Table of Contents	3
1. Introduction and program objectives	4
2. Construction of test building	5
3. Shake table test program	8
4. Conclusions	21
Acknowledgements	21
References	22

1. Introduction and program objectives

The NSF-funded NEESWood Project was a four-year, five-university project whose objective was to develop a performance-based seismic design philosophy for mid-rise woodframe construction. The project began in 2005 and, by the end of 2006, the benchmark testing of a two-story house had taken place at the University at Buffalo's SEESL shake table facility. This test included several shear walls designed with fluid dampers during one phase of testing. A series of sub-assembly tests on shear walls with toggle-braced damping systems followed in 2008. From 2005-2008, non-linear time history analysis software was developed that was based on existing concepts and software, and improved upon as part of the NEESWood effort. This software package, called SAPWood (Pei and van de Lindt, 2007, 2008), had the dual purpose of being a research and design tool for later testing within the project as well as being available for use by practitioners. It was extended to include six degrees-of-freedom at each story and triaxial excitation, as well as the inclusion of response modification devices such as base isolation. From 2006-2008, the Direct Displacement Design (DDD) approach (Pang and Rosowsky, 2007) was extended to multi-story woodframe buildings, which is a key outcome of the project. The DDD approach was also extended for application to woodframe buildings with sliding seismic isolation systems. In addition, the potential for enhanced performance of woodframe buildings was evaluated via shaking table tests of a half-scale base-isolated two-story building. From 2007-2009 the effect of design code changes on societal risk were investigated within the project by using Los Angeles, CA as a test bed. Finally, in order to validate the DDD approach, the world's largest shake table test was conducted at Japan's E-defense laboratory in collaboration with numerous researchers and industry participants from the U.S., Canada, and Japan. The 1350 square meter (14,000 sq ft), six-story building was designed using the DDD concept, the development of which was completed in 2008. Shear transfer and continuous steel rod holdowns were designed based on a specified non-exceedance probability using SAPWood simulation results. The building, termed the Capstone building, was subjected to three levels of seismic intensity including a design-basis earthquake (DBE) and a maximum credible earthquake (MCE).

The NEESWood Capstone wood phase objectives were:

Objective 1: To confirm that a representative mid-rise woodframe structure designed using the NEESWood PBSD philosophy satisfies the performance objectives, as pre-defined during the design process. These performance objectives seek to limit damage and losses while protecting life safety.

Objective 2: Provide a general understanding of the behavior of a mid-rise woodframe structure similar to those currently in place in the Western U.S. and provide a full-scale data set for verification and calibration of nonlinear dynamic models.

2. Construction of test building

General contractor Maui Homes USA based in Honolulu, HI, served as the contractor for construction during the project. Japanese carpenters were hired to perform the construction. There are significant differences between Japanese style wood residential construction (mostly traditional style post-and-beam configuration; their light-frame wood is closer to East coast style construction with some additional hardware) and North American light-frame wood construction, thus training as well as careful construction monitoring and quality control measures were carried out during the construction process. The ultimate construction objective was to make sure the as-built structure reflects the intentions and details in the performance based seismic design procedure. In order for the Japanese carpenters to be able to construct the shear walls and other details correctly, detailed stick drawings for every wall segment in the building were developed by the Colorado State University team.

The design of the building was not based on an existing design code but rather through the performance-based seismic design method developed in the NEESWood project combined with numerical simulation using SAPWood. However, the construction of the wood frame stories was similar to a typical construction process in North America. The difference between the Capstone structure and a typical multi-story wood frame building in essence lies in the shearwall configuration and the detailing. Specifically, the shear wall nail schedules were determined using direct displacement design such that the peak inter-story drift in the building did not exceed 4% under a Maximum Credible Earthquake (MCE) (Return Period = 2500 years) for the city of Los Angeles, CA, 80% of the time, i.e. a non-exceedance probability of 0.8. This in essence resulted in walls with approximately twince the capacity of a typical building. However, the DDD procedure distributed this stiffness height-wise throughout the building differently than force-based design methodologies.

Shear walls in Capstone building used mostly 2x6 framing. The lower three stories of the building were framed using DFL-North and the upper three stories using SPF-1650. All sill plates under shear walls were framed with DFL-N. The nail schedule was mostly 2"/12" or 3"/12" in the lower floors. Some of the walls were also sheathed on both sides (double sided) with OSB. Incorporation of a new wall type was also investigated in the project. A double Midply wall system designed to handle high shear demand that exceeds the capacity of traditional shear walls was included. Also because of the high shear capacity of shear walls, high strength shear screws were used at the top and sill plates of the shear walls instead of bolts. These SDS screws had a tested ultimate capacity of approximately 4.45 kN (1 kip) per-connector in shear. Figure 1 shows the test building under construction.

Some of the shear walls in the lower stories had very substantial compression stud packs consisting of numerous 2x6 studs lumped together at the ends surrounding the hold-down runs as shown in Figure 2. These studs were designed to resist the compressive load induced by the racking behavior of shear walls as well as gravity. Some of these stud packs interfered with the

installation of shear connectors on the top and sill plates of the shear walls. In order to resolve this conflict, some of these stud packs were installed via toe-nailing after the walls were erected in place with the top and sill shear connectors already installed.

Fig. 1. Construction of shear wall systems in Capstone building with the double Midply wall shown top, right

Fig. 2. Compression stud packs in bottom wood story shear walls

Continuous tie-down systems known as Anchor Tiedown Systems (ATS) were utilized for every shear wall in the specimen. These ATS rods ran through the stories and integrated individual shear walls into shear wall stacks. The system is more effective in controlling uplift (overturning) of the wall systems than traditional hold-down systems and is typically necessary for wood frame construction in excess of three stories. Figure 3 shows a close-up of the ATS installed in a wood shear wall including a view of it passing through the floor diaphragms with coupler nuts and take-up devices on each side.

Fig. 3. The ATS system used for shear wall uplift control

After the ATS system was installed, the sheathing panel for the shear wall was attached and nailed off following the nailing pattern specified in the design. Then drywall boards (gypsum wall board, GWB) was attached with drywall screws at 0.4 m (16 in) spacing (including top and bottom, i.e. not a floating GWB style as is sometimes used). The ceiling GWB was also installed since the GWB contributes to structural stiffness and mass. Finally GWB was tape-and-mudded to represent realistic construction practice and allow for accurate and realistic damage inspection. The construction quality of the shearwalls in the building was closely monitored during the construction process. Since the shear walls are the lateral force resisting components in the

building, it was very important to make sure the nailing pattern, stud lay out, anchor tie-down system, and the shear transfer details at the top and sill plates were correctly constructed. Shear transfer was primarily achieved with 150mm long 7mm diameter wood screws shown being countersunk into the Midply wall sill plate in Figure 4. As each wall was erected, the stud layout and shear connection for the top and sill plates were checked. Then the ATS rods were also installed and checked. Finally the sheathing panels were applied and the nail pattern was inspected. This process was performed for every structural wall in the building. Inspection occurred prior to completion of the specimen, and when sheathing nail schedules were found to be incorrect they were wither replaced or nails added to the appropriate line in the panel.

During each stage of construction, project PI Dr. John W. van de Lindt travelled frequently to Japan and conducted the most critical part of the quality inspection. During the construction, graduate student researchers from Japanese universities sent daily reports on the building and particularly the shear wall construction with detailed wall configuration check sheets developed by CSU design team.

Fig. 4. Installation of high strength shear connector on the double Midply sill plates

3. Shake table test program

Shake table testing of a building the size of the Capstone test specimen necessitated the use of the E-Defense shake table in Miki City, Japan. This shake table is the largest tri-axial shake table in the world with a payload capacity of 1200 tons (2.5 million pounds) and the ability to reproduce the largest historical records from the Kobe and Northridge (and other) earthquakes. The facility was built following the 1995 Kobe earthquake and opened in 2004. The concrete reaction floor is more than 60 ft (18m) in thickness. During construction, the volume of concrete used throughout made it more economical to build a concrete plant on site. The full-scale NEESWood Capstone test was the first U.S. led test conducted at E-Defense and represents the largest building ever tested on a shake table. Figure 5 shows a picture of the E-defense facility shortly after it opened in 2004.

Fig 5. Aerial image of the E-Defense facility in 2004.

The shake table is shown in Figure 6 from the first floor balcony. It is 15m x 20m in plan and has the ability to move tri-axially in either acceleration or displacement control. For safety it was necessary to have approximately one meter clear space around the perimeter of the shake table, so the floor plan of the Capstone structure was selected to maximize the usable space of the shake table. For the installation of the test specimen on to the table, it was critical to align the walls (and steel frame under the walls) with the shake table bolt pattern.

Fig 6. E-Defense shake table with actuator CV joints shown exposed on left side

The wood building was approximately 18m x 12m (60ft x 39ft) in plan view and about 17m (56 ft) tall. The elevation views, presented in Figure 7, show the significant openings on all sides of the building requiring shear wall stacks in many locations. The floor plan for the first story is shown in Figure 8a and consisted of two small one-bedroom units (Unit A) and two two-bedroom units (Unit B). The floor plan for stories two through five were the same as story one with only a slight change to unit A since no entrance door to the building was needed at those levels, and is shown in Figure 8b. The top story, story 6, is shown in Figure 8c, and was modified from the other stories to include one large two-bedroom unit (Unit D). This change in floor plan meant some of the shear walls in story 5 did not extend into story 6. For reference, the short direction of the building is designated as the X direction and the long direction as the Y direction.

Fig.7. Elevation views of the six-story test specimen

Wood shear walls were designed as stacked wall systems with a combination of steel rod holddowns (ATS) with mechanical shrinkage compensating devices at each end to prevent overturning, reduce uplift, and remove slack from the tie-down system that would otherwise develop from in-situ reductions in wood moisture content and natural settling of the structure. Figure 9 shows a schematic of a typical 2x6 wood shear wall in the first story and details for each wall in the Capstone building can be found in the forthcoming NEESWood project report by Pei et al (2009). The design details of the building were quite extensive and only a basic description of the structural configuration is provided here for brevity. Each shear wall stack included glulam beams as shear collectors in between stories. Floor systems were made up of standard 18mm (23/32 inch) T&G Oriented Strand Board (OSB) with wood I-joists that were hung on the glulam beams with nailed metal hangers. The glulams were fully supported by shear walls except in one line between the elevator shaft and stairwell where they acted as beams since no bearing and/or shear wall was present. Wood shear walls had 12mm (15/32 inch) OSB on either one or both sides depending on the design requirements. Nail spacing ranged from sheathing panel exterior nail spacing of 50 mm (2 in) to as large as 152 mm (6 in), with a constant field nail spacing of 300 mm (12 in) for all walls. Because there were many shear walls in the Capstone building, it is not possible to shown the details of each shear wall. Shear transfer from the wall to the floor system was achieved using either a nailed channel or two lines of self tapping screw, i.e. SDS screws.

Fig. 8. Floor plans for story 1 (Fig 8a), story 2-5 (Fig 8b), and story 6 (Fig 8c)

11

Fig. 9. Typical wall details in the Capstone building

Gypsum wall board (GWB) was installed on all walls and ceilings with tape and putty on all joints except the wall-to-ceiling joints and corners. Finishing as many joints as possible was desirable in order to provide realistic damage inspection results.

In addition to the as-built dead load, seismic mass was added to each story in the form of steel plates in order to bring the total floor seismic mass to a realistic level thereby accounting for all the insulation, gypcrete flooring, exterior finish, plumbing, HVAC, and floor finishes. The weight of the building was carefully calculated based on the construction materials used. Then the added steel plates were placed during the construction of each story and fastened to each floor and the roof.

The completed specimen standing on the shake table ready for testing is shown in Figure 10.

Fig. 10. Photograph of the 14,000 ft² Capstone test specimen ready for testing on Japan's E-Defense shake table

The seismic test program consisted of multiple shake table tests during three separate test days. As mentioned, during the first test day a steel special moment frame (SMF) at the base of the building was not braced and therefore participated in the testing. Then the SMF was fully braced for the tests focused on the response of the six-story wood frame building. The Northridge ground motion recorded at the Canoga Park station was used throughout the tests with different scale factors. Figure 11 shows the spectral accelerations in the X, Y, and Z directions of the unscaled Canoga Park record, with the Y-component (which has a higher PGA value) applied in the long direction of the building. The shear capacity of the building was the same in both directions by design. The ground motion was scaled to the peak ground acceleration levels listed in Table 1 to represent seismic hazard levels with 50%, 10%, and 2% probability of exceedance in 50 years, which corresponds to return periods of 72, 475, and 2500 years, respectively for the city of Los Angeles, CA.

Fig.11. Un-scaled pseudo-acceleration response spectra for the Canoga Park recording of the 1994 Northridge earthquake (5% damping)

Northridge			Seismic Test	
Canoga Park		Level 1	Level 2	Level 3
Hazard level		50% 50 years	10% 50 years	2% 50 years
Scaling factor		0.53	1.20	1.80
	Х	0.19	0.43	0.64
PGA (g)	Y	0.22	0.50	0.76
	Ζ	0.26	0.59	0.88

Table 1. Peak ground accelerations for the Canoga Park record

The NEESWood Capstone test specimen represents the largest building ever tested on a shake table. It was instrumented with over 300 channels of strain, deformation, and acceleration measurements using a high speed data acquisition (DAQ) system at Japan's E-defense. In addition to these conventional measurement devices, absolute displacement measurements were obtained using 50 three-dimensional optical tracking light emitting diodes (LED) attached to the exterior of the building whose motion during the test was captured and processed using a 3D motion tracking system consisting of multiple high-speed cameras and related software. A brief summary of all the instrumentation is listed in Table 2.

Measurement	Location	Туре	Number
Absolute acceleration	Each Floor	3D-acceleration	38
	Selected shear	String	
Diagonal shear wall drift	walls	Potentiometer	33
Out of plane diaphragm	Third floor	String	
deformation	diaphragm	Potentiometer	13
	Selected shear	String	
Shear wall end stud uplift	walls	Potentiometer	8
	Selected shear		
ATS hold-down strain	walls	Strain Gage	78
Absolute displacement	Building exterior	3D Optical tracking	50

Table 2.	Summary	of instru	nentation
----------	----------------	-----------	-----------

Because of the size of the building, it was not possible to find a fixed reference to instrument the absolute displacements of the structure, i.e. a frame beside the shake table. Therefore, an optical tracking measurement system was employed in the test program to capture the building movement with 50 LED light markers attached to the exterior of the building at each diaphragm level. The location of these markers is shown in Figure 12. There were no markers on the back side of the building due to camera limitations.

50 LED Sensors on the exterior of specimen, 7 sensors for each story diaphragm, one on the SMF.

Figure 12. LED sensors for optical tracking of absolute displacements on the exterior of the specimen

White noise excitation was input in each direction of the building in order to identify the natural periods of the specimen before and after each seismic test. There was no significant change in the building fundamental period between shakes within the test program. The natural period of

the building was approximately 0.49 sec. The building period under the white noise excitation in both directions agreed well with one another indicating a similar stiffness for both directions, which was consistent with the performance-based seismic design approach which was intended to provide the same stiffness and strength in both directions for the specimen.

The averaged displacement at the centroid of the floor diaphragm can be estimated based on the measurements from seven optical tracking markers for each floor. The maximum roof displacements relative to the shake table were measured to be 60mm, 140mm, and 211mm for seismic intensities 1, 2, and 3 respectively. The maximum displacement occurred in the long direction of the floor plan, namely the Y direction. The building deformation shapes at the point in time of the maximum roof displacement levels in the X and Y directions are presented in Figure 13. The shape of the deformed grid was generated directly from the optical tracking sensor measurements and is exaggerated for clarity. Although the building was designed to be symmetric and added seismic mass was distributed approximately uniformly over the building floor plan, torsional response was clearly observed during testing. The torsional response was synchronized with the lateral response of the building, which means the point in time at which the torsion reached a maximum value is very close to the occurrence of the maximum value of the lateral response, as one might expect. Due to the presence of torsion, the maximum interstory drift of some shear walls at the upper levels near the building corners slightly exceeded 3% during the level 3 seismic test.

Figure 13. Time captures of the system deformation relative to the shake table during four points in time for the LED optical tracking system

Inter-story drift is often used in displacement based procedures to evaluate the performance of a wood frame building. The resulting inter-story drift of the Capstone building was calculated by subtracting the absolute displacement measurement between stories and dividing the value by the

story height. The maximum values for the average inter-story drift are presented in Table 3. The average was computed by averaging the drift measured from seven different LED optical tracking markers at each story level.

Peak Inter- story Drift (%)	Seismic Test 1		Seismi	e Test 2	Seismi	e Test 3
	Х	Y	Х	Y	Х	Y
St1	0.26	0.44	0.49	0.77	0.84	1.12
St2	0.35	0.42	0.63	1.05	0.97	1.46
St3	0.29	0.54	0.64	1.02	0.89	1.64
St4	0.30	0.44	0.77	1.22	1.10	1.48
St5	0.36	0.46	0.64	1.14	1.00	1.88
St6	0.40	0.21	0.88	0.58	1.35	1.11

Table 3. Averaged peak inter-story drift measured during the three tests

From the above table one can see that the height-wise distribution of inter-story drifts for the building under all three seismic test is close to uniform among the stories, which indicates the absence of a soft story mechanism. Recall this soft story mechanism was observed in wood frame buildings during large earthquakes (such as the 1994 Northridge and the 1995 Kobe earthquakes). The approach used to design the Capstone test specimen which is outlined in Pang et al (2009) vertically distributes the shears according to the deformed state of the structure essentially eliminating or at least drastically reducing the probability of a soft story being present. Figure 14 presents the response time histories in the X and Y direction at all three seismic intensity levels for the first story as well as for the story that had the largest transient drift. The maximum drifts were observed in the upper stories instead of the bottom story, which was, in fact, consistent with numerical model predictions performed prior to testing. The drifts for the top two stories and the associated shear walls in those stories had performance consistent with the other stories even though many of the shear walls stacks did not extend beyond the first five stories.

Another major concern for multi-story buildings is the safety issues related to the high lateral accelerations in the upper stories that may result in occupant injury or casualties due to heavy objects, e.g. furniture. The average acceleration that will be experienced by the occupants during the test was calculated by spatially averaging the acceleration measured by the five sensors installed at each floor level. It turned out the maximum lateral acceleration for the DBE level earthquake on the top story was approximately 1.3 g. The maximum acceleration time history obtained and the seismic mass of each story known, the time history of the base shear force can be retrieved based on principles of basic dynamics. The global hysteresis loops for the building are presented in Figure 15. Similar behavior from one seismic intensity level to the next is observed since the same ground motion (Northridge-Canoga Park) was scaled for each test. As the ultimate base shear capacity of the building, which was used in the performance-based seismic design, is about 2500 kN (562 kips), for the Y direction at intensity level 3 one can see

that the test specimen resisted 1824 kN (410 kips) which is approximately 73% of the design shear.

Figure 14. Time history plots for the average inter-story drifts

Figure 15. Global hysteresis for all seismic test levels

Recall from the earlier discussion on instrumentation that the anchor tie-down rods were instrumented for approximately half the building at story 1. Figure 16 shows the distribution of maximum forces for the rods throughout the floor during the level 3 seismic tests. The spatial distribution of the peak rod forces was similar for other test levels while the value of the force decreased. Interestingly, one key observation from the rod data is that the maximum hold-down forces do not necessarily occur at the same time. It is not uncommon for the rods at two ends of a wall to act in unison rather than alternating in tension, especially for the walls on the exterior of the test specimen. The alternation in rod tension was observed to shift from the shear wall level to the system level, i.e. where all the rods on one side of the building go into tension while the rods on the other side are not in tension. It is quite clear that the rods from different walls act as a single system to resist the overturning moment generated at the base of this six-story building.

Figure 16. Maximum steel rod tension during level 3 test

As mentioned earlier, the damage to the test specimen from the three seismic tests was not felt to be significant even for the 2500 year (MCE level) earthquake. There was no visible damage to any structural components or assemblies of the building, with damage limited to the gypsum wall board (GWB). The GWB damage was observed primarily around the corners of openings as illustrated by the post-shake photographs in Figure 17. The damage and its correlation to interstory drifts will be presented in its entirety in a forthcoming paper by several of the authors and can be found detailed in the forthcoming NEESWood project report by Pei et al. (2009).

Figure 17. Typical damage observation around wall openings

4. Conclusions

A series of three shake table tests on a full-scale six-story light-frame wood building was completed in July 2009 in Miki, Japan. It is critical to perform tests such as these at full scale and with full size structures to ensure that size effects and scaling issues do not arise and taint the conclusions. The NEESWood Capstone building, designed with the performance based design procedure developed within the NEESWood project, the building was able to achieve very good performance under both DBE and MCE level earthquakes, with maximum averaged inter-story drifts on the order of 2% to 3%. The damage to the structural and non-structural components of the building was very minor, all repairable. Peak shear wall drifts at one corner slightly exceeded 3% for the MCE level test. Damage was limited to non-structural damage; specifically cracking of the gypsum wall board near opening such as doors and windows. All damage observed during testing would be easily reparable and not affect future performance during earthquakes. The Capstone building performed very well and did not experience a soft story mechanism at any of the test levels; this is the result of applying the direct displacement design procedure which distributes the shear height-wise throughout the structure based on softened lateral stiffness. The averaged floor accelerations were felt to be reasonable at the higher story levels, although objects would still need to be anchored as recommended by FEMA. Even with the approximately symmetric floor plan and evenly distributed seismic mass, considerable torsional response was still observed during the seismic tests. Inclusion of torsion is needed within PBSD for mid-rise light-frame wood buildings. The hold down system employed in the design of the specimen serves the critical role of transferring uplift forces down to the foundation and thereby preventing overturning. Although installed for each shear wall, the hold down rods acted as a system to provide overturning restraint to the entire floor plan, and only at times did they act as a semiisolated shear wall stack. In light of this observation, development of a system level design procedure for hold down rods used in multi-story woodframe construction is recommended. As anticipated, the majority of lateral displacements were not due to shear deformation of the wood shear walls, but from cumulative elongation of the hold down rods, a small amount of uplift, and a global bending of wall systems.

In conclusion, it can be stated that six-story light-frame wood construction in high seismic regions can perform very well in a major earthquake provided they are designed appropriately. The test results summarized herein validate the performance-based seismic design philosophy developed within the NEESWood project, to the extent one specimen can provide a validation. New procedures, such as performance-based seismic design, are the way to ensure good performance for taller wood frame buildings during earthquakes.

Acknowledgements

Partial funding for this study was provided by the B.C. Ministry of Housing and Social Development. That funding is gratefully acknowledged by the NEESWood project team and PI John W. van de Lindt.

In addition to the above support, the material presented in this report is based upon work supported by the National Science Foundation under Grant No. CMS-0529903 (NEES Research) and CMS-0402490 (NEES Operations). Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The overall NEESWood project team made up of John W. van de Lindt, David V. Rosowsky, Andre Filiatrault, Rachel A. Davidson, and Michael D. Symans contributed to all facets of the NEESWood project. Thank you also to Weichiang Pang of Clemson University for his participation in the design portion of the Capstone test specimen. Thank you to NSF REU's Doug Allen and Kathryn Pfrefzschner, researchers Hidemaru Shimizu, Izumi Nakamura, Chikahiro Minowa, and Hiroshi Isoda at Shinshu University and Mikio Koshihara at the University of Tokyo. Two graduate students, Kazaki Tachibana and Tomoya Okazaki, contributed to the construction and instrumentation of the test specimen and a former Ph.D. student Kimberly Cronin helped with the design. Thank you also to Tim Ellis of Simpson Strong Tie Co. and David Clyne of Maui Homes USA. Technical collaborators beyond the authors affiliation included the U.S. Forest Product Laboratory, FP Innovations-Forintek Division, and Maui Homes U.S.A. Financial and in-kind product and personnel donations were provided by Simpson Strong Tie, Maui Homes, Stanley Bostitch, Strocal Inc., Structural Solutions Inc., Louisiana Pacific Corp., Natural Resources Canada, Forestry Innovation Investment, APA-The Engineered Wood Association, American Forest and Paper Association, Howdy, Ainsworth, and Calvert Glulam.

References

Christovasilis, I.P., Filiatrault, A., and Wanitkorkul, A. (2007). "Seismic testing of a full-scale two-story wood light-frame building: NEESWood benchmark test" Neeswood *Report No. NW-01*, Dept. of Civil, Structural and Environmental Engineering, University at Buffalo, State University of New York, Buffalo, available on-line at http://www.engr.colostate.edu/NEESWood/.

ICBO. (1988). "Uniform Building Code, 1988 ed." International Conference of Building Officials, Whittier, CA.

Filiatrault, A., Christovasilis, I.P., Assawin Wanitkorkul, and John W. van de Lindt (2009) "Seismic Response of a Full-Scale Light-frame Wood Building: Experimental Study" *Journal of Structural Engineering*, In Press.

Folz, B. and Filiatrault, A. (2004) "Seismic analysis of woodframe structures. II: Model implementation and verification" *Journal of Structural Engineering*, v 130, n 9, p 1361-1370.

Mosalam, K.M., C. Mochado, K.U. Gliniorz, C. Naito, E. Kurkel, and S.A. Mahin (2003) "Seismic evaluation of an asymmetric three-story woodframe building" CUREE Report W-19.

Pang, W.C., and Rosowsky, D.V. (2007) "Direct displacement procedure for performance-based seismic design of multistory woodframe structures" Neeswood *Report No. NW-02*, Zachry Dept. of Civil Engineering, Texas A&M University, College Station, available on-line at <u>http://www.engr.colostate.edu/NEESWood/</u>.

Pei S., and van de Lindt J.W. (2007). User's manual for SAPWood for Windows, Version 1.0. SAPWood program user's manual, available on-line at http://www.engr.colostate.edu/NEESWood/.

Pei, S., van de Lindt, J.W. (2008). "Coupled bending-shear seismic analysis of Stacked Wood Shearwall Systems", *Earthquake Engineering and Structural Dynamics*, 38: 1631-1647.

Pei, S., J.W. van de Lindt, S.E. Pryor, H. Shimizu, H. Isoda, and D. Rammer. (2010). "The NEESWood Capstone Tests at E-Defense: Testing of a Full-Scale Six-Story Woodframe and Seven-Story Mixed Use Building", Publication anticipated on-line (NEESWood Report NW-07) and via the U.S. Forest Products Laboratory in 2010.

van de Lindt, J.W., Pei, S., Pryor, S.E., Shimizu, H. and Isoda, H. (2009) "Experimental seismic response of a full-scale six-story light-frame building" Submitted to Journal of Structural Engineering.

van de Lindt, J.W., D.V. Rosowsky, A. Filiatrault, M.D. Symans, R.A. Davidson. (2006). "The NEESWood Project: Progress on the Development of a Performance-Based Seismic Design Philosophy for Mid-Rise Woodframe Construction". Proc of the *2006 World Conference on Timber Engineering*, Portland, OR.

FPInnovations – Forintek Division Western Region 2665 East Mall Vancouver, British Columbia V6T 1W5

Confidential

Seismic Performance of 6-Storey Wood-Frame Buildings

Final Report

by

Chun Ni and Marjan Popovski

Prepared for Building and Safety Policy Branch Office of Housing and Construction Standards Ministry of Housing and Social Development PO Box 9844 Stn Prov Govt Victoria, BC V8W 9T2

June 2009

Project No. 6482

Chun Ni

Project Leader

61/ lacon

Bill Deacon Reviewer

Erol Karacabeyli

Erol Karacabeyli for Department Manager

Page 24 HOU-2011-00026, Part One

© 2009 FPInnovations – Forintek Division. All rights reserved.

This report has been prepared solely for your use and should not be quoted in whole or in part without our written consent. No responsibility to any third party is accepted as the report has not been prepared for, and is not intended for, any other purpose.

Summary

In this report, the seismic performance of 6-storey wood frame residential buildings is studied. Two building configurations, a typical wood-frame residential building and a building to be tested under the NEESWood project, were studied. For each building configuration, a four-storey building and a six-storey building were designed to the current (pre-April 6, 2009) 2006 BC Building Code (BCBC) and to the anticipated new requirements in the 2010 National Building Code of Canada (NBCC), resulting in four buildings with different designs. The four-storey building designed to the current 2006 BC Building Code served as the benchmark building representing the performance of current permissible structures with common architectural layouts.

In the design of both four-storey and six-storey buildings, it was assumed that the buildings are located in Vancouver on a site with soil class C. Instead of using the code formula, the fundamental natural period of the buildings was determined based on the actual mass and stiffness of wood-based shearwalls. The base shear and inter-storey drift are determined in accordance with Clauses 4.1.8.11.(3)(d)(iii) and 4.1.8.11.(3)(d)(iv) of BCBC, respectively.

Computer programs DRAIN 3-D and SAPWood were used to evaluate the seismic performance of the buildings. A series of 20 different earthquake records, 14 of the crustal type and 6 of the subcrustal type, were provided by the Earthquake Engineering Research Facility of the University of British Columbia and used in the evaluation. The records were chosen to fit the 2005 NBCC mean PSA and PSV spectra for the city of Vancouver.

For representative buildings designed in accordance with 2006 BCBC, seismic performance with and without gypsum wall board (GWB) is studied. For representative buildings designed in accordance with the 2010 NBCC, the seismic performance with GWB is studied. For the NEESWood building redesigned in accordance with 2010 NBCC, seismic performance without GWB is studied. Ignoring the contribution of GWB would result in a conservative estimate of the seismic performance of the building.

In the 2006 BCBC and 2010 NBCC, the inter-storey drift limit is set at 2.5 % of the storey height for the very rare earthquake event (1 in 2475 year return period). Limiting inter-storey drift is a key parameter for meeting the objective of life safety under a seismic event.

For 4-storey and 6-storey representative wood-frame buildings where only wood-based shearwalls are considered, results from both DRAIN-3D and SAPWood show that none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit given in the building code. With DRAIN-3D, the average maximum inter-storey drifts are approximately 1.2% and 1.5% for 4-storey and 6-storey buildings designed with 2006 BCBC, respectively.

For the NEESWood wood-frame building, none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit for 4-storey building obtained from SAPWood and 6-storey building obtained from DRAIN-3D and SAPWood. For any 4-storey building analysed with DRAIN-3D, approximately half of the earthquakes resulted in the maximum inter-storey drifts greater than 2.5% inter-storey limit. This is partly due to the assumptions used in Drain-3D model in which the lumped mass at each storey is equally distributed to all the nodes of the floor. As a result, the total weight to counteract the uplift force at the ends of a wall would be much smaller than that anticipated in the design, thus causing hold-downs to yield and large uplift deformations to occur.

Based on the analyses of a representative building and a redesigned NEESWood building situated in the city of Vancouver that subjected the structures to 20 earthquake records, 6-storey wood-frame building is expected to show similar or smaller inter-storey drift than a 4-storey wood-frame building, which is currently deemed acceptable under the current building code.

Acknowledgements

The financial support by the Building and Safety Policy Branch (BSPB) of the Office of Housing and Construction Standards (OHCS) for this project is gratefully acknowledged. We are grateful to the Earthquake Engineering Research Facility of the University of British Columbia for providing the earthquake records suited for the city of Vancouver used in this study.

Table of Contents

Su	nmary	/	İİ
Acł	knowle	dgements	iv
List	t of Tal	bles	vii
List	of Fia	ures	<i>.</i> viii
1	Ohier	ctives	1
2	Introd	luction	1
2	Coop		ا۱ ۲
3	Scop	С	۱۰۰۰۰۰۱ م
4	Proje		Z
5	Seisn	nic Design of the Studied Buildings	3
	5.1 5.2	NEESWood Capstone test huilding	3 7
6	Forth		10
7	Color	aia Analusia of the Duildings	IV
1	5eisii 7 1	Building Modeling	1Z
	1.1	7.1.1 Drain-3D	
		7.1.2 SAPWood	15
	7.2	Shearwall Properties	18
		7.2.1 Wood-based shearwalls	18
	7.3	Hold-down and Plate Bearing Properties	21
	7.4	2 A 1 Pepresentative WEC building	21
		7.4.2 NEESWood Capstone test building	
8	Resul	ts of Non-linear Time History Analyses	24
Ŭ	8.1	Representative buildings designed in accordance with 2006 BCBC	24
		8.1.1 Natural Periods	26
		8.1.2 Base Shear	26
		8.1.3 Displacement at the Top of the Buildings	27
		8.1.4 Inter-storey drifts	27
		8.1.6 Hold-down Unlift Forces and Deformations	28
	8.2	Representative building designed in accordance with 2010 NBCC	30
	8.3	NEESWood Capstone test building designed in accordance with 2010 NBCC	31
		8.3.1 Natural Periods	32
		8.3.2 Base Shear	33
		8.3.3 Inter-storey drifts	33
		 5.3.4 Shearwall deformations 8.3.5 Hold-down Unlift Earcos and Deformations 	33
0	Const		
9	CONCIL	USIONS	34
10	Ketere	ences	35

Appendix A Design drawings of 4 and 6 storey Buildings

- A-1) Design drawings of representative 4-storey building designed in accordance with 2006 BCBC
- A-2) Design drawings of representative 6-storey building designed in accordance with 2006 BCBC
- A-3) Design drawings of representative 4-storey building designed in accordance with 2010 NBCC
- A-4) Design drawings of representative 6-storey building designed in accordance with 2010 NBCC
- A-5) Design drawings of NEESWood Capstone 4-storey building designed in accordance with 2010 NBCC
- A-6) Design drawings of NEESWood Capstone 6-storey building designed in accordance with 2010 NBCC
- Appendix B Selected Design Calculations of Shearwalls in Representative and NEESWood Wood-Frame Buildings
 - B-1) Design of Wall 4 in 6 storey Representative Wood Frame Buildings
 - B-2) Design of Wall 5 in 6 storey NEESWood Wood Frame Buildings
- Appendix C Results of Representative Wood-Frame Buildings Designed in Accordance with 2006 BCBC
- Appendix D Results of Representative Wood-Frame Buildings Designed in Accordance with 2010 NBCC
- Appendix E Results of NEESWood Capstone Wood-Frame Building Designed in Accordance with 2010 NBCC
- Appendix F Selected time history responses and hysteresis loops of selected shear walls

List of Tables

Table 1	Scope of work to be performed2
Table 2	Building loads used in the seismic design of the 4 and 6-storey buildings4
Table 3	Building periods and seismic loads used in the design of the 4 and 6-storey buildings
Table 4	Shearwall and hold-down details of the Wood-frame building designed in accordance with 2006 BCBC
Table 5	Shearwall and hold-down details of the wood-frame building designed in accordance with 2010 NBCC
Table 6	Design forces and Deflections for a 9.75m long 6 storey representative Wall
Table 7	Building loads used in the seismic design of the 4 and 6-storey NEESWood buildings8
Table 8	Building periods and seismic loads used in the design of the 4 and 6-storey NEESWood buildings8
Table 9	Shearwall and hold-down details of the NEESWood buildings designed in accordance with 2010 NBCC
Table 10	Design forces and Deflections for a 6.1m long 4 storey representative Wall
Table 11	Design forces and Deflections for a 6.1m long 6 storey representative Wall
Table 12	Earthquake records and their characteristics
Table 13	Material properties of different models of Simpson strong rods
Table 14	Summary of mean results of 4-storey building designed in accordance with 2006 BCBC
Table 15	Summary of mean results of 6-storey building designed in accordance with 2006 BCBC
Table 16	Summary of mean results of 4-storey building designed in accordance with 2010 NBCC
Table 17	Summary of mean results of 6-storey building designed in accordance with 2010 NBCC
Table 18	Summary of mean results of 4-storey building designed in accordance with 2010 NBCC
Table 19	Summary of mean results of 6-storey building designed in accordance with 2010 NBCC

List of Figures

Figure 1	Dien view of the concentrative to italian	2
Figure T	Plan view of the representative building	J -
Figure 2	Plan view of the NEESWood Capstone test building	/
Figure 3	The pseudo velocity response spectra for all records, their average and the 2005NBCC velocity	
	design spectrum for Vancouver	11
Figure 4	The acceleration response spectra for all records, their average and the 2005 NBCC acceleration	40
	design spectrum for vancouver	12
Figure 5	Pinching hysteretic behaviour with six inclinations and constant discharge line used for modeling o the semi-rigid rotational springs	f 13
Figure 6	Model of the 6-storey wood-frame building in Drain-3D	14
Figure 7	Stacked shearwall assembly model of a 6 storey building with rotational semi-rigid springs and	
•	semi rigid axial springs to represent the properties of the hold-downs	15
Figure 8	Global degrees of freedom and spring connectivity in the SAPWood model	16
Figure 9	Nail-Pattern (NP) model kinematics	17
Figure 10	Loading paths and parameters in CUREE model	18
Figure 11	Hysteretic loop for 8d-3/8" ply 4ft x 8ft shearwalls	19
Figure 12	Hysteretic loop for 8d-1/2" ply 4ft x 8ft shearwalls	19
Figure 13	Hysteretic loop for 10d-1/2" ply 4ft x 8ft shearwalls	20
Figure 14	Hysteretic loop for 8ft x 8ft GWB drywall	20
Figure 15	Shearwall identification and locations in representative wood frame building	23
Figure 16	Shearwall identification and locations in NEESWood Capstone test building	24
Figure 17	Cumulative distribution of inter-storey drifts in N-S direction for 4-storey buildings without GWB	28
Figure 18	Cumulative distribution of inter-storey drifts in N-S direction for 6-storey buildings without GWB	28
Figure 19	Cumulative distribution of shearwall deformations in N-S direction for 4-storey buildings without	
v	GWB	29
Figure 20	Cumulative distribution of shearwall deformations in N-S direction for 6-storey buildings without	
-	GWB	29
Figure 21	Force equilibrium assumptions for Method A and B	30

1 Objectives

The main objective of the work contained in this report is to evaluate the seismic performance of sixstorey wood-frame buildings designed according to the proposed changes in the BC Building Code and the capacity-based design philosophy implemented in the upcoming Canadian Standard for Engineering Design in Wood (CSA O86.1 2009), as well as the next edition of the National Building Code of Canada (2010 NBCC).

2 Introduction

Mid-rise multi-family buildings are within reach of the current technology in wood-frame construction and offer a way to diversify the markets for Canadian wood products. Recently, the Government of BC has expressed interest in the concept of mid-rise wood-frame buildings as a response to the shift towards sustainable densification of urban and suburban centers and to the need for affordable housing. As a result, the Ministry of Housing and Social Development is pursuing regulatory changes to increase the limit on wood-frame construction to six storeys in the BC Building Code.

To prepare for such code revisions, the Building and Safety Policy Branch (BSPB) of the Office of Housing and Construction Standards (OHCS) has engaged consultants to draw up the required changes to the BC Building Code and to identify technical and process risks related to six-storey wood-frame construction. Technical advisory groups comprising a wide range of building sector stakeholders were formed to help identify potential relevant issues related to six-storey wood buildings and to help develop appropriate mitigation and implementation strategies. Based on the reported specific issues and the initial feedback from the technical advisory groups, potential technical impediments and implementation issues related to introduction of six-storey wood-frame buildings in BC were identified. These include fire safety, structural safety (in particular the seismic performance), wood shrinkage, and building envelope integrity. FPInnovations staff has been involved in these technical advisory groups and continue to participate in the stakeholders meetings.

As the demand for higher density housing in BC tends to be in areas with high seismic risk, one of the paramount concerns to designers of six-storey wood-frame construction is the seismic performance of such buildings. To address these concerns, FPInnovations' staff under contract with BSPB carried out a study to assess the performance of six-storey wood-frame buildings in earthquake prone areas. The results of this study presented in this report will not only provide the technical support for the proposed code change, but will also help increase the confidence of the designers and stakeholders in the seismic performance of mid-rise wood-frame construction.

3 Scope

The scope of the work consists of a series of non-linear dynamic analyses of selected buildings. Two building configurations, a typical wood-frame residential building and a test building under the NEESWood project (the Capstone Tests), were studied. For each building configuration, a four-storey building and a six-storey building were designed by a consultant to the current (pre-April 6, 2009) 2006 BC Building Code and to anticipated new requirements in the 2010 National Building Code of Canada, resulting in four buildings of different designs. The four-storey building designed to the current 2006 BC

Building Code served as the benchmark to represent performance of current permissible structures for common architectural layouts. The work to be performed in this study is provided in Table 1.

No. of Storeys	A representative WFC building, designed with 2006 BCBC	A representative WFC building, designed with 2010 NBCC and O86,1-2009	NEESWood test building, designed with 2010 NBCC and O86.1-2009
4	 Design by RJC Assess by Forintek Check by CSU 	 Design by RJC Assess by Forintek Check by CSU 	 Design by RJC Assess by Forintek Check by CSU
6	 Design by RJC Assess by Forintek Check by CSU 	 Design by RJC Assess by Forintek Check by CSU 	 Design by RJC Assess by Forintek Check by CSU

Table 1 Scope of work to be performed

RJC - Read Jones Christoffersen Ltd. CSU - Colorado State University

The NEESWood Capstone project is a multi-year US research project to develop methods to assess the seismic resistance of mid-rise wood frame construction. Under this program, a series of shake table tests on a six-storey wood-frame structure will be carried out in Japan during the summer of 2009. FPInnovations is one of the several technical contributors to this project and has assisted in the coordination of the use of BC lumber and other wood products in the test building under the financial support of Forest Innovation Investment of BC. The work presented in this report utilises the knowledge, expertise, test data, and numerical tools developed under the NEESWood Capstone project for assessing the seismic behaviour of wood-frame buildings and applies them for assessment of 6-storey wood-frame construction (WFC) buildings in BC.

4 Project Team

- Dr. Chun Ni, P.Eng., project leader, FPInnovations Forintek Division
- Mr. Grant Newfield, P.Eng, Read Jones Christoffersen Ltd. (RJC)
- Dr. John van de Lindt, P.E., Colorado State University (CSU)
- Mr. Maurizio Follesa, Timber Engineering, Italy
- Dr. Marjan Popovski, P.Eng., FPInnovations Forintek Division
- Mr. Erol Karacabeyli, P.Eng., FPInnovations Forintek Division

5 Seismic Design of the Studied Buildings

5.1 A representative wood-frame construction (WFC) residential building

A 4-storey building built as a part of revitalized Vancouver neighbourhood was used as a representative WFC building in this study (Figure 1). In the original design, sections 2 and 3 of the building (Figure 1) were assumed to be separate units and were analyzed separately. Each section was designed with enough strength to carry the seismic loads associated with its own area.

Figure 1 Plan view of the representative building

In discussion with RJC, it was decided that only section 2 of this building would be used in this study. Although buildings could be simpler or more complex in practice, it was believed that the section 2 of the building is a reasonable portion of it, and can be seen as being a good representation of the current construction practice. Section 2 of the building includes a double loaded corridor where all the corridor and party walls are used as shearwalls.

In the design, it was assumed that the buildings are located in Vancouver on a site with soil class C according to NBCC. Instead of using the NBCC formula, the fundamental natural period was determined based on actual mass and stiffness of wood-based shearwalls. This period was then used to determine the minimum equivalent static earthquake force applied on the building. The building loads at the roof and at each floor of the building are provided in Table 2. The building periods and seismic forces, V, are provided in Table 3. Details of the shearwalls for the 4 and 6-storey buildings designed in accordance with 2006 BCBC (before April 6, 2009 amendments which now require cut-offs on seismic forces) and 2010 NBCC are provided in Tables 4 and 5. Seismic forces in each direction were distributed to walls based on the highest value of either the walls proportion of tributary area, the walls length divided by total length of walls, or a comparison of the relative wall stiffnesses. The potential effects of torsion were not considered in the design. It should be noted that engineering judgement was used in the distribution of forces to the various walls and that the design although representative, does not result in a minimum code design. The design drawings of the 4 and 6-storey buildings are provided in Appendix A.

	Uniformly distributed load (kPa)	Area (m ²)	Total load (kN)
Roof (dead load + 25% snow load)	1.20	919.74	1103.7
Floor (dead load)	1.92	789.68	1516.2

Table 2	Building loads used in the seismic design of the 4 and 6-storey buildings
---------	---

01			6
	Storey Building (W = Storey Building + Storey Bu	5660 kN)	·····
Building Period calculation	Ψ (a)	V(0/W)	V (LNI)
Ta (code calculated period)	3/	123W	606
$2 \times \text{Ta} (\text{current cut off for strength})^1$.68	.123 W	589
T (based on engineering mechanics) ²	1.1	.062W	350
e	5 Storey Building (W = 8	700 kN)	-
Building Period calculation	T (s)	V (%W)	V (kN)
Ta (code calculated period)	.445	.123	1070
2 x Ta (current cut off for strength) ¹	.889	.0783	679 ³
T (based on engineering mechanics) ²	1.67	.048	418

Table 3Building periods and seismic loads used in the design of the 4 and 6-storey buildings

Notes: 1 – used for strength design based on NBBC clause 4.1.8.11.(3)(d)(iii)

2-used for deflection calculations based on NBBC clause 4.1.8.11.(3)(d)(iv)

3 - increased loads 10% for strength design (Used V = 748 kN)
			6-storey building				4-storey building			
		SW 1	SW 2	SW 3	SW 4	SW 1	SW 2	SW 3	SW 4	
	Hold-down	SR9	SR5	SR5	SR5					
	End stud	6-2x4	4-2x4	4-2x4	4-2x4					
6 th storey	sheathing	12.7 mm	12.7 mm	12.7 mm	12.7 mm					
	Nail	8d	8d	8d	8d					
	Nail spacing	150 mm	150 mm	150 mm	150 mm					
	Hold-down	SR9	SR5	SR5	SR5]				
	End stud	6-2x4	4-2x4	4-2x4	4-2x4					
5 th storey	sheathing	12.7 mm	12.7 mm	12.7 mm	12.7 mm					
	Nail	8d	8d	8d	8d]				
	Nail spacing	150 mm	150 mm	150 mm	150 mm				_	
	Hold-down	SR9	SR5	SR5	SR5	SR5	SR5	SR5	SR5	
4 th storey	End stud	6-2x4	6-2x4	6-2x4	6-2x4	4-2x4	4-2x4	4-2x4	4-2x4	
	sheathing	12.7 mm	12.7 mm	12.7 mm	12.7 mm	9.5 mm	9.5 mm	9.5 mm	9.5 mm	
	Nail	8d	8d	8d	8d	8d	8d	8d	8d	
	Nail spacing	100 mm	75 mm	100 mm	100 mm	150 mm	150 mm	150 mm	150 mm	
	Hold-down	SR10	SR7	SR7	SR7	SR7	SR5	SR5	SR5	
	End stud	8-2x4	8-2x4	6-2x4	8-2x4	4-2x4	4-2x4	4-2x4	4-2x4	
3rd storey	sheathing	[12.7 mm]	12.7 mm	12.7 mm	12.7 mm	9.5 mm	9.5 mm	9.5 mm	9.5 mm	
	Nail	8d	10d	8d	8d	8d	8d	8d	8d	
	Nail spacing	100 mm	75 mm	100 mm	75 mm	150 mm	100 mm	150 mm	150 mm	
	Hold-down	SR10	SR9	SR7	SR9	SR9	SR7	SR5	SR5	
	End stud	8-2x4	8-2x4	8-2x4	8-2x4	6-2x4	6-2x4	6-2x4	6-2x4	
2 nd storey	sheathing	12.7 mm	12.7 mm	12.7 mm	12.7 mm	9.5 mm	9.5 mm	9.5 mm	9.5 mm	
	Nail	8d	10d	8d	8d	8d	8d	8d	8d	
	Nail spacing	75 mm	75 mm	75 mm	65 mm	100 mm	75 mm	100 mm	100 mm	
	Hold-down	SR10	SR9	SR9	SR9	SR9	SR7	SR7	SR7	
	End stud	8-2x4	8-2x6	8-2x4	8-2x6	6-2x4	6-2x4	6-2x4	6-2x4	
1 st storey	sheathing	12.7 mm	12.7 mm	12.7 mm	12.7 mm	9.5 mm	12.7 mm	9.5 mm	9.5 mm	
	Nail	8d	10d	8d	8d	8d	8d	8d	8d	
	Nail spacing	75 mm	65 mm	75 mm	65 mm	100 mm	75 mm	100 mm	100 mm	

Table 4Shearwall and hold-down details of the Wood-frame building designed in accordance with2006 BCBC

		6-storey building			4-storey building				
		SW1 SW2 SW3 SW4			SW 1	SW 2	SW 3	SW 4	
	Hold-down	SR9	SR5	SR5	SR5				
	End stud	6-2x4	4-2x4	4-2x4	4-2x4				
6 th storey	sheathing	12.7 mm	12.7 mm	12.7 mm	12.7 mm				1
	Nail	8d	8d	8d	8d				
	Nail spacing	150 mm	150 mm	150 mm	150 mm				
	Hold-down	SR9	SR5	SR5	SR5				
	End stud	6-2x4	4-2x4	4-2x4	4-2x4				
5 th storey	sheathing	12.7 mm	12.7 mm	12.7 mm	12.7 mm				
	Nail	8d	8d	8d	8d				
	Nail spacing	150 mm	150 mm	150 mm	150 mm				
	Hold-down	SR9	SR7 ¹	SR5	SR7 ¹	SR5	SR5	SR5	SR5
4 th storey	End stud	6-2x4	6-2x4	6-2x4	6-2x4	4-2x4	4-2x4	4-2x4	4-2x4
	sheathing	12.7 mm	12.7 mm	12.7 mm	12.7 mm	9.5 mm	9.5 mm	9.5 mm	9.5 mm
	Nail	8d	8d	8d	8d	8d	8d	8d	8d
	Nail spacing	100 mm	75 mm	100 mm	100 mm	150 mm	150 mm	150 mm	150 mm
	Hold-down	SR10	SR7	SR7	SR7	SR7	SR5	SR5	SR5
	End stud	8-2x4	8-2x4	6-2x4	8-2x4	4-2x4	4-2x4	4-2x4	4-2x4
3rd storey	sheathing	12.7 mm	12.7 mm	12.7 mm	12.7 mm	9.5 mm	9.5 mm	9.5 mm	9.5 mm
	Nail	8d	10d	8d	8d	8d	8d	8d	8d
	Nail spacing	100 mm	75 mm	100 mm	75 mm	150 mm	100 mm	150 mm	150 mm
	Hold-down	SR10	SR9	SR7	SR9	SR9	SR7	SR7 ¹	SR7 ¹
	End stud	8-2x4	8-2x4	8-2x4	8-2x4	6-2x4	6-2x4	6-2x4	6-2x4
2 nd storey	sheathing	12.7 mm	12.7 mm	12.7 mm	12.7 mm	9.5 mm	9.5 mm	9.5 mm	9.5 mm
	Nail	8d	10d	8d	8d	8d	8d	8d	8d
	Nail spacing	75 mm	75 mm	75 mm	65 mm	100 mm	75 mm	100 mm	100 mm
	Hold-down	SR10	HSR9 ¹	SR9	HSR9 ¹	SR9	SR7	SR7	SR7
	End stud	8-2x4	8-2x6	8-2x4	8-2x6	6-2x4	6-2x4	6-2x4	6-2x4
1 st storey	sheathing	12.7 mm	12.7 mm	12.7 mm	12.7 mm	9.5 mm	12.7 mm	9.5 mm	9.5 mm
	Nail	8d	10d	8d	8d	8d	8d	8d	8d
	Nail spacing	75 mm	65 mm	75 mm	65 mm	100 mm	75 mm	100 mm	100 mm

Table 5Shearwall and hold-down details of the wood-frame building designed in accordance with2010 NBCC

Note ¹ – indicates difference between 2006 BCBC and 2010 NBCC.

Design calculations have been included in Appendix B for wall 4 (as shown in Figure 15) which is a 9.75m long 6 storey wall. Table 6 indicates the forces used for strength design, forces used for deflection calculations, the calculated deflection, and inter-storey drifts for wall 4.

Table 6	Design forces and	Deflections fo	r a 9.75m long	6 storey representative Wall
---------	-------------------	----------------	----------------	------------------------------

Forces, Drifts, and Deflections for a 9.75m long 6 Storey Wall								
Level	V (strength design)	V (deflections)	Deflection (mm)	Drift (%)				
Roof	22.4 kN	12.3 kN	218	1.1				
6	23.3 kN	12.8 kN	167	1.3				
5	18.7 kN	10.3 kN	131	1.2				
4	14.0 kN	7.7 kN	97	1.3				
3	9.3 kN	5.1 kN	59	1.1				
2	4.7 kN	2.6 kN	29	1.0				

5.2 NEESWood Capstone test building

The NEESWood Capstone project is a research project led by a consortium of US universities that specialize in earthquake engineering research with aim to develop methods to assess the seismic performance of mid-rise wood frame construction. Under this project, a key activity is the shake table test of a six-storey wood-frame structure which was designed for a locality with high seismic loads in the state of California. Japanese research facilities that can simulate and apply the actual ground motion of a severe earthquake will be used to test the full-scale six-storey structure. The shake table tests will be conducted in July 2009. Results of the shake table tests can be used to check the accuracy of programs used in this study. A plan view of the building is shown in Figure 2.

In this study, the full-scale six-storey test building was redesigned in accordance with 2010 NBCC. Similar to the representative WFC residential building, it was assumed that the buildings are located in Vancouver on a site with soil class C. The fundamental lateral period was determined based on actual mass and stiffness of wood-based shearwalls and the period was then used to determine the minimum equivalent static earthquake force applied to the building. Due to the building configuration, the interior shear walls in the E-W direction are discontinuous at the 6th floor. In this design, each shear wall was designed with the greater of lateral loads based on either a flexible or rigid floor assumption. Torsional loads were considered for the rigid floor analysis. Although the cut off of walls at the 6th floor is not permitted under the 2006 BCBC (with amendments after April 6, 2009), capacity design principles were used to transfer the forces of the 1 storey shearwall at level 6 to other walls below. This gave rise to additional complexities in the design.

Figure 2 Plan view of the NEESWood Capstone test building

The building loads at the roof and at each floor of the building are provided in Table 7. The building periods and seismic forces are provided in Table 8. Details of the shearwalls in 4 and 6-storey buildings designed in accordance with 2006 BCBC (before April 6, 2009 amendments which now require cut-offs on seismic forces) and 2010 NBCC are provided in Table 9. The design drawings of the 4 and 6-storey buildings are provided in Appendix A.

8	8.7		
	Uniformly distributed	Area	Total load
	load (kPa)	(m^2)	(kN)
Roof (dead load + 25% snow load)	0.96	312	300
Floor (dead load)	1.68	224	375

Table 7	Building loads used in the seismic a	esign of the 4 and 6-storey	NEESWood buildings

Table 8	Building periods	s and seismi	e loads use	ed in the	design o	of the 4 and	l 6-storey	NEESWood
buildings						-		

4 Storey Building (W = 1425 kN)						
Building Period calculation	T (s)	V (%W)	V (kN)			
Ta (code calculated period)	.302	.123W	175			
2 x Ta (current cut off for strength) ¹	.604	.113W	161			
T (based on engineering mechanics) ²	1.1	.062W	88			
(5 Storey Building (W = 2	2175 kN)				
Building Period calculation	T (s)	V (%W)	V (kN)			
Ta (code calculated period)	.409	.123	267			
2 x Ta (current cut off for strength) ¹	.818	.087	189			
T (based on engineering mechanics) ²	1.70	.047	102			

Notes: 1-used for strength design based on NBBC clause 4.1.8.11.(3)(d)(iii)

2 - used for deflection calculations based on NBBC clause 4.1.8.11.(3)(d)(iv)

Table 9	Shearwall and hold-down details of the NEESV	Vood buildings designed in accordance with
2010 NBC	C	
·		

		1	6-storey building			4-storey building							
		SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	Hold-down	SR9			SR5	SR5	\$R5						
~th	End stud	6-2x6			6-2x6	6-2x6	2-2x4						
o	sheathing	9.5 mm*			9.5 mm	9.5 mm	9,5 mm						
storey	Nail	8d			8d	8d	8d						
	Nail spacing	150 mm*			150 mm	150 mm	100 mm	}					
	Hold-down	SR9	SR5	SR9	SR5	SR5]					
ςth	End stud	6-2x6	6-2x6	6-2x6	6-2x6	6-2x6]					
storeu	sheathing	9,5 mm*	9.5 mm*	12.7mm*	9.5 mm	9,5 mm		l					
storey	Nail	8d	8d	8d	8d	8d							
	Nail spacing	127 mm*	150 mm*	100 mm*	75 mm	75 mm				_			
	Hold-down	SR9	SR7	SR9	SR7	SR7		SR5			SR5	SR5	SR5
1th	End stud	6-2x6	6-2x6	8-2x6	6-2x6	6-2x6		4-2x6			4-2x6	4-2x6	4-2x4
4 storeu	sheathing	9.5 mm*	9.5 mm*	12.7mm*	12.7 mm	12.7 mm		12,7 mm			12.7 mm	12,7 mm	12.7 mm
sidiey	Nail	8d	8d	8d	10d	10d		8d			8d	8d	8d
	Nail spacing	100 mm*	127 mm*	100 mm*	75 mm	75 mm		100 mm			150 mm	150 mm	100 mm
	Hold-down	SR9	SR9	SR9	SR9	SR9		SR7	SR9	SR9	SR5	SR5	
2-2	End stud	6-2x6	6-2x6	10-2x6	6-2x6	6-2x6		4-2x6	4-2x6	4-2x6	4-2x6	4-2x6	
storey	sheathing	12.7mm*	9.5 mm*	12.7mm*	12.7 mm	12,7 mm		12.7 mm	12.7 mm	12.7 mm	12.7 mm	12.7 mm	
storey	Nail	8d	8d	10d	10d	10d		10d	8d	10d	10d	10d	
	Nail spacing	100 mm*	100 mm*	100 mm*	75 mm	75 mm		75 mm	75 mm	75 mm	100 mm	100 mm	
	Hold-down	HSR9	SR9	SR9	SR9	SR9		SR9	SR9	SR9	SR7	SR7	
and	End stud	8-2x6	8-2x6	10-2x6	8-2x6	8-2x6		4-2x6	4-2x6	4-2x6	4-2x6	4-2x6	
Z	sheathing	12.7mm*	12.7mm*	12.7mm*	12.7 mm	12.7 mm		12.7 mm	12.7 mm	12.7 mm	12.7 mm	12.7 mm	
storey	Nail	10d	8d	10d	10d	10d		10d	10d	10d	10d	10d	
	Nail spacing	100 mm*	100 mm*	100 mm*	50 mm	50 mm		50 mm	75 mm	50 mm	75 mm	75 mm	
	Hold-down	HSR9	SR9	HSR9	HSR9	HSR9		HSR9	SR9	SR9	SR7	SR7	
15	End stud	8-2x6	8-2x6	10-2x6	8-2x6	8-2x6		6-2x6	6-2x6	6-2x6	4-2x6	4-2x6	
1 storey	sheathing	12.7mm*	12.7mm*	12.7mm*	12.7 mm	12.7 mm		12.7 mm	12.7 mm	12.7 mm	12.7 mm	12.7 mm	
surey	Nail	10d	8d	10d	10d	10d		10d	10d	10d	10d	10d	
	Nail spacing	100 mm*	100 mm*	100 mm*	50 mm	50 mm		50 mm	75 mm	50 mm	75 mm	75 mm	
* Classi	• •	·1 1	1 /1 11	0.1 1	1								

Sheathing panels are nailed on both sides of the wall.

Design calculations have been included in Appendix B for a wall 5 (figure 16) for both the 4 and 6 storey building. Table 10 and 11 indicates the forces used for strength design, forces used for deflection calculations, the calculated deflection, and inter-storey drifts for wall 5.

Table 10	Design forces and	l Deflections for a (6.1m long 4 storey rej	presentative Wall
----------	-------------------	-----------------------	------------------------	-------------------

Forces, Drifts, and Deflections for a 6.1m long 6 Storey Wall								
Level	V (strength design)	V (deflections)	Deflection (mm)	Drift (%)				
Roof	19.9 kN	12 kN	185	2.0				
4	12.4 kN	7.4 kN	129	1.9				
3	8.3 kN	5.0 kN	77	1.6				
2	4.1 kN	2.5 kN	34	1.2				

Forces, Drifts, and Deflections for a 6.1m long 6 Storey Wall												
Level	V (strength design)	V (deflections)	Deflection (mm)	Drift (%)								
Roof	18.90 kN	7.0 kN	320	2.6								
6	9.92 kN	5 kN	248	2.3								
5	7.95 kN	4 kN	183	2.2								
4	5.95 kN	3 kN	121	1.9								
3	3.97 kN	2 kN	68	1.5								
2	1.99 kN	1 kN	27	1.0								

Table 11Design forces and Deflections for a 6.1m long 6 storey representative Wall

6 Earthquakes used in Analyses

A series of 20 earthquake records were provided by the Earthquake Engineering Research Facility of the University of British Columbia and used in the evaluation (Table 12). Earthquake records for two types of earthquakes expected for the city of Vancouver were considered: crustal (shallow) and subcrustal (deep) earthquakes. The first 14 records in Table 4 correspond to crustal earthquakes, while the remaining 6 correspond to subcrustal ones.

	Earthquake Record Characteristics												
No.	Epicentre	Date	Magnitude	Record ID	SF ¹	$PGA^{2}(g)$							
1	San Fernando	9-Feb-1971	6.6	VAN_I_4	1.26	0.34							
2	Friuli, Italy-01	6-May-1976	6.5	VAN_I_12	1.02	0.32							
3	Gazli, USSR	17-May-1976	6.8	VAN_I_14	0.72	0.52							
4	Tabas, Iran	16-Sep-1978	7.4	VAN_I_16	1.23	0.50							
5	Imperial Valley-06	15-Oct-1979	6.5	VAN_I_18	1.25	0.20							
6	Irpinia, Italy-01	23-Nov-1980	6.9	VAN_I_24	1.21	0.22							
7	Nahanni, Canada	23-Dec-1985	6.8	VAN_I_26	1.22	0.39							
8	New Zealand-02	2-Mar-1987	6.6	VAN_I_30	1.45	0.49							
9	Loma Prieta	18-Oct-1989	6.9	VAN_I_45	0.92	0.17							
10	Landers	28-Jun-1992	7.3	VAN_I_63	0.76	0.21							
11	Northridge-01	17-Jan-1994	6.7	VAN_I_76	1.02	0.19							
12	Manjil, Iran	20-Jun-1990	7.4	VAN <u>I</u> 137	1.01	0.52							
13	Hector Mine	16-Oct-1999	7.1	<u>VAN_I_139</u>	1.01	0.27							
14	E. Honshu, Japan	13-Jun-2008	6.8	<u>VAN I 158</u>	1.05	0.77							
15	Nisqually, WA	28-Feb-2001	6.8	VAN_II_8	1.53	0.25							
16	Nisqually, WA	28-Feb-2001	6.8	VAN_II_25	1.69	0.18							
17	Nisqually, WA	28-Feb-2001	6.8	VAN_II_27	1.74	0.19							
18	Michoacan, Mexico	11-Jan-1997	7.1	VAN_II_48	1.43	0.50							
19	S. Honshu, Japan	24-Mar-2001	6.4	VAN II 53	1.70	0.60							
20	S. Honshu, Japan	24-Mar-2001	6.4	VAN II 70	1.84	0.48							

 Table 12
 Earthquake records and their characteristics

Note: ¹ SF = Scaling Factor for Vancouver

² PGA = Peak Ground Acceleration (after the scaling)

All records were chosen to satisfy the seismic parameters for a locality such as Vancouver according to the 2005 NBCC. Records were scaled to match the average spectral pseudo-velocity, S_v , of the Uniform Hazard Spectrum (UHS) in the 2005 NBCC within the period range of 0.5 and 1.5 s. This was deemed to be the period range in which the structures will be oscillating during most of their response. The S_v spectra were computed from the velocity spectra for a 5% damping of each record. A scaling factor, SF, given by the ratio of the average spectral pseudo-velocity of NBCC UHS spectrum within the period range and the average Sv of each record in that period range, was obtained for each record. Each record was then scaled using this SF factor for use in analyses. The pseudo velocity and acceleration response spectra for all of these records compared to the Vancouver design spectrum are shown in Figures 3 and 4. Besides satisfying the NBCC requirements for acceleration, the chosen records had a range of frequency characteristics throughout the spectrum.

Figure 3 The pseudo velocity response spectra for all records, their average and the 2005NBCC velocity design spectrum for Vancouver

Figure 4 The acceleration response spectra for all records, their average and the 2005 NBCC acceleration design spectrum for Vancouver

7 Seismic Analysis of the Buildings

The seismic analysis of the buildings has been independently carried out by Forintek and Colorado State University (CSU). Computer programs Drain-3D and SAPWood were used by Forintek and CSU, respectively. Both computer programs have been validated with shake table tests of CUREE 2-storey wood-frame buildings and are been used in the prediction of shake table tests of NEESWood 6-storey wood-frame building in Japan during the summer of 2009.

In this section, the following information used in the analysis is provided: a) building modelling, b) shearwall properties, c) hold-down and bearing properties, and d) length and locations of shearwalls. To allow for the comparison of numerical results, the same shearwall properties were used in Forintek and CSU seismic analyses.

7.1 Building Modeling

7.1.1 Drain-3D

Drain-3D is a general structural analysis program. The program contains certain number of inelastic elements to describe the inelastic behaviour of concrete and steel structural elements. A pinching hysteresis model, as shown in Figure 5, was developed at the University of Florence (Ceccotti and Vignoli 1989) and was then implemented in Drain-3D for modelling of wood shearwalls.

Figure 5 Pinching hysteretic behaviour with six inclinations and constant discharge line used for modeling of the semi-rigid rotational springs

The building was modeled with a 3-D space frame composed of rigid straight members. In the model, each shearwall was considered as a fictitious rectangular frame that consists of four straight rigid elements that is able to deform in shear only. Shear deformation in this frame was represented by four identical rotational springs at each corner of the frame. Parameters of the pinching hysteresis model for the shearwalls were developed by fitting to the force–displacement relationship obtained from reversed cyclic tests of the shearwalls, or from fitting hysteresis loops developed analytically using computer programs that generate such loops based on the nail-slip connection properties.

Figure 6 shows a schematic of the model of the representative 6-storey building in Drain-3D. In the model, each shear wall is connected to the foundation or to the floor below by means of translational springs to represent hold-downs (Figure 7). The translational spring is composed of two parallel elements, one working only in tension with an elastic-perfectly plastic behaviour to represent the properties of the steel rod, and the other working only in compression with elastic behaviour to represent the bearing properties of the top and bottom plates.

Figure 6 Model of the 6-storey wood-frame building in Drain-3D

At each floor, the top nodes of the shearwalls below that floor and the bottom nodes of shearwalls above that floor have identical (slaved) coordinates. The seismic mass at each storey is equally distributed to all nodes of the floor. Floors were modeled as rigid diaphragms with equivalent cross bracings simulated by rigid pin-jointed linear elements. For the dynamic analyses a 1% stiffness and mass proportional damping ratio was used.

Figure 7 Stacked shearwall assembly model of a 6 storey building with rotational semi-rigid springs and semi rigid axial springs to represent the properties of the hold-downs

7.1.2 SAPWood

The numerical model used in the analyses with SAPWood program was a shear-bending coupled type of nonlinear model specifically designed for analysis of mid-rise wood-frame structures (Pei & van de Lindt, 2008). The model has six degrees of freedom at each storey diaphragm, while each diaphragm is assumed to act as a rigid body in the analyses. The kinematics of the model are illustrated in Figure 8. All lateral or vertical stiffness components (shearwalls, hold-downs, and compression studs.) are represented as nonlinear (or hysteretic) springs connecting point P_i and P_j on the adjacent diaphragms.

Figure 8 Global degrees of freedom and spring connectivity in the SAPWood model

This formulation allows the model to develop rigid body rotation for the entire storey level without inducing shear deformations. The seismic mass of the building was lumped onto the storey diaphragm, which induces seismic excitation during the ground motion. The dynamic loads cause the diaphragm layers to rotate and translate, while they are held together as a structural system by the nonlinear springs (representing shearwalls, hold-downs, etc.). It should be noted that these nonlinear springs are updated at each time step during the time history integration according to their load-resistance characteristics. This model has been implemented in the analyses of wood-frame buildings and stacked shearwall assemblies and produced good results.

The behaviour of the structures modeled using this method depends largely on the hysteretic spring elements used to represent the shearwall components. While the hysteretic elements for shearwalls can be obtained by cyclic testing of the walls, it is not always possible to have all different walls in the building subjected to a reversed-cyclic test. Instead, cyclic tests on typical nail-sheathing-stud connections can be performed and a computer program can be used to develop shearwall hysteretic responses based on nail connection responses. The model used to generate such hysteresis curves for the shearwalls in this analysis was the Nail-Pattern (NP) module of the SAPWood program. In the SAPWood-NP model, every framing member and sheathing panel is treated as a component of the assembly system. Each component is assumed to be a rigid body which has three in-plane degrees of freedom. The kinematics assumptions for the SAPWood-NP model are illustrated in Figure 9. These components were connected with nails that were modeled with hysteretic spring elements calibrated from existing nail test data.

Confidential

Figure 9 Nail-Pattern (NP) model kinematics

Once the model is established, cyclic displacement protocols can be applied incrementally to the transverse degrees of freedom (DOFs) of the top plate while the bottom plate DOFs are fixed. The displacement of other DOFs are then solved at every displacement step. The resulting force on the top plate undergoing forced deformation is obtained through equilibrium analysis.

An existing 10-parameter hysteretic model used in a number of studies (Folz and Filiatrault, 2004) was used for this analysis. It is a single degree-of-freedom (SDOF) hysteretic model that defines the restoring force response of a wood shearwall under reversed cyclic loading by using exponential backbone curves and linear loading and unloading paths. Ten hysteretic parameters are used to define the loading paths in the CUREE model, which is illustrated in Figure 10. The CUREE model has been shown to be accurate for nail and shearwall behaviour and was felt to be suitable for this analysis.

Figure 10 Loading paths and parameters in CUREE model

7.2 Shearwall Properties

7.2.1 Wood-based shearwalls

The hysteresis loops of shearwalls sheathed with plywood were constructed using the SAPWood-NP module. For shearwalls with 8d nails, cyclic tests of nail joints consisting of an 8d nail and 9.5 mm and 12.7 mm plywood panels were used to generate the hysteresis loops of the shearwalls. Since the test results of nail joints consisting of a 10d nail and 9.5 mm and 12.7 mm plywood panels were not available, the hysteresis loops of shearwalls with 10d nails were assumed to be those of shearwalls with 8d nails, with the load scaled up by a factor which is the ratio of the shear capacity of 10d nail joint to the shear capacity of 8d nail joint.

For shearwalls sheathed with gypsum wallboard (GWB), the average hysteresis loops were calibrated from a group of GWB wall tests (Folz and Filiatrault, 2002; Karacabeyli and Ceccotti, 1996; Ceccotti and Karacabeyli 2002).

Figures 11 to 14 show the hysteresis loops of shearwalls sheathed with plywood and gypsum wallboard. For shearwalls sheathed with plywood on one side and GWB on the other side, it is assumed that the hysteresis loops of the shearwalls sheathed with plywood and gypsum wallboard can be superimposed. The numbers in the legend of the Figures 11 to 14 indicate the nail spacing around the perimeter of the panel versus the nail spacing at the intermediate studs in inches.

Displacement (mm)

Figure 11 Hysteretic loop for 8d-3/8" ply 4ft x 8ft shearwalls

Displacement (mm)

Figure 12 Hysteretic loop for 8d-1/2" ply 4ft x 8ft shearwalls

Figure 13 Hysteretic loop for 10d-1/2" ply 4ft x 8ft shearwalls

Figure 14 Hysteretic loop for 8ft x 8ft GWB drywall

7.3 Hold-down and Plate Bearing Properties

Table 13 lists the diameter, Young's modulus, yield strength and ultimate strength of Simpson strong rods. The steel rods were modeled as elastic-perfectly plastic nonlinear spring elements. The stiffness and yield strength of the spring elements used to represent the steel rods were calculated as follows:

K = E * A / l $F_y = A * f_y$

Where

E – Young's modulus

A- the cross-section of the steel rod

l- the storey height

 f_y – the yield strength of the steel rod

Model	Digmeter (mm)	Young's modulus	Yield s	strength	Ultimate strength		
No.		(MPa)	(kPa)	(kN)	(kPa)	(kN)	
SR5	15.9 (5/8 in.)	200000	296500	58,66	413700	81.84	
SR7	22.2 (7/8 in.)	200000	296500	114.97	413700	160.41	
SR9	28.6 (1-1/8 in.)	200000	296500	190.05	413700	265.17	
HSR9	28.6 (1-1/8 in.)	200000	634300	406.57	827400	530.34	
SR10	31.7 (1-1/4 in.) 200000		296500	234.63	413700	327.37	

The modulus of elasticity of compression perpendicular to grain for Douglas-fir was taken as 490 MPa. The plate bearing was modeled as an elastic spring element. The stiffness of the spring was calculated as follows:

K = E * A / l,

Where

E- elasticity of compression perpendicular to grain

A- cross-section of end studs

l- the thickness of bottom and top plates

7.4 Lengths and Locations of Shearwalls

Shearwalls sheathed with plywood are indicated in the design drawings in Appendix A.

7.4.1 Representative WFC building

For the representative WFC buildings designed in accordance with 2006 BCBC and 2010 NBCC, seismic performance of the buildings with GWB is studied. For buildings designed in accordance with 2006

BCBC, seismic performance of buildings without GWB is also studied. Ignoring the contribution of GWB results in a conservative estimate of the seismic performance of the building.

For buildings with GWB, only the GWB contribution in major wall lines was considered. The lateral resistance of doors, windows, and transverse walls was not considered in the model. The major wall lines along which GWB contribution was considered are as follows:

Shearwalls in E-W direction

Axis line T:

10' S.W.1, GWB on one side and plywood on the other side

Axis line S:

23' S.W.3 (on the West side), GWB on one side and plywood on the other side 14' S.W.1 (on the East side), GWB on one side and plywood on the other side

Partition walls between axis lines S and R: 23' drywalls with GWB on both sides of the wall (on the West side), 14' drywalls with GWB on both sides of the wall (on the East side),

Axis line R:

32' S.W.3 (on the West side), GWB on one side and plywood on the other side 32' S.W.3 (on the East side), GWB on one side and plywood on the other side

Two partition walls between axis lines R and Q: 23' drywalls with GWB on both sides of the wall (on the West side), 23' drywalls with GWB on both sides of the wall (on the East side),

Axis line Q: 20' S.W.2 (on the West side), GWB on one side and plywood on the other side 20' S.W.2 (on the East side), GWB on one side and plywood on the other side

Two partition walls between axis lines Q and P: 23' drywalls with GWB on both sides of the wall (on the West side), 23' drywalls with GWB on both sides of the wall (on the East side),

Axis line P: 32' S.W.3 (on the West side), GWB on one side and plywood on the other side 32' S.W.3 (on the East side), GWB on one side and plywood on the other side

Two partition walls between axis lines P and O: 23' drywalls with GWB on both sides of the wall (on the West side), 23' drywalls with GWB on both sides of the wall (on the East side),

Axis line O: 22' S.W.3 (on the West side), GWB on one side and plywood on the other side 22' S.W.3 (on the East side), GWB on one side and plywood on the other side

Shearwalls in N-S direction

Axis line 13: 11' + 12' + 15' + 12' + 17' + 15' + 9' + 16' S.W.4, GWB on one side and plywood on the other side

Axis line 15:

19' + 10' + 15' + 18' + 18' + 15' + 17' S.W.4, GWB on one side and plywood on the other side

Schematic of locations of the shearwalls sheathed with wood-based panels in the representative WFC buildings are shown in Figure 15.

Figure 15 Shearwall identification and locations in representative wood frame building

7.4.2 NEESWood Capstone test building

For the NEESWood Capstone test building designed in accordance with 2010 NBCC, seismic performance of the buildings without GWB is studied. As the lateral load capacities of GWB are not considered, it results in a conservative estimate of the seismic performance of the building. Schematic of locations of the shearwalls sheathed with wood-based panels are shown in Figure 16.

Figure 16 Shearwall identification and locations in NEESWood Capstone test building

8 Results of Non-linear Time History Analyses

For each building analysed, the following results are provided: a) natural frequency; b) maximum base shear; c), maximum displacement and acceleration at each storey; d) maximum inter-storey drift; e) maximum shearwall deformation at each storey; and f) maximum uplift forces and deformations. Detailed results of the representative building designed in accordance with 2006 BCBC and 2010 NBCC are provided in Appendix C and D, respectively. The results of NEESWood Capstone test building designed in accordance with 2006 BCBC are provided in Appendix E. Selected time history responses and hysteresis loops of selected shearwalls are provided in Appendix F.

8.1 Representative buildings designed in accordance with 2006 BCBC

A summary of the results of the representative 4-storey and 6-storey buildings designed in accordance with 2006 BCBC is provided in Tables 14 and 15. In general, it was found that for the same buildings, Drain-3D results show higher natural periods, greater base shear, larger maximum displacements and inter-storey drifts than results obtained with the SAPWood model. For that reason, results from the Drain-3D model will be used for discussion in this section.

Confidential

4-storey building				Drai	in-3D			SAP	Wood			
4-store	y bunding	5	E	-W	N	I-S	E	-W	N	I-S		
Natural	With (GWB	0.	.54	0.	0.68		0.52				
period (s)	Without	GWB	0.	.73	0.	0.78		0.64				
Base shear	With (GWB	1351		1(1037		59	845			
(kN)	Without	GWB	981		8	893		51	832			
Storey>			1	2	3	4	1	2	3	4		
	With	E-W	28.7	45.6	59.5	66.4	17.5	32.2	43.3	47.3		
Displacement	GWB	N-S	25.8	49.6	75.2	94.0	23.0	40.9	58.3	63.4		
(mm) With	Without	E-W	28.8	46.3	72.3	80.2	21.5	40.9	60.8	70.5		
	GWB	N-S	29.0	52.9	81.7	103.4	27.3	45.3	66.9	74.0		
	With	E-W	1.04	0.64	0.57	0.29	0.64	0.57	0.46	0.19		
Inter-storey	GWB	N-S	0.94	0.91	0.99	0.74	0.84	0.73	0.77	0.26		
drift (%)	Without	E-W	1.05	0.70	1.08	0.39	0.83	0.74	0.76	0.26		
	GWB	N-S	1.05	0.96	1.17	0.88	0.83	0.74	0.76	0.26		
Cheenwall	With	E-W	27.5	15.5	12.9	5.0	na	na	na	na		
deformation	GWB	N-S	21.8	16.1	15.3	7.5	na	na	na	na		
(mm)	Without	E-W	28.2	18.2	28.4	9.0	na	na	na	na		
(11111)	GWB	N-S	25.8	18.9	22.1	13.5	na	na	na	na		
	With	E-W	48.4	27.5	10.4	5.1	53.7	28.9	22.3	11.1		
Uplift force	GWB	N-S	85.7	54.7	31.8	13.3	15,4	8.5	8.5	5.4		
(kN)	Without	E-W	6.4	1.9	0.6	0.7	53.7	28.9	22.3	11.1		
	GWB	N-S	74.6	51.1	29.3	14.7	15.4	8.5	8.5	5.4		
Unlift	With	E-W	1.69	1.75	0.65	0.11	1.90	2.01	1.55	0.77		
deformation	GWB	N-S	3.04	4.67	2.21	0.92	0.54	0.59	0.59	0.37		
(mm)	Without	E-W	0.23	0.14	0.04	0.05	1.90	2.01	1.55	0.77		
(mm)	GWB	N-S	2.65	3.60	2.03	1.02	0.54	0.59	0.59	0.37		

 Table 14
 Summary of mean results of 4-storey building designed in accordance with 2006 BCBC

Note: For Drain-3D, the results of walls 4 and 25 are presented in E-W and N-S, respectively. For SAPWood, the uplift forces in the table are based on Method A (please refer to section 8.6 for explanation).

6-storey Building					Drai	n-3D				SAPWood					
0-510105	5		E-W			N-S			E-W			N-S			
Natural	With C	GWB		0.78			0.96		0.66						
period (s)	Without	GWB		0.99			1.07		0.89						
Base shear	With C	GWB		1665			1559			995			943		
(kN)	Without	GWB	1410			1435			1065		1018				
St	orey —-		1	2	3	4	5	6	1	2	3	4	5	6	
	With	E-W	18.6	35.5	59.1	76.4	92.8	103.2	13.7	26.3	39.0	49.3	58.0	62.0	
Displacement	GWB	N-S	23.0	43.4	64.5	92.6	124.3	150.8	18.6	33.8	46.9	59.1	72.2	76.2	
(mm)	Without	E-W	25.2	42.8	70.1	86.9	108.6	119.0	17.9	33.2	48.9	62.4	75.9	83.1	
	GWB	N-S	23.8	44.2	64.3	89.8	122.4	149.2	19.8	36.8	51.1	66.4	81.1	86.8	
	With	E-W	0.68	0.63	0.91	0.67	0.65	0.40	0.50	0.50	0.52	0.44	0.37	0.18	
Inter-storey	GWB	N-S	0.84	0.77	0.87	1.16	1.34	1.05	0.68	0.61	0.58	0.62	0.67	0.24	
drift (%)	Without	E-W	0.91	0.67	1.13	0.71	1.11	0.44	0.50	0.50	0.52	0.44	0.37	0.18	
	GWB	N-S	0.87	0.78	0.82	1.19	1.49	1.12	0.50	0.50	0.52	0.44	0.37	0.18	
Shaanwall	With	E-W	17.0	14.2	20.7	13.0	11.9	4.7	na	na	na	na	na	na	
deformation	GWB	N-S	19.1	13.3	11.4	14.8	16.5	7.8	na	na	na	na	na	na	
(num)	Without	E-W	24.1	16.6	28.6	16.5	27.5	8.4	na	na	na	na	na	na	
(1111)	GWB	N-S	20.3	14.6	12.4	18.5	24.6	14.4	na	na	na	na	na	na	
	With	E-W	111.0	80.7	53.8	29.9	11.3	1.5	95.0	58.1	57.5	36.4	25.0	12.3	
Uplift force	GWB	N-S	148.9	115.7	85.5	54.8	32.1	11.0	28.9	26.6	16.8	11.4	8.2	4.5	
(kN)	Without	E-W	53.6	34.0	17.2	5.4	3.0	0.8	95.0	58.1	57.5	36.4	25.0	12.3	
	GWB	N-S	136.6	101.4	74.9	51.6	30.7	14.1	28.9	26.6	16.8	11.4	8.2	4.5	
TINIA	With	E-W	2.38	2,86	1.91	2.08	0.79	0.11	2.03	2.05	2.03	2.53	1.73	0.85	
deformation	GWB	N-S	3.88	2.49	3.03	4.99	2.23	0.77	0.62	0.57	0.59	0.79	0,57	0.31	
(mm)	Without	E-W	1.15	1.21	0.61	0.37	0.21	0.06	2.03	2.05	2.03	2.53	1.73	0.85	
(mm)	GWB	N-S	3.06	2.18	2.66	3.93	2.13	0.98	0.62	0.57	0.59	0.79	0.57	0.31	

 Table 15
 Summary of mean results of 6-storey building designed in accordance with 2006 BCBC

Note: For Drain-3D, the results of walls 4 and 25 are presented in E-W and N-S, respectively. For SAPWood, the uplift forces in the table are based on Method A (please refer to section 8.6 for explanation).

8.1.1 Natural Periods

For the buildings analyzed, the natural period of the 4-storey building is approximately 0.5 - 0.6 seconds when GWB is considered in the analysis. The natural period of the same building becomes 0.6 - 0.8 seconds when only wood-based shear walls are considered. For 6-storey building, the natural period is approximately 0.6 - 0.9 seconds when GWB is considered and 0.9 - 1.1 seconds when only wood-based shear walls are considered. For both buildings, the natural periods are much greater than those calculated by the Code formula $0.05(h_n)^{3/4}$, according to which, the natural periods of the 4-storey and 6-storey buildings are 0.3 seconds and 0.41 seconds, respectively.

8.1.2 Base Shear

For the 4-storey building with GWB considered, the average base shears are 1351 kN in E-W direction and 1037 kN in N-S direction, which are 65% of the lateral load capacity of the first storey in E-W direction and 83% of the lateral load capacity of the first storey in N-S direction. When only the woodbased shearwalls are considered, the average base shears are 72% of the lateral load capacity of the first storey in E-W direction and 84% of the lateral load capacity of the first storey in N-S direction.

For the 6-storey building with GWB considered, the average base shears are 1665 kN in E-W direction and 1559 kN in N-S direction, which are 61% of the lateral load capacity of the first storey in E-W direction and 79% of the lateral load capacity of the first storey in N-S direction. For the same building with only wood-based shearwalls considered, the average base shears are approximately 71% of the lateral load capacity of the first storey in E-W direction and 80% of the lateral load capacity of the first storey in N-S direction.

8.1.3 Displacement at the Top of the Buildings

For the 4-storey buildings with GWB considered, the average maximum displacements at the top of the building are approximately 67 mm in E-W direction and 94 mm in N-S direction. Where GWB is not considered, the average maximum displacements at the top of the building are slightly increased, with 80 mm in E-W direction and 103 mm in N-S direction.

For the 6-storey buildings with GWB considered, the average maximum displacements at the top of the building are 103 mm in E-W direction and 151 mm in N-S direction. For the same building with only wood-based shearwalls considered, the average maximum displacements at the top of the building are 119 mm in E-W direction and 149 mm in N-S direction.

8.1.4 Inter-storey drifts

For 4-storey building when GWB is considered, the average maximum inter-storey drift, which occurs in the first storey, is approximately 1%. This is much smaller than the 2.5% maximum inter-storey drift allowed in 2006 BCBC. In addition, none of the maximum inter-storey drifts at any storey under any individual earthquake exceed 2.5% inter-storey limit. For 4-storey building when only wood-based shearwalls are considered, the average maximum inter-storey drift, which occurs in the third storey, is approximately 1.2%. Similarly, none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit.

The same conclusions can be made for the 6-storey building. The average maximum inter-storey drifts, which occur at the fifth storey, are approximately 1.3% for building with GWB considered and 1.5% for building with only wood-based shearwalls considered. None of the maximum inter-storey drifts at any storey under any earthquake excitation exceed the 2.5% inter-storey limit.

Figures 17 and 18 show the cumulative distributions of maximum inter-storey drifts at each storey from the Drain-3D model. As noted, the distribution of maximum inter-storey drifts at 1 - 3 storey in 6-storey building are similar to those in the 4-storey building. For a 6-storey building, the maximum inter-storey drifts at 4 - 6 storey are much greater than those obtained at 1 - 3 storey.

Figure 17 Cumulative distribution of inter-storey drifts in N-S direction for 4-storey buildings without GWB

Figure 18 Cumulative distribution of inter-storey drifts in N-S direction for 6-storey buildings without GWB

8.1.5 Shearwall deformations

Figures 19 and 20 show the cumulative distributions of the maximum shearwall deformation at each storey from Drain-3D. As noted, the maximum shearwall deformation at 1 - 3 storey in 6-storey building

is generally smaller than that in the 4-storey building. For the 6-storey building, the largest shearwall deformations occurred at the 5th storey. Other than the one which is 43 mm, the shearwall deformations at the 5th storey are similar to those at the 1st storey in the 4-storey building.

Figure 19 Cumulative distribution of shearwall deformations in N-S direction for 4-storey buildings without GWB

Figure 20 Cumulative distribution of shearwall deformations in N-S direction for 6-storey buildings without GWB

8.1.6 Hold-down Uplift Forces and Deformations

Large discrepancies were found between the results from Drain-3D and SAPWood. While hold-down stresses calculated by SAPWood did not reach the yield strength of the steel rods, hold-down stresses calculated by Drain-3D reached yield strength in N-S direction in several instances. The differences are believed mainly due to the assumptions used in the analyses. In Drain-3D, it is assumed that a) the lumped mass at each storey is equally distributed to the nodes of the floor, and b) floor out-of-plane is flexible.

In SAPWood two methods are used to calculate the maximum tension and compression forces of shearwalls. The first method (termed hereafter as method A) uses the maximum force values (tension and compression) experienced by the hold-down and the compression spring elements directly. The second method (termed hereafter as method B) takes the maximum shear force in each wall element and uses the free-body-diagram equilibrium (illustrated in Figure 21b) to find the tension and compression at each end. Method A considers the over-turning effect of the entire building (as is shown in Figure 21a), thus resulting in high tension/compression forces in the hold-downs and studs close to the edge of the diaphragm. It has been proven to be accurate when the global out-of-plane rotation of the entire diaphragm is significant (Pei and van de Lindt, 2008). However, it does not take into account the out-of-plane flexibility of the diaphragm, i.e. it assumes that the diaphragm will rotate as a rigid plate. Thus it might underestimate the forces for the shearwalls located near the center of the floor plan. On the other hand, method B calculates the tension/compression for each wall individually following basic force equilibrium with no consideration of the overall (global) behaviour of the diaphragm. This is the approach used in current force-based design practice such as IBC (2006) to calculate the hold-down forces. It is believed that the maximum hold-down/stud forces in reality are bounded by these two methods.

Figure 21 Force equilibrium assumptions for Method A and B

8.2 Representative building designed in accordance with 2010 NBCC

A summary of the results of a representative 4-storey and 6-storey building designed in accordance with 2010 NBCC is provided in Tables 16 and 17. The results are similar to those of 4-storey and 6-storey buildings designed in accordance with 2006 BCBC. This was expected, as except for a few hold-downs,

shearwalls in 4-storey and 6-storey buildings designed in accordance with 2006 BCBC and 2010 NBCC are identical. Therefore, observations and conclusions for the buildings designed in accordance with 2006 BCBC also apply to the buildings designed in accordance to 2010 NBCC.

	OWD		Drai	n-3D			SAP	Wood				
4-storey building with	GWB	E	E-W N-S			E-	W	N	-\$			
Natural period (s	5)	0.54		0.	0.68		0.52					
Base shear (kN))	13	51	10	53	9	38	842				
Storey —		1	2	3	4	1	2	3	4			
Disula content (mm)	E-W	28.6	45.5	59.4	66.2	17.6	32.2	43.5	47.5			
Displacement (mm)	N-S	28.0	50.9	75.1	91.3	22.8	40.9	58.3	63.5			
7	E-W	1.04	0.64	0.57	0.28	0.64	0.57	0.47	0.18			
Inter-storey drift (%)	N-S	1.02	0.86	0.94	0.65	0.83	0.74	0.76	0.26			
Shearwall	E-W	27.4	15.7	13.1	5.0	na	na	na	na			
deformation, (mm)	N-S	23.9	16.7	16.0	7.2	na	na	na	na			
I Inlife Course (InNI)	E-W	48.4	27.5	10.4	5.1	53.2	38.8	22.1	11.3			
Oplin force (KN)	N-S	88.4	58.8	31.8	12.7	15.5	12.2	8.5	5,5			
Uplift deformation	E-W	1.71	0.93	0.66	0.11	1.88	1.37	1.53	0.78			
(mm)	N-S	3.14	2.09	2.21	0.88	0.55	0.43	0.59	0.38			

 Table 16
 Summary of mean results of 4-storey building designed in accordance with 2010 NBCC

Note: For Drain-3D, the results of walls 4 and 25 are presented in E-W and N-S, respectively. For SAPWood, the uplift forces in the table are based on Method A.

6 storey building with	CWD			Drai	n-3D				SAPWood					
o-storey building with	I G W D		E-W			N-S		E-W				N-S		
Natural period (s	eriod (s) 0.78					0.96			0.66					
Base shear (kN)	Base shear (kN) 1665					1583			987			938		
Storey	→	1	2	3	4	5	6	1	2	3	4	5	6	
Displacement (mm)	E-W	18.6	35.5	58.5	76.4	92.8	103.1	18.6	33.8	46.9	59.1	72.2	76.2	
Displacement (mm)	N-S	23.4	44.1	67.0	95.4	127.6	152.4	13.8	26.4	39.0	49.4	58.1	62.0	
Inter storey drift (0/)	E-W	0.68	0.63	0.92	0.67	0.65	0.40	0.50	0.50	0.52	0.43	0.38	0.17	
Inter-storey utilit (%)	N-S	0.87	0.89	1.10	1.42	1.74	1.52	0.68	0.61	0.58	0.62	0.66	0.23	
Shear wall	E-W	17.0	14.2	20.8	13.1	11.9	4.7	na	na	na	na	na	na	
deformation (mm)	N-S	20.0	13.7	13.2	16.7	19.0	8.0	na	na	na	na	na	na	
Unlift forma (IN)	E-W	110.9	80.6	53.7	29.6	11.2	1.7	94.7	56.5	56.6	26.4	24.3	11.6	
Opline force (kiv)	N-S	162.0	124.0	89.8	63.2	34.8	13.1	27.8	25.7	15.9	15.1	7.9	4.3	
Uplift deformation	E-W	2.38	2.86	1.90	2.05	0.78	0.11	2.03	2.00	2.00	1.83	1.69	0.81	
(mm)	N-S	3.47	2.65	3.50	2.32	2.40	0.90	0.59	0.55	0.56	0.53	0.55	0.30	

Table 17Summary of mean results of 6-storey building designed in accordance with 2010 NBCC

Note: For Drain-3D, the results of walls 4 and 25 are presented in E-W and N-S, respectively. For SAPWood, the uplift forces in the table are based on Method A.

8.3 NEESWood Capstone test building designed in accordance with 2010 NBCC

A summary of the results of the NEESWood Capstone 4-storey and 6-storey building designed in accordance with 2010 NBCC is provided in Tables 18 and 19.

A second back the second state	CWD		Drai	n-3D		SAPWood					
4-storey building with	GWB	E٠	٠W	N	-S	E	W	N	-S		
Natural period (s	3)	0.	0,59 0.78				0.	.70			
Base shear (kN))	4	26 276 237 209						09		
Storey -		1	2	3	4	1	2	3	4		
Dimi-	E-W	12.9	26.8	51.0	100.9	17.7	32.7	48.6	72.2		
Displacement (mm)	N-S	24.6	38.7	76.1	89.3	23.0	39.5	60.2	72.7		
	E-W	0.47	0.53	0.95	2.30	0.64	0.69	0.74	1.05		
Inter-storey drift (%)	N-S	0.90	0.60	1.62	0.54	0.84	0.84	1.03	0.61		
Shearwall	E-W	7.8	5.3	10.6	47.3	na	na	na	na		
deformation, (mm)	N-S	22.5	12.1	39.9	9.5	na	na	na	na		
	E-W	219	163	114	47	109.5	65.7	43.6	20.2		
Uplift force (kN)	N-S	93	59	30	6.4	41.0	22.8	15.2	16.4		
Uplift deformation	E-W	4.7	3.5	8.1	3.2	2.34	2.06	1.37	1.40		
(mm)	N-S	3.3	2.1	2.1	0.4	1.45	1.40	0.94	1.14		

 Table 18
 Summary of mean results of 4-storey building designed in accordance with 2010 NBCC

Note: For Drain-3D, the results of walls 5 and 8 are presented in E-W and N-S, respectively. For SAPWood, the uplift forces in the table are based on Method A.

Table 19	Summary of mean results of 6-storey bu	uilding designed in accordance with 2010 NBCC
----------	--	---

	OWD			Drai	n-3D					SAP	Wood		
6-storey building with	GWB		E-W			N-S			E-W			N-S	
Natural period (s	;)	0.87			0.94					1.	04		
Base shear (kN) 460					480				295			242	
Storey		1	2	3	4	5	6	1	2	3	4	5	6
	E-W	17.6	37.1	60.4	88.3	117.3	154.3	14.3	25.9	38.8	52.9	66.6	84.7
Displacement (mm)	N-S	15.9	31.0	61.8	85.3	112.1	143.4	19.7	34.7	50.2	62.3	73.9	86.0
110 (0()	E-W	0.64	0.74	0.90	1.09	1.12	1.51	0.52	0.55	0.62	0.71	0.69	0.90
Inter-storey drift (%)	N-S	0.58	0.57	1.22	0.90	1.10	1.39	0.72	0.74	0.80	0.70	0.70	0.75
Shear wall	E-W	11.0	8.0	7.2	7.9	7.0	16.9	na	na	na	na	na	na
deformation (mm)	N-S	12.3	8.4	23.9	13.1	17.1	26.4	na	na	na	na	na	na
	E-W	298	240	179	148	98	84	113.8	103.3	79.4	78.5	69.3	42.8
Upliff force (KN)	N-S	245	177	136	87	42	10	76.3	63.5	51.8	32.4	15.1	9.8
Uplift deformation	E-W	6.4	5.1	5.2	3.2	2.2	1.8	2.44	1.96	1.51	1.49	1.32	0.92
(mm)	N-S	5.3	5.4	2.9	3.1	2.9	0.7	1.63	1.21	0.99	1.02	0.93	0.68

Note: For Drain-3D, the results of walls 5 and 8 are presented in E-W and N-S, respectively. For SAPWood, the uplift forces in the table are based on Method A.

8.3.1 Natural Periods

Only wood-based shear walls are considered in the analysis. The natural period is approximately 0.6 - 0.8 seconds for the 4-storey building and approximately 0.9 - 1.1 seconds for the 6-storey building. The results again demonstrate that the natural periods are much greater than those calculated by the Code formula $0.05(h_n)^{3/4}$. Although GWB would increase building stiffness and therefore reduce the natural period, it is believed that GWB would fail in a severe earthquake event. As natural period is primarily used to calculate maximum base shear of a building, it seems reasonable to ignore the GWB contribution.

8.3.2 Base Shear

The base shears obtained from Drain-3D are much greater than those obtained from SAPWood. For the 4storey building, the average base shears obtained from Drain-3D are 426 kN in E-W direction and 276 kN in N-S direction, which are 64% of the lateral load capacity of the first storey in E-W direction and 62% of the lateral load capacity of the first storey in N-S direction. The average base shears obtained from SAPWood are approximately 36% of the lateral load capacity of the first storey in E-W direction and 47% of the lateral load capacity of the first storey in N-S direction.

For the 6-storey building, the average base shears obtained from Drain-3D are 460 kN in E-W direction and 480 kN in N-S direction, which are 66% of the lateral load capacity of the first storey in E-W direction and 72% of the lateral load capacity of the first storey in N-S direction. The average base shears obtained from SAPWood are approximately 42% of the lateral load capacity of the first storey in E-W direction and 36% of the lateral load capacity of the first storey in N-S direction.

8.3.3 Inter-storey drifts

For the 4-storey building, the average maximum inter-storey drift obtained from SAPWood is approximately 1.05% at the fourth storey. This is much smaller than the 2.5% maximum inter-storey drift allowed in 2010 NBCC. None of the maximum inter-storey drifts at any storey under any of the 20 earthquake excitation exceed the 2.5% inter-storey limit. When analysed with Drain-3D, though they are compatible to the results of SAPWood in N-S direction, the average maximum inter-storey drift in E-W direction reached approximately 2.3% at the fourth storey, which is close to the 2.5% maximum interstorey drift allowed in 2010 NBCC. Of the twenty earthquakes examined, with Drain-3D approximately half of the earthquakes resulted in the maximum inter-storey drifts greater than 2.5% inter-storey limit. It is believed that the different results are mainly due to the large hold-down deformations obtained in analyses with DRAIN-3D. As mentioned in Section 8.1.6, it is assumed in Drain-3D that: a) lumped mass at each storey is equally distributed to the nodes of the floor, and b) floor out-of-plane is flexible. Such assumptions will result in much higher hold-down stresses than it would happen in a real building. For the 4-storey building analysed with Drain-3D, hold-downs reached yield strength under most of earthquake excitations and consequently had much larger uplift deformations.

For the 6-storey building, the average maximum inter-storey drifts obtained from SAPWood and DRAIN-3D are approximately 0.9% and 1.51% at the sixth storey, respectively. This is much smaller than the 2.5% maximum inter-storey drift allowed in 2010 NBCC. Of the twenty earthquakes examined, none of the maximum inter-storey drifts at any storey under any earthquake excitation exceed the 2.5% interstorey limit.

8.3.4 Shearwall deformations

For the 4-storey building, the average maximum shearwall deformation is around 46 mm at the fourth storey in E-W direction and 40 mm at the third storey in N-S direction. These are less than the displacement at peak load of the shear walls. Where individual earthquakes are concerned, the maximum deformation reached 70 mm in one case, which is greater than the displacement at peak load but still less than the ultimate displacement of the wall. The ultimate displacement of the wall is defined as the displacement which corresponds to 80% of the maximum lateral force on the descending portion of the criteria for wall reaching its "near-collapse" status, it means that the building will still stand if the maximum shearwall deformation is less than the ultimate displacement of the wall.

For the 6-storey building, the average maximum shearwall deformation is around 17 mm at the sixth storey in E-W direction and 26 mm at the sixth storey in N-S direction. These are much smaller than the average maximum shearwall deformation in the 4-storey building.

8.3.5 Hold-down Uplift Forces and Deformations

As for the representative wood-frame buildings, large discrepancies were found between the results from Drain-3D and SAPWood for the NEESWood building as well. While during analyses using SAPWood the hold-downs did not reach the yield strength, some of the hold-downs in the analyses using Drain-3D reached the yield strength in both E-W and N-S directions. The differences are due to the assumptions that lumped mass at each storey is equally distributed to the nodes of the floor in the Drain-3D model. As a result, the total weight to counteract the uplift force at the ends of a wall in the DRAIN-3D model is probably much smaller than that in the design, causing hold-downs in the model to yield under the earthquake excitation. In seismic surveys and shake table tests, the excessive deformations of hold-downs have not been observed.

9 Conclusions

Two building configurations, a typical wood-frame residential building and a building to be tested under the NEESWood project, were studied. For each building configuration, a four-storey building and a sixstorey building were designed to the current (pre-April 6, 2009) 2006 BC Building Code (BCBC) and to the anticipated new requirements in the 2010 National Building Code of Canada (NBCC), resulting in four buildings with different designs. The four-storey building designed to the current 2006 BC Building Code served as the benchmark building representing the performance of current permissible structures with common architectural layouts. In the design of the two buildings, the fundamental lateral period was determined based on actual mass and stiffness of wood-based shearwalls. The base shear and inter-storey drift are determined in accordance with Clauses 4.1.8.11.(3)(d)(iii) and 4.1.8.11.(3)(d)(iv) of BCBC, respectively.

In 2006 BCBC and 2010 NBCC, the inter-storey drift limit is set at 2.5 % of the storey height for the very rare earthquake event (1 in 2475 year return period). Limiting inter-storey drift is a key parameter for meeting the objective of live safety under a seismic event.

For 4-storey and 6-storey representative wood-frame buildings, where only wood-based shearwalls are considered, results from both DRAIN-3D and SAPWood show that none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit given in the building code. With DRAIN-3D, the average maximum inter-storey drifts are approximately 1.2% and 1.5% for 4-storey and 6-storey buildings designed with 2006 BCBC, respectively.

For NEESWood wood-frame buildings, none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit for 4-storey building obtained from SAPWood and 6-storey building obtained from DRAIN-3D and SAPWood. For 4-storey building analysed with DRAIN-3D, approximately half of the earthquakes resulted in the maximum inter-storey drifts greater than 2.5% inter-storey limit. This is partly due to the assumptions used in Drain-3D in which lumped mass at each storey is equally distributed to the nodes of the floor. As a result, the total weight to

counteract the uplift force at the ends of a wall would be much smaller than that anticipated in the design, causing hold-downs to yield and have large uplift deformations.

Based on the analyses that were carried out on a representative building and redesigned NEESWood building situated in the city of Vancouver, the results indicate that when subjected to the 20 earthquake records the 6-storey wood-frame buildings have similar or smaller inter-storey drift than the 4-storey wood-frame buildings which are allowed under the current building code and are used as a benchmark in this study.

10 References

- Ceccotti, A., Vignoli, A. 1989. "A pinching hysteretic model for semirigid joints", European Earthquake Engineering Journal, Vol.3, 3-9.
- Ceccotti, A. and Karacabeyli, E. 2002. "Validation of Seismic Design Parameters for Wood-frame Shearwall Systems", Can. J. Civ. Eng.: 29; 484-498.
- Folz, B. and Filiatrault, A. 2002. "SAWS Seismic Analysis of Woodframe Structures, Version 1.0," CUREE Publications No. W-21, Consortium of Universities for Research in Earthquake Engineering, Richmond, CA.
- Folz, B. and Filiatrault, A. 2004. "Seismic analysis of woodframe structures. II: Model implementation and verification", J. Struct. Engrg., ASCE, 130(9), 1361-1370.
- Karacabeyli, E., Ceccotti, A. 1996. "Test results on the lateral resistance of nailed shear walls. Proceedings of the International Wood Engineering Conference", 1996 Oct 28-31; New Orleans, LA. Vol.2, 179-186.
- Pei, S. and van de Lindt, J.W. 2008. "Coupled shear-bending formulation for seismic analysis of stacked wood shear wall systems", Tentatively Accepted, Revised manuscript pending approval, Earthquake Eng. and Structural Dynamics.

Appendix A

Design drawings of 4 and 6 storey Buildings

A-1) Design drawings of representative 4-storey building designed in accordance with 2006 BCBC

Page 71 HOU-2011-00026, Part One

Page 72 HOU-2011-00026, Part One

Rov.

Page 73 HOU-2011-00026, Part One

1100-

A-2) Design drawings of representative 6-storey building designed in accordance with 2006 BCBC

Page 76 HOU-2011-00026, Part One

Page 77 HOU-2011-00026, Part One

HOU-2011-00026, Part One

A-3) Design drawings of representative 4-storey building designed in accordance with 2010 NBCC

Page 81 HOU-2011-00026, Part One

Page 82 HOU-2011-00026, Part One

Rev. Appendix A – 15

Page 83 HOU-2011-00026, Part One

A-4) Design drawings of representative 6-storey building designed in accordance with 2010 NBCC

Page 86 HOU-2011-00026, Part One

Page 88 HOU-2011-00026, Part One

A-5) Design drawings of NEESWood Capstone 4-storey building designed in accordance with 2010 NBCC

HOU-2011-00026, Part One

A-6) Design drawings of NEESWood Capstone 6-storey building designed in accordance with 2010 NBCC

HOU-2011-00026, Part One

Appendix B

Selected Design Calculations of Shearwalls in Representative and NEESWood Wood-Frame Buildings

B-1) Design of Wall 4 in 6 storey Representative Wood Frame Buildings

<u> 6. Story Shonr Wall, Example</u> GN/2005 spreadahaats/wood shearwall March 28 2008

6 Story 9.75m Party Wall

W = 0.75 m Rd = 3.00 Species = HemFir Ra = 1.70 d = 9.3 m Doffoction Multiplier (Va_{terevent}/Va) =

VolgetweevVol = 1.00 (Can use Vogetimeaus based on T calculated with no upper timit)

CUCAS NES

4 STORY SWEER JOLL

	5	5	22	>(WG X IW)	N X M)	200	Ver 5 Verter	-ul	Shenthing / Naltin	-	lin/wh	5	WIND
1	(kN/m)	(KN/M)	(NV)	2 Z	(N X X	(KV)	(kN/m)	1 abviood (m)	rult Inneth VinA	for a second from the	191	(the Plane)	
											1211	1 1.001	
	1.7	3.7	22.38										
				10.58	36.08	22.37503	229	мпе	26	57		145	4
	1.1	1.1	23.33							2	1	9/1C	247
				27.30	46.30	45.70158	4.69	8/16	36	150	-	42,0	2
	1.1	:-	18.66						1	*: *:	۰0 [,]	31.6	Ĭ
				38.03	57.53	04.36234	0.60	27.12	40	411	424	200	22
	1.1	÷	14.00								201	6100	2
[[—]				48.75	68.25	79.35791	8.04	RHG	24	-	1	100	
	1.1	÷	9.33						2.4	- APA	804	653	3
				59.48	78,88	87,68829	6.99	BUIG	34	*	100	- V -	
à	1.1	1.1	4.67							2		10.1	81.1
				70.20	89,70	02.35348	9.47	8/16	2,1	R	240	10.7	1 11

					FLEXUR	IE DESIG	N					AT	Sonation	
£	¥	¥	0^	(mi X pm)조	(MI X IM)	ΣVo	Mf	Ĩ	5	Urtun	с Г	ATC	~~	
Ē	(kN/m)	(kN/m)	Ş	(KN)	(NX)	(N)	EN ³	Shirt Times Inc.	Mile Thurs from same		21540		e j	14
								ALLA	Adam View Created Frank of		KIN)		H	(KN)
Raol	1.7	3.7	22.37503					(KIN)	(KN)					
4.53				16.58	36.08	85.64	101 16	101	10.10	A.44				
eih 6		Ş	23,32565				27-12	10.5	707	R6-2	3.13	SHX	168.85	42.25
2.78				27.30	46.80	45.7h	11 800	10.01	** **	12	1			
Sth	÷	=	18.66076				-	1 200	14.514	1755	13.09	2H2	160,05	42.25
2.78				38.03	22.53	64.36	407 34	34 70			1			
4th	1.1	F	13.00557				5	5-110	11-19	170	23.74	SHN	166.65	42.25
2.78				48.75	68.25	78.36	626.17	38 GT	100 55	1 40	5	1000		
3rd	÷	17	9.33038					-		201	24.10	140	334.01	85.79
2.78				59.48	78,38	87.69	868.05	63.70	149.09	0 + +	10	200	1	
2nd floor	1.1	11	4.66510				ľ				4 B, ##	1990	/Rrice	141.06
2.78				70.20	89.70	92.35	1125.69	85.94	178.57	1.13	103.13	CEN	561.07	141.00
					ŀ								101100	141,30

	~	Viul Slip / V	
(hani) nige	Z	Ital Size / S	9
6	R	2.5	6
0.23	0,503	0.365	0.283
0.35			
0,49	ortor	1225	0.368
0.66			
0,86	2,539	1.078	0.730
1.13			
1,48	OLICI	1.723	1.143
1.95			
	2.695	1,126	0,809
		ertor	error 1.281

	Tr (khi)	2	42.25		85.70		141.06	303.74	303.74
	(.4Ag+,6Ae)	108.3	166.7	243.3	334,0	437.3	551.9	551,9	691.8
	(,4Åg+,0Åe)	0.168	0.258	0.377	0.518	0.678	0.855	0.855	1.072
ATS Gyratem	ې ۲	0.149	0.226	0.334	0,462	0.606	0.763	0.763	0.909
	Pv ₽v	0.106	0.307	0.442	0.601	0.785	0.904	0.004	1.227
	87 3	1/2	5/8	3/4	2//3	-	118	11/8	1 1/4
	ATS		SR5		SR7		8 <u>8</u> 5	HSR0	SHID

2

Appendix B – 3

					DEFLEC	TION IN	FORMAT	NO						
£	θΛ	εVo	ħ	TL/CF	Admits Them	Ecomp mem	A joint main	Home and	×	Insertion Prod	8	цө	40	An Tr/T
E)	(S)	(KN)	kNm	ŝ	۶ E	CP3	۳Щ ۳	GPa	E	'e	N 7.1 CCAMP	ŝ	į	
											(hitmen)			41911
Roof	22.37563													
4.63		22.37563	101.36	10.90	13528	=	166.65	200	1.70187	0.01411	UGOD	0.17	,	0000
Gth	21,32565									1 1 1 1 1 1 1 1 1		100		
2,78		45.70158	228,41	24.56	13528	=	168,65	200	1.70187	0.21411	ROOD	1.01		A 1640
Sth	18.65076													7100770
2.78		64.38234	407.34	43,80	20202	=	160.65	200	1.20809	0.00800	0000	4 Ve		2 Can-1
414	13.99557									2441046		PAN	_	110070
2.78		78.35791	625.17	67.22	20292	=	334.01	200	2.1421B	0 40450	9000	1 73		A ADAR
3rd	0.33038												-	100000
2.78		87.68829	868.95	63,44	27056	F	551.87	200	2.51563	0 ACCINE	cono.	1 4 3	,	D 4407
2nd flaor	4.66519										0.000		-	104410
2.78		92.35348	1125.09	121.04	27050	÷	S51.87	200	2,51593	0.03306	0900	1.26	-	0 0054

Threak Åan Åan Åan Åan Ži Åan Ži Åan Zi Åan					2								
Intro <th< th=""><th>ō</th><th>ш</th><th>inte l</th><th>Å.</th><th>Åen 1</th><th>Am</th><th>9¹⁴</th><th>Ahdiaw</th><th>Σ Aura</th><th>Atotal</th><th>Atotal x RoPto</th><th>Intenstory</th><th>Internation</th></th<>	ō	ш	inte l	Å.	Åen 1	Am	9 ¹⁴	Ahdiaw	Σ Aura	Atotal	Atotal x RoPto	Intenstory	Internation
5.4.4 1.507 4.136 0.0220 0.000205 0.040567 1.507 80.11 454.452 76.862 2.206 1.809 6.515 0.0734 0.000266 0.668877 15.07 80.11 454.452 76.862 76.862 2.216 2.816 7.485 0.167 0.00060 0.610241 14.13 58.82 300.0033 72.062 7 2.012 2.828 0.167 0.000600 0.610241 14.13 58.82 300.0033 72.062 7 2.012 3.828 0.147 0.400601 0.610241 14.13 58.82 300.0033 72.062 7 2.012 3.828 0.147 0.142 0.400610 0.640161 19.13 58.82 301.0033 72.062 7 2.012 3.828 0.147 0.142 0.400610 0.640161 19.13 58.82 301.0033 77.19 7 2.011 3.828 0.147 0.142 0.300555 13.23 <t< td=""><td>rad</td><td>m </td><td>m _ m</td><td>Ę</td><td>ŧ</td><td>mm</td><td>rad</td><td>Ę</td><td>E</td><td></td><td>deft (mm)</td><td>dall (mm)</td><td>dell' ret.</td></t<>	rad	m	m _ m	Ę	ŧ	mm	rad	Ę	E		deft (mm)	dall (mm)	dell' ret.
5.544 1.507 4.1.06 0.0201 0.000105 2.045677 1.507 40.1.1 454.452 7.0.852 7.0.852 7.26 1.899 4.515 0.074 0.000266 0.0456877 1.5.21 74.04 277.260 75.47 3 2.716 1.899 4.515 0.074 0.000266 0.6419241 14.13 56.63 300.0633 77.062 7 0.012 2.716 2.806 0.6112241 14.13 56.63 300.0633 77.062 2 70.062 2 7 0.012 7 0.012 7 0.012 7 0.012 7 0.012 7 0.012 1 1 0.012 7 0.012 1 1 0.012 1 1 0.012 1 1 0.012 1 1 0.012 1 1 0.012 0.011 0.011 0.011 1 0.011 1 0.011 0.011 0.011 0.011 0.011 0.011 <t< td=""><td></td><td></td><td>Ļ</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			Ļ	-									
3.26 1.899 8.515 0.074 0.00066 0.689872 1.5.21 74.04 377.560 77.547 2 2.716 2.869 8.515 0.074 0.000660 0.610241 14.13 58.683 300.0033 72.062 7 2 2.717 2.869 0.1457 0.000660 0.610241 14.13 58.683 300.0033 72.092 2 2.012 3.209 1.1.076 0.1427 0.000651 0.4429661 18.07 44.77 227.051 32.717 2 2.011 3.024 0.129 0.000551 0.4429661 18.07 44.77 227.051 37.717 2 3.011 3.024 7.855 0.129 0.300553 0.300553 15.229 55.62 135.779 6.7779 7	١ĕ	000 5.5	4	205	4,136	0.928	0.000205	2043507	15.07	+F 00	464.465	70.000	1 444
1236 1,849 6.515 0.074 0.000266 0.660677 1.521 74,04 377,500 77.547 2 2716 2.060 7.455 0.167 0.00060 0.610241 1.4.13 58,63 300.063 7.367 7 2012 2.060 0.167 0.00060 0.610241 1.4.13 58,63 300.063 7.2022 7 7 2017 2.000 0.167 0.00060 0.442061 19.4.70 267.061 26.171 2 2017 3.000 0.142 0.000550 0.442061 19.0.7 44.70 267.061 26.171 2 2011 3.004 0.000550 0.442061 19.0.7 44.70 267.051 26.171 2 2011 3.044 10.07 44.70 267.051 26.171 2 2011 3.044 13.047 20.05 0.0179 2 2 26.171 2 2011 3.045 0.0128 0.3005555		L		┢		100 million				11.00	70.0	/B/D/D/	140.1
2.7/8 2.666 7.485 0.167 0.000860 0.010241 14.13 58.850 300.003 72.066 7 2.012 3.239 11.076 0.147 0.00051 0.447961 18.07 44.70 227.051 22.17 3 3.01 3.024 0.142 0.447961 18.07 44.70 227.051 22.17 3 3.01 3.024 0.142 0.000946 0.300553 0.42065 13.329 25.662 10.779 67.178 3	١ē	1120 3.2	38	688	8.515	0.074	0.000096	0.683875	15.21	74 00	177 600	TT 6.17	anti a
2716 2.846 7.4455 0.167 0.00080 0.6102x1 14.13 58.60 300.033 72.065 2 2012 2.88 11.076 0.142 0.00051 0.442961 18.07 44.70 227.061 92.77 1 2012 3.884 11.076 0.142 0.00051 0.442961 18.07 44.70 227.051 92.77 1 1.011 3.024 7.129 0.300553 0.442965 15.029 56.62 135.779 67.776 1	1		-				Concernance of the second	2 00000	170	t, t	nuc") /\$	10.1	2/180
ADDIE <th< td=""><td>FЖ</td><td>1253 2.7</td><td>18 2,1</td><td>19</td><td>7.495</td><td>0.167</td><td>0.00060</td><td>1.610941</td><td>1412</td><td>70.07</td><td>100.000</td><td>000 04</td><td>01.00</td></th<>	FЖ	1253 2.7	18 2,1	19	7.495	0.167	0.00060	1.610941	1412	70.07	100.000	000 04	01.00
C012 3.239 11.076 0.142 0.00051 0.442961 118.07 44.70 227.351 92.171 32.171 </td <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>televining .</td> <td>15,004</td> <td>\$650%</td>				F				1			televining .	15,004	\$650%
1.111 2.222 2.222 2.22222 2.22222 2.222222	15	255 2.0	12 3.	238	11.076	0.142	0.000051	0.442081	18.07	44 7n	907 AK1	00 174	2 144
1.311 3.624 7.805 0.128 0.00046 0.300553 13.29 25.62 135.779 67.786 3											in the second	1	01010
		250 1.3	11 3.	127	7,825	0.128	0.00046	0 200452	12 70	10.04	10479 244	24 200	
			-	ſ				2000000		20.05	6/27001	05770	HP#7
0.482 3.816 8.754 0.173 0.000002 0.129815 1:2.22 1:0.12 5:7.001		347 0.4	3	816	6.76.4	0.173	0.000002	0.179815	12 24	04.44	67 004	10000	2110
				l						PO40	400170	+++++++++++++++++++++++++++++++++++++++	2,443

6 Story Shear Wall Example GN/2005 spreadshoots/wood shearwall March 26 2008

SW1 - 10'-6" 2006 BCBC

Rd = 3.00	Ro = 1.70	Deflection Muttiplier (Ve _{deflectin} /Ve) =
3,2 m	SPF	2.746 m
W =	Species ==	0 = 0

0.50 (Can use Ve $_{\mbox{definetion}}$ based on T calculated with no upper limit)

Common Nail Lengt Nail Slip per CSA 086.

oad/nail

Ve sed

î

- arrow

E.

£

--> Ve Ra

Seat +

4 STORY SUEM NOLL

0.29 0.46 0.88 0.88 1.7 1.7 2.33

VGIND

1

No Life

A 88

Le anir

1

- 10 Lyle

र्भ क्ष

ŝ

0.46 0.76 1.2 2.97 2.97

_										-	-	_	-	_	-
	VľVe			1 76		1 26	04	¢ + +	71-1	1 10	2	1 22	377	1 17	111
	٨٢	(kN/m)		64.4	111	0 AR	p.	0 11	311	12.06	14150	4		4	
	ve/nail	z		165	3	235		250	2	206		207	3	343	
	Bu	spacing (m		75		62.5		υ ^μ	3	5	3	ç		5	
	athing / Naili	al length (in l		25		2.5		2.5		2.5				~	
	Shea	s(u) poow/la		12/16		12/16		12/16		-		-		-	
	ve - 5 Ve/lw	(kN/m)		4.41		7.51		9.99		11.85		13.09		13.71	
DESIGN	ΣVe	2 Z		14.1		24.02		31.97		37.92		41.89		43.88	
SHEAR D	Σ(wt X Iw)	(NX)		1,65		11.25		20.85		30.45		40.05		49.65	
	Σ(wd X lw)	(kN)		0.72		10.32		19.92		29.52		39.12		48.72	
	Ve	(kN)	14,10		9.92		7.95		5.95		3.97		1.99		
	M	(kN/m)	0.516		8		<i>е</i> р		m		e		e		
	DW	(kN/m)	0.225		с Э		с С		m		σ		ო		
	r	(m)	Roof	2.78	6th	2.78	5th	2.78	4th	2.78	3rd	2.78	2nd floor	2.78	

					FLEXUR	E DESIG	z					ATC C.	مصافاتهم	
												001	Dalling	
=	D N	M	Ve	Σ(wd X lw)	$\Sigma(W \times W)$	ΣVe	Mf	Τ	5	Vr/ve	2.*1	ATS	٩A	11
Ē	(kN/m)	(kN/m)	(KN)	(kN)	(KN)	(kN)	kNm	Mild-Siwd X Milts	X(ms*+pn);3+pjjm	Mry(2	(kN))	™mm)	(KN)
								(kN)	(kN)					
Roof	0.225	0.516	14.1											
2.78				0,72	1.65	14.10	39.20	13.91	15.05	1.75	16.70	000	561 97	111 00
6th	3	ю 1	26.6									2	100	00111
2.78				10.32	11.25	24.02	105.97	33.43	46.56	1 26	40.12	SBO	551 07	111 00
5th	8	ო	7.95								4110	3	2	00111
2.78				19.92	20.85	31.97	194.85	61.00	R6 13	1 12	73.20	000	521 07	20 111
4th	33	<i>с</i> о	5.95								010	2	2000	00-1+1
2.78				29.52	30.45	37.92	300.27	94.59	131.72	1.12	113.50	SRO	551.87	141 06
3rd	33	ო	3.97									2		
2.78				39.12	40.05	41.89	416.72	132.20	181 33	1 22	158.64	HSRO	561 87	AT 200
2nd floor	ю	ю	1.99							-	5-02	DI DI I	10.100	000
2.78				48,72	49.65	43.88	538.71	171.82	232.95	1.17	206.18	HSR9	551.87	303.74
												2	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	5

0.196	0.307	0.442	0.601	0.785	0.994	0.994
1/2	5/8	3/4	7/8	+	1 1/8	1 1/8
	SR5		SR7		SR9	HSR9

Ş. ₽

Size

ATS

3

Page 107 HOU-2011-00026, Part One

Appendix 8 – 5

	10-0	_			-	_	_		_	-	_	_	- 1		_
	∆a * Tr/T	шш			2.0000		0.2355		0.4297		0.6663		0.4352		0.5657
	Δа	шш			2		t		-		-		4 -4		-
	eu	шш		:	0.29		0.29		0.29		0.29		0.26		0.28
	Å	bi 7.3 CSA086	(M/mm)		11000		11000		11000		13800		13800		13800
	Itransformed	m ⁴			0.06423		0.06423		0.06423		0.06423		0.06882		0.06882
	×	E			0.73277		0.73277		0.73277		0.73277		0.58887		0.58887
N	Efens mem	GPa			200		200	_	200		200		200		200
ORMATIC	A tons mom	mm²			551.87		551.87		551.87		551.87		551.87		551.87
FION INF	E _{comp mem}	GPa			9.5		9.5		9.5		9.5		9.5		9,5
DEFLEC	Acomp mem	тт ²			31920		31920		31920		31920		42560		42560
	T1/Cf	KN K			14.27		38.59		70.96		109.35		151.76		196,18
	M	kNm			39.20		105.97		194.85		300.27		416.72		538,71
	Σ۷Θ	(kN)		:	14.1		24.02		31.97		37.92		41.89		43.88
	Ve	(kN)		14.1		9.92		7.95		5.95		3.97		1.99	
	ء	(E		Roof	2.78	6th	2.78	5th	2.78	4th	2.78	3rd	2.78	2nd floor	2.78

					DEFLECT	TION CAL	CULATO	SNI								
£	٨٧	9	ΔV total	Δm	e Đ	Δm _{totat}	Δ_{BV}	Δ _{on}	Δ _{Nd}	PH O	Ahd total	$\Sigma \Delta_{\text{total}}$	Atotal	vtotal x RdR	Interstory	Interstory
Ε	μμ	rad	mm	шш	rad	шш	mm	mm	шш	rad	шш	шш		defl (mm)	defi (mm)	drift (%)
Roof	0.083	0.000045	1.614049	0:000	0.000000	6.391	0.557	2.016	1.738	0.000625	3.763762	14.34	62.89	320.717	73.140	2.631
2.78																
6th	0,141	0.000076	1.460823	0.124	0,000089	6.267	0.949	2.016	0.205	0.000074	2,026262	12,72	48.54	247.577	64.862	2.333
2.78																
Sth	0.188	0.000101	1.226055	0.336	0.000241	5.807	1.262	2.016	0.373	0.000134	1.821669	12.13	35.83	182.715	61.878	2.226
2.78																
4th	0.223	0.000120	0.927173	0.617	0.000444	4.855	1.194	2.016	0.579	0.000208	1.448382	10,44	23.69	120.837	53.241	1,915
2.78																
3rd	0.229	0.000124	0.589925	0.887	0.000638	3.350	1.319	1.826	0.378	0.000136	0.869537	7.95	13,25	67.597	40.567	1.459
2.78												-				
2nd floor	0.240	0.000130	0.240330	1.231	0.000886	1.231	1.381	1.956	0.491	0.000177	0.491434	5.30	5.30	27.030	27.030	0.972
02.0																

Appondix B – 6
-	kN/slip 25.11	25.11	35.01	35.01	49.70	66.30	
č	710 Sip (m 2.92	2.90	2.91	2.87	3.48	4,50	
۲	60.00	60.00	96,00	96.00	125,30	146.50	
	2- HDUS	2-HDUS	2-HDU8	2- HDU8	2- HDU11	2- HDU14	
Tf*1.2	16.70	40,12	73.20	113,50	158.64	206.18	

9	di	۳	0.230		0.230		0.230		0.230		0.263	0.281
Vail Slip / V	all Size / SI	2.5	0,290		0.290		0.290		0.290		0.336	0.363
-	z	2	0.460		0.460		0.460		0.460		0.542	 0.588
	th (inch)	3 3	0.23	0.35	0.49	0.66	0.86	1.13	1.48	1,95		

hv total (m) Ve*lw _{total}/w 79 10.5

10.9 8.7 6.6

2,2 2,2

97 97 97 97

Ve 259 270 276 162 162 108 54 54

Tr (KN) KN		42.25		85.79		141.96	303.74
(.4Ag+.6Ao) mm ²	108.3	166.7	243.3	334.0	437.3	551.9	551,9
(.4Ag+,6Aa) In ²	0.168	0.258	0.377	0.518	0.678	0.855	0.855
Ae ⊓²	0.149	0.226	0.334	0.462	0.606	0.763	0.763

Page 109 HOU-2011-00026, Part One

Confidential

B-2) Design of Wall 5 in 6 storey NEESWood Wood Frame Buildings

6 Story Shear Wall Example GN/2005 spradcheets/wood shearwall March 28 2008

SW1 - 10'-6" 2006 BCBC

3.00 1.70	Auttiplier (Ve _{ae}
Rd = Bo =	Deflection N
3.2 m SPF	2.746 m
lw = Species ∞	م ا

Deflection Multiplier (Ve_{dellectin}/Ve) =

1.00 (Can use Vederlecton based on T calculated with no upper limit)

					SHEAR D	DESIGN							
£	РМ	M	Ve	[wi X bw]	$\Sigma(WI \times IW)$	ΣVe	ve - 5 Vertw	She	athing / Nai	ina	Ve/nal	*	uriue
(u)	(kN/m)	(kN/m)	(kN)	(N)	(kN)	(kN)	(kN/m)	(in) boowyld	vali longth (in	l spacing (m	Q	(kN/m)	
Raof	0.225	0.516	18.90										
2.78				0.72	1.65	18.9	5.91	12/16	2.5	75	443	62.2	1.01
6th	<i>с</i> о	e	9.92								2	1	2
2.78				10.32	11.25	28.82	9.01	12/16	2.5	825	563	31.0	1 15
5th	3	m	7.95								3	2	3
2.78				19.92	20.85	36.77	11.49	12/18	2.5	ę,	<u>с7с</u>	0.11	20.07
4th	ę	m	5.95							3	222	4	0.37
2.78				29.52	30.45	42.72	13.35	-	2.5	62	RER	10.05	000
3rd	en	e	3.97							3	200	17101	0.00
2.78				39.12	40.05	46.69	14.59	-		202	730	4	40
2nd floor	3	e S	1.99							3		2	
2.78				48.72	49.65	48.68	15.21	-	~	60	761	4F	1.05

h wd wf Vf Value X mit Value Value						FLEXUR	E DESIGI						ATS S	naritiari	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ء	рм	M	Ve	T(wd X Iw)	5/wf X Iw)	5 Vo	Mf	+T	t	CT VIT	0 14 14	0.00		÷
(11) (KKVTT) (KTVT) (KTTVT) (KTTVT) (KTTVT) (KTTVT) (KTTVT) (KTTVT) (KTTVT) (KTTVT) (KTTVT) (KTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	1	MALLA 8		1		1	1		-	5	ALIVE	Ņ.	n c	Å	-
Root 0.225 0.516 18.9 (RM)		(KN/th)	(KN/M)	(KN)	(kN)	(kN)	(kN)	e V V	ZIEM X DW12-DUDY	X(Img+pm)]3+pJJM	C MOP2	(kN)		(mm ²⁾	(KN)
Roal 0.225 0.516 18.9 51 65 51 53 55 2.78 3 3 9.92 0.72 1.65 18.90 52.54 18.77 19.91 1.31 22.53 59.9 551 2.78 3 3 9.92 10.32 11.25 28.82 132.66 43.15 56.28 1.05 51.78 58.9 551 2.78 3 7.95 10.32 11.25 28.82 132.66 43.15 56.28 1.05 51.78 58.9 551 2.78 3 7.95 19.82 20.85 36.77 234.86 75.58 100.71 0.97 50.95 551 2.78 3 59.7 234.86 75.58 100.71 0.97 30.93 571 37d 3 3 59.5 132.64 114.03 151.16 0.99 136.83 5719 571 37d 3 3 3 30.15<									(KN)	(KN)					/
2.78 0.72 1.65 18.90 52.54 18.77 19.91 1.31 22.53 SF9 551 6h 3 3 9.92	Roof	0.225	0.516	18.9											
(6h) 3 3 3 9 622 105 51.76	2.78				0.72	1.65	18.90	52.54	18.77	19.91	1.31	30 E3	SDO	561 07	11100
2.78 10.32 11.25 28.82 132.66 43.15 56.28 1.05 51.78 58.9 55.7 2.78 3 7.95 11.25 28.82 132.66 43.15 56.28 1.05 51.78 58.9 55.9 55.1 2.78 3 7.95 19.92 20.85 36.77 234.88 75.58 100.71 0.97 90.69 579 551 4th 3 3 5.95 20.85 36.77 234.88 75.58 100.71 0.97 90.69 579 551 2.78 3 3.97 29.45 42.72 353.64 114.03 151.16 0.99 136.83 579 551 3rd 3 3 397 29.45 45.34 156.49 205.63 110 187.79 156.3 551 2.78 3 3 199 45.34 156.49 205.63 110 187.79 15779 15717 157.39	eth	<i>т</i>	e	9.92								1000	5	10.100	141.00
5th 3 3 7.95 515 517 531 531 513 533 2.78 3 3 5.95 19.92 20.85 36.77 234.88 75.58 100.71 0.97 90.69 5719 551. 2.78 3 3 5.95 20.45 42.72 353.64 114.03 151.16 0.99 136.83 5719 551. 3rd 3 3 397 29.52 30.45 42.72 353.64 114.03 151.16 0.99 136.83 5719 551. 3rd 3 3 397 29.52 30.45 45.74 156.49 205.63 1,10 187.79 156.8 551. 2.78 3 19.64 205.63 1,10 187.79 156.9 551. 2.78 3 19.64 205.63 1,10 187.79 157.9 157.9 551. 2.78 3 3 1,9 562.11 <	2.78				10.32	11.25	28.82	132 66	43.15	56.28	1 05	51 70	000	EC1 07	00 14 1
2.78 0.97 19.82 20.85 36.77 234.88 75.58 100.71 0.97 90.69 SF9 551 4th 3 3 5.95 19.92 20.45 42.72 353.64 114.03 151.16 0.99 136.83 5F9 551. 278 3 3 3 3 3 78 26.69 5F1 551.7 551.7	Sth	e	8	7.95						2200	20-	0).12		10-100	00.141
4th 3 3 5.95 30.45 42.72 35.64 114.03 151.16 0.99 136.83 589 551 2.78 3 3 3 397 20.45 42.72 353.64 114.03 151.16 0.99 136.83 5819 551. 2.78 3 3 397 40.05 46.69 483.44 156.49 205.63 1.10 187.79 HSR9 551. 2.78 3 3 1.99 39.12 40.055 46.69 483.44 156.49 205.63 1.10 187.79 HSR9 551. 2.78 3 1.99 48.72 49.65 48.47 200.96 262.11 1.05 241.17 HSR9 551	2.78				19.92	20.85	36.77	234.88	75.59	100.71	A 07	00 60	000	EC4 07	4 64 00
2.78 2.78 29.52 30.45 42.72 353.64 114.03 151.16 0.99 136.83 SF9 551 3rd 3 3 397 20.45 42.72 353.64 114.03 151.16 0.99 136.83 SF9 551 2.78 3 3 397 40.05 46.69 483.44 156.49 137.09 HSF9 551 2.78 3 1.99 39.12 40.05 46.68 483.44 156.49 205.63 1.10 187.79 HSF9 551 2.78 3 1.99 48.72 49.65 48.84 158.77 200.98 262.11 1.05 241.17 HSF9 551	4th	m	m	5.95					200		10-22	20.00	0.0	10-100	41.40
3rd 3 1 40.05 46.69 483.44 156.49 205.63 1.10 187.79 HSR9 551. 2nd floor 3 3 1.99 49.65 48.68 518.77 200.98 262.11 1.05 241.17 HSR9 551	2.78				29.52	30.45	42.72	353.64	114.03	151.16	0.99	136.83	045	561.97	141.00
2.78 39.12 40.05 46.69 483.44 156.49 205.63 1.10 187.79 HSR9 551. 2nd floor 3 3 1.99 49.65 48.68 518.77 200.98 262.11 1.05 241.17 HSR9 551.	3rd	m	e	3.97								2000	2	0.0	
Zind floor 3 3 1.99 48.72 49.65 48.68 618.77 200.98 262.11 1.05 241.17 HSB9 551	2.78				39.12	40.05	46.69	483.44	156.49	205.63	110	187 70	HCDO	EC1 07	12 000
2.78 48.65 48.68 518.77 200.98 262.11 1.05 241.17 HSP9 551	2nd floor	ы	3	1.99								2	21101	101100	000.14
	2.78				48.72	49.65	48.68	618.77	200.98	262.11	1.05	241.17	HSR9	551.87	303.74

	Nail Slip per CSA 086.1	Common Nail Lengi	2 2.5 0.46 0.30	0.76 0.46	1.2 0.64	1.89 0.88	2.97 1.21	1.7	2.33						
SHERE NOLL	$\mathbf{F} \rightarrow \mathbf{V}_{\mathbf{c}} \mathbf{z}_{\mathbf{c}}$	Load/nail	(N) Ne 3N ← 100	400	₹ 10 200 200	600	200	1008 11 11 11 11 11 11 11 11 11 11 11 11 11	900 and a 100	1000	 	 	4	ATS System	Ciao Ao
4 STORY	Res + the lit		HTT - HTT	, , , , , , , , , , , , , , , , , , ,	3.20 - 140.5		M.	AT ANA IN ANY		ź	 A VILLAN	 P +	* In		ATS

	(.4Ag+.6Ae) mm ²	108.3	166.7	243.3	334.0	437.3	551.9	551.9
	(.4Ag+.6Ao) In ²	0.168	0.258	0.377	0.518	0.678	0.855	0.855
ATS System	Ao 5	0.149	0.226	0.334	0.462	0.606	0.763	0.763
	₿ [°] i	0.196	0.307	0.442	0.601	0.785	0.994	0.994
	Size	1/2	5/8	3/4	7/8		1 1/8	1 1/8
	ATS		SR5		SR7		SR9	HSR9

Page 111 HOU-2011-00026, Part One

Appondix B – 9

0
ī
۵ ×
ipu
ě.
<

Ver	48.68	$T = 2 pi / \Omega$
m=Ve /.087/9.81	57037.74	$\Omega = \operatorname{sqrt}(k/m)$
к П	562664.51	k = Ve/A
D≖	3,14	
T =	2.00	
where Ve = .123 W		

is not linear for nail stip and therefore $K\Delta$ is not uniform in the elastic range. This creates an issue when calculating a mechanics based T	all deflection using 1 for deflectoin, you get one value. If you use a smaller value than 1, than defloction is not linear.	ting ΔK using a deflection factor of 1, is at the factored loads as that Is what the forces are expected to be.
Problem is the Δ is not linear for n	If you base the wall deflection usir	I suggest calculating Δ/K using a

86,52

<u> 4@ 2/3h</u>

	É	Sos
Š	thau	õ
2	9	the
б	r va	hat
T T	alle	N S
ì	ŝ	at
38	e a	as t
₽	SUL	ds.
-	λ	0 0
		20
Ì	alue	g
5	S al	e fe
2	Ę.	att
1	8	<u>e</u> .
5	λö	ŕ,
5	Ë,	DL C
	lect	fact
	def	5
ì	ĝ	lect
i i	<u>6</u>	def
	usir	g a
= 7	5	usir
2	ß	¥
Í	eť	7 6
~		.h-

u 48.68 T = 2 pl / Ω	V_{cc} /.087/9.81 57037.74 Ω = sqrt (k/m)	562664.51 k = Ve/A	3,14	2.00	ere Ve = .123 W
Ve	m⇔Ve /	× ۲	∎ ¤	Ц	where '

	Interstory	drift (%)	5.196		5.211	4,997	4,683	3.597	2,595	
	Interstory	defi (mm)	144.447		144.879	138,917	130.176	100.006	72.137	
	Motal x RdR	defl (mm)	730.562		586.115	441.236	302.319	172.143	72,137	
	Atotal		143.25		114.92	86.52	59.28	33.75	14.14	
	ΣΔ _{total}	шш	28.32		28.41	27.24	25.52	19.61	14.14	
	Δhd _{total}	шm	4.184293	:	2.446793	2.182724	1.720222	1.022425	0.574827	
	е _{на}	rad	0.000625		0.000095	0.000166	0.000251	0.000161	0.000207	
3	Δ _{hd}	mm	1.738		0.264	0.463	0.698	0.448	0.575	
	Δοπ	шш	3.735		5,497	5.691	7.664	6.531	7.115	
	Δ_{BV}	тiт	1.493		2.276	2.904	2.689	2.939	3.065	
	Δm _{tobal}	mm	15.216		14,883	13.710	11.383	7.805	2.857	
	шΘ	rad	0.000000.0		0.000239	0.000604	0.001070	0.001504	0.002056	
	Δm	mm	0.000		0.333	0.840	1,487	2.090	2.857	
	ΔV totai	mm	3.695691		3.304733	2.750690	2.068420	1.311298	0.533238	
	ð	rad	0.000120		0.000183	0.000233	0.000271	0.000276	0.000288	
	Ā	μm	0.222		0.338	0.432	0.501	0.511	0.533	

DEFLECTION CALCULATOINS Om Alm_{iobal} A_{Bv}

ר 3

	Tr/TI	m			000		1040		324		1032		5152		5617	
	∆a *	2			2.0		0		0		0.0		0		0	
	Δа	шш			2				÷		۰		-			
	цə	mm			0.54		0.79		0.82		1.10		0.94		1.02	
	à	bl 7.3 CSA086	(mm/N)		11000		11000		11000		13800		13800		13800	
	^b ransformed	ŧ			0.06423		0.06423		0.06423		0.06423		0.06882		0.06882	
	×	E			0.73277		0.73277		0.73277		0.73277		0.58887		0.58887	
N	Etens mom	GPa			200		200		200		200		200		200	
ORMATIC	A tons mom	а Е Е			551.87		551.87		551.87		551.87		551.87		S51.87	
TION INF	Ecomp mom	GPa			9.5		9.5		9.5		9.5		9.5		9.5	
DEFLEC	Acomp mem	mm²			31920		31920		31920		31920		42560		42560	
	Tt/Cf	kN			19.13		48.31		85.54		128.79		176.05		225.34	
	Mf	kNm			52.54		132.66		234.88		353.64		483.44		618.77	
	ΣVe	(kN)			18.9		28.82		36.77		42.72		46.69		48.68	
	٧e	(kN)		18.9		9.92		7.95		5.95		3.97		1.99		
	ч	(m)		Roof	2.78	6th	2.78	5th	2.78	4th	2.78	3rd	2.78	2nd floor	2.78	

Page 112 HOU-2011-00026, Part One

÷
1
ш
곀
- Fe
- 22
<

25.11 49.70 35.01 35,01 66.30

> 136,83 69.06

187.79

241.17

Aa HD Slip (m kN/slip 60.00 2.92 25.11 2.87 3.48 2.90 2.91 4.50 125.30 146.50 60.00 00.96 96,00 F 2- HDU11 2- HDU14 2- HDU8 2- HDU5 2-HDU5 2-HDU8

-		-	-									
	٩	с,	0.410		0.597		0.617		0.795		0.940	1,024
Vail Stip / Ve	ail Size / Sl	2.5	0.537		0.791		0.819		1.103		1.355	1.507
~	Z	2	0.949		1.634		1.714		2,619		error	error
	th (inch)	8	0.23	0.35	0.49	0.66	0.86	1,13	1,48	1.95		

8.7 6,6

2.2 2.2

62 62

54 1069

10.9

62 79

Ve 259 270 216 162 108

lw total (m) Ve*lw _{total}åw 79 10.5

Tr (kN) kN 42.25 85.79 85.79 141.96 303.74
--

TP1.2 22.53 51.78

Page 113 HOU-2011-00026, Part One

6 Story Shear Wall Example GN2005 spreadsheets/wood shearwall March 28 2008

3.00 1.70 Multiplier (Ve _{dellecth} /Ve) =
Rd = Ro = Deflection b
3.2 m SPF 2.746 m
lw = Species = d =

0.50 (Can use Vedefection based on T calculated with no upper limit)

5

2

I Slip per C Common

-oad/nail

and on

F

s,

CSA 086

P

→ ^le za

+ あ

4 Srosy Swen Jaw

0.29 0.46 0.88 0.88 1.7 1.21 2.33

1000 800 200 200 300 S

VGIND

1

WQ Lyte

£

2005 2005

Vie are in

1

Wp /40

á á

2 0.76 1.2 2.97 2.97

	vr/ve			1.75		1.26		1.12		1.12		1 22		1.17
	٧٢	(kN/m)		7.72		9.46		11.2		13.26		15		16
	ve/nail	Ź		165		235		250		296		327		343
	Bu	spacing (m		75		62.5		So		50		50		23
	athing / Nail	all length (In		2.5		2.5		2.5		2.5				3
	She	plywood (Inh		12/16		12/16		12/16		-		-		
	ve = ∑ Ve/w	(kN/m)		4,41		7.51		66.6		11,85		13.09		13.71
DESIGN	ΣVe	(kN)		14.1		24.02		31.97		37.92		41.89		43.88
SHEAR D	$\Sigma(WI \times W)$	(kN)		1.65		11.25		20.85		30.45		40.05		49.65
	[wl X bw)	(kN)		0.72		10.32		19.92		29.52		39.12		48.72
	٩V	(KN)	14,10		9.92		7.95		5.95		3.97		1.99	
	w	(kN/m)	0.516		с		ო		ε		с		8	
	wd	(kN/m)	0.225		3		3	:	ຕ		ς		3	
	٩	(iii	Roof	2,78	6th	2.78	Sth	2.78	4th	2.78	3rd	2.78	2nd floor	2.78

	Ţ	(kN)			141.96		141.96		141 <u>96</u>		141.96		303.74		
ecified	Ae	(ராள ²²			551.87		551.87		551.87		551.87		551.87		
ATS Sp	ATS				SR9		888		SR9		SR9		HSR9		
	Tf *1.2	(KN)			16.70		40.12		73.20		113.50		158.64		
	Vr/VB	전성			1.75		1,26		1.12		1.12		1.22		
	5	lt/d+∑({wd+,5w[}X {	(kN)		15.05		46.56		86.13		131.72		181.33		
	μ	Alto-E(wd X lw):2 N	(KN)		13.91		33.43		61.00		94.59		132.20		
	Mf	kNm			39.20		105.97		194.85		300.27		416.72		
DESIGN	ΣVe	(kN)			14.10		24.02		31,97		37.92		41.89		
-LEXURE	$\Sigma(w \times w)$	(kN)			1.65		11.25		20.85		30.45		40.05		
	[(wi X lw)]]	(kN)			0.72		10.32		19.92		29.52		39.12		
	69. 1	(kN)		14.1		9.92		7.95		5.95		3.97		1.99	
	N	(kN/m)		0.516		e e		e		ę		e		e	
	pm	(kN/m)		0.225		3		0		3		ю		3	
	۲	Ē		Roof	2.78	6th	2.78	5th	2.78	4th	2.78	3rd	2.78	2nd floor	0

0.196	0.307	0.442	0.601	0.785	0.994	0.994
2/1	5/8	3/4	7/8	-	1 1/8	11/8
	SRS		SR7		SR9	6HSH

₽°.

Sizo

ATS

Appendix B – 12

SW1 - 10'-6" 2006 BCBC

	Δa * Tr / Tf	mm			0.0000	2-000	0.000	CC22.0	1007 0	U.429/	00000	0.6663	0 1010	U-4352	0.5657	20000
	Δa	am			c	Z		_		_		_	,	-	-	-
	en	E E			000	27.A	6	220	000	27.0	0000	RV O	000	0710	0.28	
	ğ	4 7.3 CSA086	(Nimm)	1	11000	20001	11000	0001-	14000	2001	00001	00001	1000	00001	13800	
	Transformed	4 ₹			0.08400	0.0000	0.02700	074000	0.06133	2340000	000100	07400-0	0.0000	20000-0	0.06882	
	×	ε		t	0 73077	V.1 0411	0.72077		0 79077		0 73077	1 1 2 0 1 - 0	0 59897	100000	0.58887	
z	Etons mom	GPa			006	2	200	8	000	227	onc.	201	000	224	200	
DRMATIO	A tana mem	mm²			551.87		551.87		551.87	5	551.87		551.87		551.87	
TON INFO	Ecomp mem	GPa			9.5		5.6		9.5		9.5	2	95		9.5	
DEFLECT	Аартр тот	mm ²			31920		31920		31920		31920		42560		42560	
	Tł/Cf	κN			14.27		38.59		70.96		109.35		151.76		196.18	
	Mf .	kNth			39.20		105.97		194.85		300.27		416.72		538.71	
	Σ Ve	(kN)			14.1		24,02		31.97		37.92		41.89		43.88	
	Ve	(KN)		14.1		9.92		7.95		5.95		3.97		1.99		
	ء	Ē		Roof	2.78	6th	2.78	5th	2.78	4th	2.78	3rd	2.78	2nd floor	2.78	

Г	T	~		Т	Т	T	- 1		Г	Т	Т	····		-	Т	T		-	Т
		Interstor	Ahift (0/)			2.631		2.333		0000	977.7		1.915		02.7	BC4-		0.972	
		Interstory 1	defi (mm)	611111 1220		73.140		64,862		C4 070	01.0/0		53.241		10 507			27.030	
		stotal x RoBi	deft (mm)			320.077		247.577		100 210	C) / "201		120.837		C7 E07	100.10		27.030	
		Δtota			00 00	62:83		48.54		05 00	20.00		23.69		13.05	200		5.30	
		$\sum \Delta_{toth}$	a a		1 2 2 1	47,4-		12.72		1010	5.10		10.44		7 05			5.30	
		And total	шщ		0.750.750	0.1001.02	0000000	2,026262		1 821660	2001 701		1.448382		A 869527	1000000		0.491434	
	<	P D	rad		0.00000	000000	1200000	0,0000.4		0.000134	1010000	000000	802000.0		0.000136	2012000		77 LONG-0	
	Y	24 5	шш		1 700	1.100	0 005	01710		0.373		01-1	6/010		0.378		10,0	0.431	
SNIC		5	un B		2016	21.7.7	0100	21/12		2.016		0100	2010		1.826		010 7	000"	
CULATO	<	5	mm		0 557	2000	0,010	<u>c+c</u> "n	:	1.262		101	5		61.5.1		100 1	100.	
TION CA	ν	202	mm		6 391	2000	6 267	040		5.807		A DEE	Doort-		3.350		1 004	1071	
DEFLEC	۳ ص	5	rad		0.00000		0.00089	2000000		0.000241		0.000444	1		0.000638		0 000000	0000000	
	۳۸	i	mm		0.000		0.124			0.336		0.617			0.887		1 221	-	
	AV tak		e m		1.614049		1.460823			1.226055		0.927173			0.589925		0.240330		
	90		rad		0.000045		0.000076			0.000101		0.000120			0.000124		0.000130		
	Ŵ		шш		0.083		0.141			0.188		0.223			0.229		0.240		
	ء		ε		Roof	2,78	6th	2.7R		Sth	2.78	4th	2.78		ard	2.78	2nd floor	9.7.6	610

Appondix B – 14

/e*lw _{tetul} /w 10.5	10.9	8.7	6.6	4,4	2.2	Tr	∆a HD Slip (m 60.00 2,92
lw total (m) [\] 79	6/	79	62	62	7 0		2- HDU5
Ve 259	270	216	162	108	54 1069	Tf*1.2	16.70

	đ	3	0.230		0.230		0.230		0.230		0.263	0.281
Jail Slip / Ve	alt Size / SI	2,5	0.290		0.290		0.290		0.290		0.336	0.363
	Z	2	0.460		0.460		0.460		0.460		0.542	0.588
	th (inch)	3	0.23	0.35	0.49	0.66	0.86	1.13	1.48	1.95		

Tr (kN) kN		42.25		85.79		141.96	303.74
(.4Ag+.6Ae) mm ²	108.3	166.7	243.3	334.0	437.3	551.9	551.9
(,4Ag+,6Ae) In ²	0.168	0.258	0.377	0.518	0.678	0.855	0.855
Ae in ^z	0.149	0.226	0.334	0.462	0.606	0.763	0.763

kN/slip 25.11 25.11

> 2.90 2.91 2.87

60.00

40.12 2-HDU5

35.01 35.01

96.00

73.20

49.70 66.30

3.48

2- HDU11 2- HDU14

96.00 125.30 146.50

2-HDU8 2- HDU8

113.50 158.64 206.18

4.50

Page 116 HOU-2011-00026, Part One

Confidential

Appendix C

Results of Representative Wood-Frame Buildings Designed in Accordance with 2006 BCBC

Confidential

C.1 Fundamental period of the Building

		4-storey bi	uilding (s)			6-storey b	uilding (s)	
	With	GWB	Withou	t GWB	With	GWB	Withou	t GWB
	E-W	S ⁺ N	E-W	S-N	E-W	S-N	E-W	S-N
Drain-3D	0.54	0.68	0.73	0.78	0.78	0.96	0.99	1.07
SAPWood	0.	52	0.0	64	0.0	66	0.1	39

C.2 Maximum base shear

		GWB	N-S	543	707	1079	1194	856	1099	1064	1126	1107	972	1030	1063	938	1425	833	892	1083	936	1194	1228	1018
	poo	Without (E-W	675	1131	966	1231	899	1060	1376	1212	1089	1025	718	1273	985	1364	1028	878	905	932	1171	1351	1065
	SAPW	WB	S-Z	748	1078	937	978	928	903	666	066	1011	674	748	951	778	1250	945	847	813	882	1271	1126	943
lding (kN		With G	E-W	1031	1137	886	1297	815	758	1137	885	989	636	885	1120	783	1293	1161	712	722	1127	1251	1284	995
torey buil		GWB	S-N	1409	1379	1321	1507	1476	1406	1355	1393	1448	1464	1531	1488	1495	1357	1375	1563	1377	1306	1507	1537	1435
6-s	-3D	Without	E-W	1384	1552	1173	1413	1437	1449	1437	1553	1317	1423	1525	1495	1397	1311	1425	1366	1288	1228	1512	1511	1410
	Drain	3WB	S-N	1632	1660	1457	1577	1578	1527	1599	1578	1493	1625	1744	1647	1615	1098	1507	1600	1485	1446	1673	1629	1559
		With C	E-W	1711	1679	1666	1687	1738	1732	1763	1642	1677	1658	1451	1735	1706	1340	1721	1588	1755	1622	1607	1815	1665
		GWB	S-N	959	581	823	771	874	812	639	1049	831	575	669	868	764	912	792	852	920	844	986	1124	832
	Vood	Without	Ę.W	1068	1084	166	1003	875	887	835	907	995	555	700	1027	808	1231	1031	825	841	1026	1093	1244	951
0	SAPW	GWB	N-S	844	847	903	875	782	744	596	1033	810	683	807	736	796	1084	929	720	708	752	1070	1179	845
lding (kN		With (E-W	883	680	1187	1339	874	869	708	817	884	833	971	1309	719	929	972	732	615	1014	1244	1604	959
storey bui		GWB	N-S	882	889	855	898	912	944	895	933	885	855	828	921	921	819	908	888	915	889	869	947	893
4	-3D	Without	E-W	981	957	961	979	985	927	1082	945	1035	957	872	964	987	937	1015	1003	1035	1012	935	1057	981
	Drain	GWB	S-N	1034	1019	1023	1018	1064	1020	1084	1030	1052	1001	955	1042	1034	1000	1077	1021	1047	1088	1029	1095	1037
		With (E-W	1410	1428	1478	1390	1223	1357	1204	1257	1468	1319	1333	1262	1280	1405	1298	1323	1502	1529	1193	1366	1351
	Ž			-	61	ε	4	5	9	7	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean

© 2009 FPInnovations – Forintek Division. All rights reserved.

FPinnovations FORMATER

Maximum displacement and acceleration at each storey C.3

Confidential

Table C.3.1Maximum displacements of 4-storey building in E-W direction (with GWB), (mm)

· · · · · · ·																								
-	m	st4	52.0	62.6	64.5	202	0.20	22.6	65.0	6.03	51.0	7110	21.2	0.15	4.10	41.4	20.0	1.10	0.04 204	20.4	58.4	51.7	69.8	47.3
/ood	rey diaphrag	st3	49.6	59.7	57.8	56.0	26.0	30.2	62.1	57.0	28.0	26.2	2 24	10.0	14.0	2.72	0.02	C.7C	26.25	400	2.00	48.8	64,4	43.3
SAPW	ter of the stc	st2	38.7	50.3	30.0	411	19.0	217	50.2	42.9	20.6	10.6	0.71	25.25	101	21.2	27.2	0.40	577		C-77	32.1	48.8	32.2
	Cen	stl	24.5	32.4	17.0	20.4	10.0	11.0	31.6	19.6	110	10.3	15.0	17.4	10.6	010	16.6	0.01	16.1	3 11		16.2	26.7	17.5
		st4	78.9	79.0	76.4	57.7	50.0	42.8	90.5	73.1	52.7	53.7	70 4	96.8	48.5	50.0	679	40.8	58.4	1.00	1.00	76.8	86.9	66.4
	14	st3	71.9	72.5	70.0	49.7	45.8	37.4	83.1	65.4	46.2	47.8	C 12	879	42.0	46.2	614	44.1	515	007	1.05	68.6	78.0	59.5
	Wa	st2	56.8	59.4	56.2	32.0	37.7	26.5	68.9	45.8	34.1	36.3	57.8	69.8	2.95	36.9	49.1	33.0	40.7	357		5.10	54.2	45.6
1-3D		stl	35.4	39.6	34.8	16.4	25.5	15.0	42.3	28.5	21.5	23.4	38.7	46.9	17.0	25.6	31.9	20.2	27.4	213	010	6.10	29.8	28.7
Drait		st4	80.0	78.9	77.3	62.4	53.0	45.3	91.7	74.0	52.0	55.7	83.2	94.2	48.6	50.6	75.5	52.6	59.4	56.9	0.08	00.0	88.5	68.0
	8	st3	72.9	71.4	70.9	54.1	46.6	39.8	84.5	65.2	45.3	48.6	74.0	85.6	42.0	45.8	68.1	45.9	52.7	48.2	71.2	C.L/	/9.0	60.6
	Wa	st2	58.4	57.7	57.5	36.9	37.5	29.0	70.5	45.1	33.0	37.3	57.0	68.3	29.6	37.1	54.3	33.8	41.5	35.0	523		/.cc	46.4
		stl	33.8	34.9	32.5	18.1	24.2	15.8	41.0	24.2	18.8	22.0	37.2	44.0	15.8	24.4	32.4	19.1	26.7	19.6	29.4	0.40	9.12 , 20	1.12
1	No	,		17	m	4	S	6	7	8	6	10	11	12	13	14	15	16	17	18	19	00	707	Nican

Appendix C – 3

© 2009 FPInnovations - Forintek Division. All rights reserved.

Confidential

9
_⊭.
\sim
Ê.
H.
5
Ċ
Ξ.
Ξ
8
ح
Ľ
. <u>e</u> .
Hong T
õ
<u>=</u>
-0
Š.
5
~
Ë,
50
ä
9
2
Ξ.
à.
>
٥.
5
÷.
Ĩ.
4
7
0
2
its 0
ents o
ments o
ements o
acements o
lacements o
splacements o
lisplacements o
i displacements o
m displacements o
num displacements o
mum displacements o
kimum displacements o
aximum displacements o
Maximum displacements o
Maximum displacements o
Maximum displacements o
Maximum displacements o
2 Maximum displacements of the second sec
3.2 Maximum displacements of
C.3.2 Maximum displacements of
C.3.2 Maximum displacements of
le C.3.2 Maximum displacements o
ble C.3.2 Maximum displacements of
able C.3.2 Maximum displacements of

	,	1 .	<u> </u>	, 				-			1		T	r—	.	<u> </u>					<u> </u>	1	r
	m	st4	66.8	72.9	86.9	74.9	43.7	62.4	71.1	57.7	59.2	49.9	67.6	78.7	53.0	64.6	81.0	47.1	54.9	51.5	49.3	75.4	63.4
/ood	rey diaphrag	st3	62.5	69.6	77.3	67.3	40.4	54.5	0.69	52.6	56.6	47.S	63.1	69.7	47.3	62.2	74.0	40.7	48.9	47.6	45.6	68.9	58.3
SAPW	ter of the sto	st2	46.6	51.3	50.3	44.3	31.9	35.5	54.7	36.0	41.6	36.7	45.0	44.6	31.6	48.5	48.0	27.1	32.7	33.5	27.9	50.5	40.9
	Cen	st1	26.6	32.7	26.1	23.0	17.2	18.1	32.9	16.8	24.1	20.7	27.0	25.8	17.1	30.5	26.0	15.3	16.9	18.1	17.9	26.6	23.0
		st4	115.9	90.6	90.4	100.1	95.6	102.1	114.4	80.0	101.2	95.1	114.5	119.0	75.8	75.6	92.0	80.9	71.3	80.3	79.1	105.8	94.0
	25	st3	89.3	73.7	72.6	76.5	76.3	81.6	91.3	58.6	82.0	78.2	92.2	99.4	61.7	64.0	73.1	65.2	57.2	66.4	60.4	84.6	75.2
	Wall	st2	54.5	48.3	46.3	45.8	49.6	55.2	59.0	33.7	54.1	54.2	61.9	70.1	42.8	47.2	47.3	44.3	38.2	47.2	36.1	55.2	49.6
-3D		stl	26.7	22.8	22.0	27.2	25.5	29.4	26.6	15.2	27.3	28.7	31.3	37.9	25.2	29.4	24.2	24.5	21.1	26.0	16.7	28.9	25.8
Drain		st4	116.2	90.8	90.6	100.3	95.7	102.1	114.4	79.9	101.5	95.1	114.6	119.4	76.0	75.8	92.0	81.0	71.4	80.5	79.3	105.7	94.1
	19	st3	89.5	73.8	72.7	76.6	76.3	81.6	91.4	58.5	82.2	78.2	92.3	7.66	61.8	64.1	73.1	65.2	57.3	66.5	60.5	84.5	75.3
	Wall	st2	54.5	48.3	46.3	45.8	49.6	55.3	59.1	33.6	54.2	54.3	62.0	70.3	42.9	47.3	47.2	44.3	38.2	47.2	36.2	55.1	49.6
		st1	26.8	22.8	22.0	27.2	25.5	29.5	26.6	15.2	27.3	28.7	31.3	38.0	25.2	29.4	24.2	24.5	21.1	26.0	16.7	28.8	25.8
1	No.		1	2	3	4	5	9	7	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Appendix C – 4

FPInnovations FORMATER

Maximum displacements of 6-storey building in E-W direction (with GWB), (mm) Table C.3.3

Confidential

-										_				_			_						
	-	etk	012	60.6	84.7	77 4	50.2	54.8	74.8	58.5	593	46.9	66.5	73.0	50.5	202	78.1	1.0.1	12 2	16.0	10.0	72.0	62.0
	hraom	042	673	410	78.5	66.6	47.2	50.0	70.2	54.1	55.9	44.7	63.0	68.8	48.0	56.5	70.7	A N	45.3	10 10 10 10	101	607	58.0
hood	rev dian	c+4	367	571	1.12	55.2	40.7	41.5	61.3	45.5	49.2	39.6	54.7	59.6	412	115	58.1	37.8	37.0	375	20 6	20.2	49.3
NGVO	of the sto	et3	42.5	46.5	45.4	42.6	33.3	32.6	48.8	34.8	40.2	32.1	44.3	47.1	32.5	43.5	45.0	20.6	310	207	20.0	46.4	39.0
	Center o	ct 2	28.5	32.2	28.8	27.4	22.9	22.5	32.8	22.0	27.3	22.5	30.4	32.6	21.4	33.0	29.8	0.00	214	10.8	10.4	30.7	26.3
		11	14.0	16.0	16.3	14.1	12.3	11.5	17.6	10.3	14.5	12.5	16.3	17.3	11.5	20.2	14.2	10.4	10.4		10.01	15.0	13.7
		st6	125.2	96.8	102.4	128.1	104.1	102.2	114.2	98.9	123.1	97.3	117.4	115.9	81.6	86.7	103.7	1053	72.5	0.96	80.8	111 8	103.2
		st5	13	85.9	92.7	116.7	94.4	92.4	102.4	86.1	9.111	87.3	105.2	105.1	73.2	79.6	92.0	94.9	66.0	86.3	70.6	7 66	92.8
1	4	st4	91.2	69.0	7.77	95.1	79.7	77.7	84.7	64.8	93.1	72.8	90.1	89.0	60.2	69.8	74.1	77.6	56.4	71.8	52.4	80.3	76.4
	Wall	st3	67.5	54.3	60.7	70.8	63.1	61.4	64.9	45.8	71.9	57.3	73.3	71.1	46.1	57.4	56.3	58.6	44.9	56.5	39.3	59.9	59.1
		st2	36.7	33.4	34.8	37.0	39.6	40.2	35.0	27.1	40.6	37.1	43.6	42.4	29.5	40.6	33.0	32.9	30.5	35.9	25.4	34.7	35.5
D		st1	18.8	17.6	17.8	20.5	22.2	22.3	17.2	12.9	20.9	20.3	24.2	21.8	14.8	23.9	16.6	16.6	16.2	18.8	12.2	16.5	18.6
Drain-		st6	22.7	96.8	99.4	27.7	08.2	07.0	18.4	00.4	17.7	98.4	22.3	14.0	37.5	37.4	05.7	05.1	79.5	01.2	6.77	6.60	04.4
		st5	10.3 1	6.3	9.8	15.9 1	8.2 1	7.6 1	06.8 1	7.7 1	07.6 1	8.7	11.0 1	03.8 1	9.1	8 6.0	4.8 1	4.9 1	1.8	9.9	8.3	8.4 1	4.1 1
-		st4	7.4 1	9.7 8	4.3 8	3.2 1	2.6 9	3.3	6.8 1(6.0 8	0.6 1(4.0 8	2.5 1	7.7 1(5.5 7	1.5 8	6.9 9	7.7 9	1.3 7	1.8 8	2.0 6	9.5 9	7.2 9
ľ	Wall 8	t3 5	2.8 8	2.2 6	6.4 7	7.6 9	4.1 8	5.9 8	3.4	4,8	8.8	6.7 7	9.4	8.3	0.1	8.5 7	8.0 7	7.2 7	8.5 6	3.4 7	8.0 5:	8.0 7	8.2 7
		۲3 S	.4 6.	.9 5.	5.4 5(0.4	0.0	8.	<u>5</u>	4	.4 68	.7 5(3	.4 68	7 5(5	.2 58	.0 5	.6 48	.5 5	.8 35	.9 58	5 58
-		:1 s	1.6 4]	.0 3:	:4 36	1.7 4(. 8	.7 4:	3,	.3	ن 4	.7 36	3 45	4 .	.8	7 42	.38	.1 35	.2 32	2 35	.9 24	.1 34	.9 37
		st	20	17	18	50	21	23	18	12	21	18	53	51	16	24	19	17	17	18	11	16	m 18
	N			2	ε	4	'n	9		× •	6	2			13	4	15	16	17	18	19	20	Meź

© 2009 FPInnovations - Forintek Division. All rights reserved.

Appendix C – 5

F Pennovations

Confidential

Table C.3.4Maximum displacements of 6-storey building in N-S direction (with GWB), (mm)

SAPWood25Center of the storey diaphragmstd 91.9 114.5 131.6 $st1$ $st2$ $st3$ $st4$ $st5$ $st6$ 59.4 91.1 116.7 18.1 32.2 45.3 64.6 77.7 81.5 59.4 91.1 116.7 18.1 32.2 45.5 60.5 73.2 76.0 86.0 121.3 147.4 25.4 43.8 62.3 81.7 11.8 81.5 85.0 121.3 147.4 25.4 43.8 62.3 81.7 11.8 87.8 86.0 121.3 147.4 25.4 43.8 60.4 61.3 81.5 86.0 120.8 170.0 33.4 45.4 58.4 74.1 79.9 74.9 102.8 176.1 177.0 33.4 45.4 58.4 77.4 79.4 100.5 148.1 176.1 177.0 33.14 45.4 58.4 77.4 79.4 115.2 148.1 177.0 31.0 46.1 59.3 66.1 66.8 113.4 146.1 177.0 31.0 46.1 59.3 66.1 66.8 113.4 146.1 177.6 32.2 37.2 52.2 62.4 77.4 79.4 91.7 124.8 170.6 32.2 41.9	52.3 72.8	ہ اد	1	1																	1	
SAPWood std st5 <t< td=""><td></td><td></td><td>78.1</td><td>64.2</td><td>98.8</td><td>73.1</td><td>83.7</td><td>L'LL</td><td>76.1</td><td>57.6</td><td>78.2</td><td>66.8</td><td>79.4</td><td>79.9</td><td>613</td><td>87.8</td><td>121.7</td><td>76.0</td><td>81.5</td><td>st6</td><td></td><td></td></t<>			78.1	64.2	98.8	73.1	83.7	L'LL	76.1	57.6	78.2	66.8	79.4	79.9	613	87.8	121.7	76.0	81.5	st6		
SAPWood SAPWood std st5 91.9 114.5 131.6 18.1 32.2 45.3 64.6 59.4 91.1 116.7 14.6 32.4 46.5 60.5 86.0 121.3 147.4 25.4 43.8 62.3 81.7 85.0 121.3 147.4 25.4 43.8 62.3 81.7 86.0 121.3 147.4 25.4 43.8 60.5 60.5 86.0 121.3 147.4 25.4 43.8 61.2 60.5 87.9 107.6 150.1 184.7 13.7 25.1 35.5 46.1 115.2 148.1 170.0 33.4 45.4 58.4 74.9 102.8 151.8 17.0 31.0 46.1 59.3 113.4 146.1 171.6 22.2 37.2 52.0 65.5 <td>49.9 68.3 77.7</td> <td>0.40</td> <td>72.4</td> <td>62.2</td> <td>93.4</td> <td>6.69</td> <td>77.5</td> <td>71.8</td> <td>73.2</td> <td>55.8</td> <td>75.8</td> <td>66.1</td> <td>77.4</td> <td>74.1</td> <td>57.8</td> <td>81.1</td> <td>111.8</td> <td>73.2</td> <td>7.77</td> <td>st5</td> <td>ohragm</td> <td></td>	49.9 68.3 77.7	0.40	72.4	62.2	93.4	6.69	77.5	71.8	73.2	55.8	75.8	66.1	77.4	74.1	57.8	81.1	111.8	73.2	7.77	st5	ohragm	
SAPY 25 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 91.9 114.5 131.6 18.1 32.2 45.3 59.4 91.1 116.7 14.6 32.4 46.5 86.0 121.3 147.4 25.4 43.8 62.3 87.9 120.1 184.7 13.7 25.1 35.5 115.2 148.1 176.1 17.0 33.4 45.4 74.9 102.8 125.9 23.1 42.8 57.9 115.2 148.1 176.1 17.0 33.4 45.4 74.9 102.8 151.8 17.0 31.0 46.1 113.4 146.1 171.6 22.2 37.2 47.3 113.4 146.1 178.0 15.3 27.2 44.9 38.9 79.5 96.4 18.5 33.8 47.3 313.1 158.0 </td <td>43.0 54.9 50.1</td> <td>41.0</td> <td>58.5</td> <td>52.5</td> <td>75.9</td> <td>62.4</td> <td>60.5</td> <td>56.7</td> <td>60.5</td> <td>49.5</td> <td>65.5</td> <td>59.3</td> <td>69.4</td> <td>58.4</td> <td>46.1</td> <td>61.2</td> <td>81.7</td> <td>60.5</td> <td>64.6</td> <td>st4</td> <td>orey diat</td> <td>Vood</td>	43.0 54.9 50.1	41.0	58.5	52.5	75.9	62.4	60.5	56.7	60.5	49.5	65.5	59.3	69.4	58.4	46.1	61.2	81.7	60.5	64.6	st4	orey diat	Vood
25 Center st4 st5 st6 st1 st2 91.9 114.5 131.6 18.1 32.2 95.4 91.1 116.7 14.6 32.4 86.0 121.3 147.4 25.4 43.8 85.0 121.3 147.4 25.4 43.8 85.0 121.3 147.4 25.4 43.8 83.4 110.5 139.9 22.2 38.4 107.6 150.1 184.7 13.7 25.1 115.2 148.1 176.1 17.0 33.4 115.2 148.1 176.1 17.0 33.4 115.2 148.1 176.1 37.0 115.2 148.1 176.0 31.0 113.4 146.1 171.6 22.2 37.2 100.5 144.1 178.0 15.3 27.8 91.7 124.5 148.8 14.0 30.1 58.9 79.5 96.4 18.5 33.8 91.7 124.5 148.8 14.0 30.1 58.9 79.5 96.4 18.5 32.2 91.7 124.5 148.8 14.0	35.7 55.1 46.0	7.75	44.3	41.5	56.7	52.2	44.9	47.3	44.9	40.3	52.0	46.1	57.9	45.4	35.5	50.4	62.3	46.5	45.3	st3	of the stu	SAPV
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	28.9 43.6 33.8	080	30.9	28.1	40.4	41.5	32.2	33.8	30.1	27.8	37.2	31.0	42.8	33.4	25.1	38.4	43.8	32.4	32.2	st2	Center	
25 st4 91.9 114.5 131.6 59.4 91.1 116.7 86.0 121.3 147.4 86.0 121.3 147.4 87.4 110.5 139.9 107.6 150.1 184.7 115.2 148.1 176.1 74.9 102.8 125.9 100.9 128.0 151.8 113.4 146.1 171.6 100.5 144.1 178.0 91.7 124.5 148.8 58.9 79.5 96.4 131.2 168.4 199.7 95.2 127.6 150.4 104.3 140.6 168.2 113.4 154.7 186.5 95.2 127.6 150.4 113.9 148.6 176.3 113.4 154.7 186.5 95.2 127.6 150.4 95.2 127.6 150.4 95.3 131.4 159.7 97.3 131.4 159.3 97.3 131.4 159.3	16.4 25.4 18.6	16.4	15.4	15.1	22.2	26.5	18.0	18.5	14.0	15.3	22.2	17.0	23.1	17.0	13.7	22.2	25.4	14.6	18.1	stl		
25 st4 st5 st4 st5 st4 91.9 114.5 59.4 91.9 114.5 59.4 86.0 121.3 88.0 86.0 121.3 88.0 107.6 150.1 110.5 115.2 148.1 110.5 113.4 146.1 100.9 113.4 146.1 100.5 113.2 168.4 95.2 131.2 168.4 95.2 131.2 168.4 113.4 91.7 124.5 131.2 95.2 127.6 113.4 131.2 168.4 95.2 131.3 184.6 113.4 133.4 154.7 97.3 97.3 131.4 154.7	78.9 127.0 150.8	78.9	186.5	176.3	168.2	150.4	199.7	96.4	148.8	178.0	171.6	151.8	125.9	176.1	184.7	139.9	147.4	116.7	131.6	st6		
25 st4 st6	56.8 98.1 124.3	56.8	154.7	148.6	140.6	127.6	168.4	79.5	124.5	144.1	146.1	128.0	102.8	148.1	150.1	110.5	121.3	91.1	114.5	st5	. 1	
	38.4 74.9 92.6	38.4	113.4	113.9	104.3	95.2	131.2	58.9	91.7	100.5	113.4	100.9	74.9	115.2	107.6	83.4	86.0	59.4	6.16	st4	125	
Waal Waal st3 st3 st3 st3 st3 st3 st3 st3 st3 st3 st4 st1.3 st1.7 st1.4 st1.7 st1.4 st1.7 st1.7 st1.7 st1.7 <td>26.4 63.0 64.5</td> <td>26.4</td> <td>71.9</td> <td>78.0</td> <td>70.2</td> <td>71.5</td> <td>92.7</td> <td>41.3</td> <td>59.8</td> <td>61.5</td> <td>81.7</td> <td>74.8</td> <td>53.0</td> <td>81.4</td> <td>68.1</td> <td>61.8</td> <td>58.9</td> <td>39.8</td> <td>69.0</td> <td>st3</td> <td>Wal</td> <td></td>	26.4 63.0 64.5	26.4	71.9	78.0	70.2	71.5	92.7	41.3	59.8	61.5	81.7	74.8	53.0	81.4	68.1	61.8	58.9	39.8	69.0	st3	Wal	
st2 st2 46.5 59.7 54.1 37.9 56.0 37.9 50.5 50.5 50.5 445.9 48.6 48.6 40.8	20.3 49.0 43.4	20.3	46.9	48.6	43.8	50.5	59.8	29.0	37.3	37.9	56.0	54.1	37.8	52.0	42.5	41.3	43.6	29.7	46.5	st2		
-3D st1	30.8 30.8 23.0	12.0	20.8	23.7	20.7	27.9	29.8	14.9	20.0	18.5	29.8	32.8	20.8	25.1	19.9	20.5	25.6	16.3	23.7	stl		1-3D
Drain st6 st6 131.6 117.2 147.9 147.9 147.0 176.2 176.2 178.4 150.9 149.0 96.7 178.4 149.0 96.7 178.4 150.9 150.9 150.9 150.9 150.9 150.9 150.9 150.9 150.9 150.9 150.9 150.9 150.9 150.9 150.9 150.0 150.0 150.0 150.0 150.0 170.0	78.7 127.5 151.0	78.7	18/.1	176.4	168.7	150.9	199.8	96.7	149.0	178.4	172.3	152.4	125.8	176.2	184.8	140.0	147.9	117.2	131.6	st6		Drair
st5 st5 114.5 91.5 91.5 121.7 120.7 121.7 130.5 148.3 144.5 128.4 128.4 128.4 128.5 124.6 79.6 128.4 127.9 127.9 144.5 127.9 155.2 127.9 131.6 131.6	98.4 98.4 124.6	56.7	2.001	148.7	141.0	127.9	168.5	79.6	124.6	144.5	146.7	128.4	102.7	148.3	150.3	110.5	121.7	91.5	114.5	ŝ		
119 st4 st4 st4 92.0 59.6 86.2 86.2 86.2 107.7 107.7 115.5 115.5 113.9 113.9 113.9 113.9 113.9 113.9 113.9 131.4 91.7 91.7 91.7 97.5	58.5 75.1 92.8	38.5	07.5	113.9	104.6	95.4	131.4	59.0	91.7	100.6	113.9	101.1	75.0	115.5	107.7	83.4	86.2	59.6	92.0	st4	1 19	-
Wal St3 St3 <thst3< th=""> <thst3< th=""> <thst3< th=""></thst3<></thst3<></thst3<>	20.4 63.0 64.6	26.4	1.27	78.1	70.3	71.6	92.9	41.3	59.7	61.6	81.8	74.9	53.1	81.6	68.1	61.7	59.0	40.0	69.0	st3	Wal	
st2 st2 46.6 46.6 41.3 52.1 56.1 37.8 56.1 37.8 56.1 56.1 56.1 56.1 56.1 56.1 56.1 56.1	20.4 49.0 43.4	20.4	4/.0	48.7	43.9	50.6	59.9	29.1	37.5	38.1	56.1	54.2	37.8	52.1	42.5	41.3	43.6	29.8	46.6	st2		
st1 st1 16.3 16.3 16.3 23.7 20.9 20.9 20.9 20.4 20.4 20.4	30.8 30.8 23.0	12.0	0.02	23.7	20.7	27.9	29.9	14.9	20.1	18.6	29.8	32.8	20.9	25.1	19.9	20.5	25.6	16.3	23.7	stl		
No. No. 1 1 10 9 8 7 6 6 5 5 4 4 3 3 3 10 10 10 10 11 11 11 11 11 11 11 11 11		-						-1							-1	-1						

Appendix C – 6

F Plunovations

Maximum displacements of 4-storey building in E-W direction (without GWB), (mm) Table C.3.5

Confidential

	E	st4	77.6	75.3	88.6	80.7	543	603	88 3	614	67.4	57.4	247	80.5	60 S	67.7	85.1	52.9	60.8	56.8	55.7	82.1	70.5
/ood	rey diaphras	st3	70.1	1 09	74.0	653	46.2	52.5	79.5	52.7	593	50.4	70.4	74.3	49.0	61.6	77 6	44.8	52.0	48.0	50.7	74.2	60.8
SAPW	ter of the sto	55	48.1	48.5	46.8	413	32.2	35.7	60.4	31.1	40.3	30.1	40.0	50.2	30.9	45.2	45.2	28.6	34.1	32.0	33.5	46.6	40.9
	Cen	stl	25.6	26.0	23.1	22.7	15.2	16.9	30.4	15.7	21.8	23.2	203	23.9	15.1	28.8	24.1	15.7	16.8	15.6	16.6	24.3	21.5
		st4	95.9	86.2	87.3	86.7	70.5	9.62	89.5	72.9	80.3	77.8	85.0	98.6	67.0	69.6	83.8	64,1	70.9	66.2	76.6	95.7	80.2
	14	st3	84.6	79.7	80.0	76.9	62.5	72.7	82.8	63.3	73.2	70.9	77.7	91.5	61.1	64.1	75.4	56.1	61.8	57.8	65.0	88.1	72.3
	Wal	st2	51.3	50.3	44.4	42.5	38.7	56.6	62.7	25.1	44.4	53.1	61.3	58.8	36.8	51.4	45.7	37.4	40.0	43.9	28.0	54.4	46.3
-3D		stl	29.5	29.7	29.9	30.3	21.7	42.0	36.1	13.4	26.3	31.9	37.6	30.3	22.9	38.1	27.1	22.4	25.6	30.6	18.8	32.1	28.8
Drain		st4	93.6	87.9	87.3	84.1	71.6	78.5	91.0	74.1	82.3	81.9	86.2	100.5	65.4	70.8	82.9	64.8	67.6	68.1	73.9	98.4	80.5
	8	st3	81.8	80.1	80.3	74.5	63.1	71.2	84.0	63.0	73.9	74.5	77.5	92.8	57.6	64.2	73.5	56.0	59.9	58.1	62.5	90.4	71.9
	Wal	st2	55.8	52.4	50.9	46.6	39.2	55.5	64.7	29.4	48.3	58.3	61.6	67.3	41.3	51.9	46.4	39.0	45.5	44.5	31.4	61.4	49.6
3		st1	28.1	27.5	27.4	30.4	20.3	39.5	32.9	13.5	25.5	34.0	34.4	38.5	22.4	37.0	24.6	21.9	28.3	25.8	16.9	32.7	28.1
;	No.			2	3	4	S	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Confidential

1	_	_	_	-	-	-	_	_	_	_	-	-	_	_	-	-	_	-	-	-			-
	gm	st4	74.9	77.0	111.2	90.06	61.8	72.0	76.8	6.69	77.2	60.8	71.7	80.7	80.1	79.8	95.4	61.3	65.7	60.8	44.2	69.8	74.0
Vood	orey diaphra	st3	67.1	73.7	97.4	77.6	59.7	62.1	73.2	63.3	73.2	56.8	64.8	70.2	67.1	70.6	84.2	59.8	58.4	55.1	41.6	62.3	660
SAPV	iter of the sto	st2	48.2	51.0	56.6	48.8	39.8	37.5	54.4	44.5	51.7	44.3	45.9	44.7	39.3	54.3	55.6	39.0	36.9	36.7	34.7	41.4	453
	Cen	st1	29.7	29.2	38.3	32.4	21.0	19.7	36.0	23.5	33.4	27.7	22.6	26.9	22.5	37.8	29.2	20.1	19.4	19.5	24.8	32.8	273
		st4	118.4	100.2	6.66	107.7	123.3	102.8	112.1	95.1	113.2	117.5	121.5	108.1	77.6	94.6	93.3	117.0	66.6	8.66	84.7	114.8	103.4
	1 25	st3	90.4	78.5	82.6	86.8	100.7	84.2	90.8	71.6	90.6	91.1	96.7	90.4	61.8	76.9	74.7	90.8	54.6	77.8	53.2	90.5	81.7
	Wal	st2	56.4	46.5	53.4	55.4	70.0	58,1	54.3	38.2	59.7	58.0	66.3	60.1	40.2	54.4	49.1	61.8	37.3	52.0	29.8	56.4	52.9
1-3D		stl	30.3	22.7	29.0	34.0	38.9	30.9	29.1	18.3	33.1	30.7	35.1	30.8	23.3	35.1	28.3	34.4	22.7	30.2	14.3	28.8	29.0
Drair		st4	118.6	100.2	100	107.8	123.5	102.9	112.1	95.1	113.1	117.5	121.6	108.4	77.6	94.7	93.3	117.1	66.5	99.7	84.9	114.8	103.7
	1 19	St3	90.5	78.5	82.6	86.9	100.9	84.2	90.7	71.6	90.5	91.1	96.8	90.7	61.9	77.0	74.7	90.9	54.5	77.7	53.1	90.4	81.8
-	Wal	st2	56.4	46.5	53.4	55.4	70.1	58.1	54.3	38.2	59.8	58.0	66.5	60.2	40.2	54.4	49.0	61.9	37.4	51.9	29.7	56.3	52.9
		stl	30.3	22.7	29.0	34.0	39.0	30.9	29.1	18.3	33.1	30.7	35.2	30.8	23.3	35.1	28.2	34.5	22.7	30.2	14.3	28.8	29.0
ł	No.			7	3	4	2	9	7	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Maximum displacements of 4-storev building in N-S direction (without GWR) (mm) Table C.3.6 Appendix C – 8

F Pinnovations

6-Storey Wood-Frame Buildings	
Final BSPB Report Seismic Performance of	Project No. 6482

Confidential

Table C.3.7Maximum displacements of 6-storey building in E-W direction (without GWB), (mm)

	T			<u> </u>	_	—	_	—	—	-	_	-	-		····T			-	_	-		_	_	
		st6	86.3	813	132.4	87.4	73.4	89.5	86.1	74.7	6.96	609	84.0	9 22	016	0.12	100 8	889	000	57.4	1.04	7.00	83.1	
	hraem	¢,	78.7	76.4	114.9	79.2	68.9	79.8	80.7	72.2	85.4	645	73.6	×07	27.79	775	04.0	63.6	817	546	15.76	40.1	75.9	
Vood	prev diar	st4	63.3	62.6	84.0	66.1	55.6	61.7	70.4	65.]	71.0	55.4	50.0	57.0	19.00	2.4.2	78.1	54.7	222	44.8	0.11	41.4	60.4	-
SAPV	of the sto	st3	48.3	45.2	64.7	55.4	41.4	47.6	56.9	51.2	61.0	43.7	414	44.4	57.0	53.4	58.9	42 1	50.6	33.7	32.0	474	48.9	
	Center	st2	33.0	28.6	43.6	41.1	25.6	29.8	37.8	33.8	42.7	28.7	25.5	0.66	38.6	30.1	36.4	311	31.9	23.3	22.5	40.8	33.2	
		st1	21.5	15.0	24.6	22.3	14.1	14.8	18.7	17.2	27.6	14.8	12.3	14.6	318	2 66	17.9	15.8	14.5	12.8	17.6	22.2	17.9	
		st6	111.2	98.6	131.0	112.8	144.9	119.8	103.0	106.3	141.4	128.7	122.3	107.5	148.1	1221	151.3	119.7	118.7	113.7	703	103.5	119.0	
		st5	103.4	87.2	118.4	101.1	133.9	108.5	93.2	96.3	129.1	117.7	110.4	97.2	137.9	118.4	142.2	109.0	109.1	103.6	60 7	92.3	108.6	
	14	st4	84.4	63.2	78.5	85.4	108.3	90.2	75.3	81.7	107.8	89.6	75.7	70.1	1113	99.3	122.0	95.8	86.4	83.2	43.7	85.8	86.9	
	Wal	st3	67.3	43.5	63.8	70.9	89.2	75.6	58.0	68.2	89.5	71.3	55.5	50.1	91.8	81.9	102.4	83.2	69.5	65.9	33.0	72.0	70.1	
		st3	39.1	24.0	38.8	43.5	50.2	45.4	32.0	50.4	54.0	42.1	30.2	30.5	54.7	52.9	60.4	56.1	41.0	36.6	25.4	49.5	42.8	
<u>-3D</u>		st]	22.0	12.4	22.6	26.1	28.9	26.4	15.9	33.7	32.7	24.2	13.9	15.6	32.0	33.0	36.8	35.5	23.4	21.8	14.8	31.3	25.2	
Drain		st6	121.3	100.0	119.7	112.8	142.6	121.7	109.3	111.3	131.9	111.1	131.0	98.8	151.5	127.0	157.8	118.4	121.6	119.9	66.5	108.9	119.2	
		st5	112.0	87.8	107.1	102.7	133.1	113.3	99.0	101.2	120.3	104.7	118.1	89.2	141.1	118.9	148.5	109.9	111.0	109.4	59.0	95.5	109.1	
	11 8	st4	85.5	63.8	74.6	88.2	114.9	99.4	74.6	86.4	106.3	88.2	83.4	68.5	120.4	99.1	127.5	98.2	91.8	86.9	45.8	84.9	89.4	
	Wa	St3	66.3	42.9	60.0	72.1	97.0	83.3	55.7	71.0	89.7	71.9	59.3	48.7	99.3	81.9	106.4	85.0	71.9	65.6	33,4	70.0	71.6	
		ਨੂ	43.5	26.2	41.2	49.2	6.99	58.0	33.6	54.0	64.7	51.0	34.9	31.2	69.4	57.2	74.3	64.1	49.8	39.6	25.2	52.2	49.3	
	-	stl	21.0	13.2	22.5	25.2	35.2	29.6	16.1	32.0	35.0	28.2	15.9	15.9	37.1	33.1	39.7	35.4	27.5	20.5	14.8	31.6	26.5	
.,	No		-	2	m	4	5	0	~	~	6	10	=	12	13	14	15	16	17	18	19	20	Mean	

© 2009 FPInnovations ~ Forintek Division. All rights reserved.

Appendix C – 9

F Phinovations

Confidential

Maximum displacements of 6-storey building in N-S direction (without GWB), (mm) Table C.3.8

_	<u> </u>	-	—	1	1	-	1	<u> </u>	<u> </u>	<u> </u>	T	<u> </u>	—	T .	<u> </u>	T	1	- T T	7	- T-	- T		T
		stf	83.2	80.1	150.9	105.9	74.2	83.1	91.9	71.9	98.4	72.4	88.0	79.1	108.1	9.66	109.1	65.3	85.2	70.3	49.8	69.7	86.8
	hraem	st5	74.4	77.2	137.7	97.3	68.6	77.2	88.4	70.4	90.3	69.0	82.7	73.5	101.3	94.8	101.2	59.7	78.1	64.7	49.3	65.7	81.1
Vood	orey diap	st4	62.7	58.4	101.2	71.5	53.4	61.2	73.2	65.8	79.8	58.4	66.4	58.1	81.0	77.1	83.4	49.4	63.2	50.9	44.0	68.0	66.4
SAPV	of the sto	st3	48.3	44.5	75.6	53.6	42.1	49.1	58.1	56.1	63.9	46.4	43.8	41.9	63.5	61.4	58.0	40.1	43.8	40.7	40.7	513	51.1
	Center	st2	35.0	31.6	54.4	37.2	29.4	36.0	41.5	38.5	47.0	30.3	30.5	28.7	47.6	46.1	40.9	29.6	30.7	28.2	32.9	40.2	36.8
		st1	20.9	16,1	30.8	17.9	15.0	20.3	21.7	19.3	25.8	15.2	16,1	16.2	24.1	27.9	22.0	15.0	14.8	13.9	19.6	23.2	19.8
		st6	138.6	106.8	160.5	139.3	136.2	184.8	122.5	169.7	169.4	184.6	150.4	92.0	213.4	171.2	147.4	179.7	184.4	131.9	85.0	116.8	149.2
		st5	121.2	80.7	131.3	118.0	112.3	147.8	101.2	143.6	146.1	148.5	124.8	73.4	180.3	146.1	113.4	150.9	144.4	113.4	61.1	89.9	122.4
	125	st4	92.0	54.4	91.8	90.9	86.5	103.5	75.6	108.9	113.7	101.7	87.7	57.0	138.1	105.4	75.0	112.7	98.2	90.3	34,4	78.2	8.68
	Wall	st3	67.6	42.7	65.5	65.6	60.3	69.0	57.1	75.1	78.7	64.3	61.8	45.0	94.8	73.4	52.6	74.5	67.4	66.7	32.3	72.5	64.3
		ts	44.5	31.0	49.0	43.5	38.4	43.7	42.0	49.2	54.3	42.0	44.7	31.0	61.1	50.9	36.3	46.2	44.4	46.9	26.7	58.7	44.2
-3D		st1	21.9	16.5	28.2	23.4	18.8	21.4	24.4	28.9	29.6	21.2	26.0	15.6	31.2	27.6	18.9	22.0	22.0	26.0	16.0	36.7	23.8
Drair		st6	138.5	107.1	160.9	139.2	135.9	185.2	122.3	170.1	169.9	185.8	150.7	92.5	213.9	171.6	148.1	180.8	185.3	132.4	85.4	117.0	149.6
		st5	121.1	80.7	131.6	117.9	112.2	148.2	101.3	143.9	146.5	149.4	124.9	73.7	180.7	146.4	113.9	151.8	145.5	113.7	61.3	90.1	122.7
	1 19	st4	92.0	54.5	92.1	90.9	86.5	103.8	75.7	109.0	113.9	102.4	87.8	57.3	138.4	105.5	75.6	113.4	99.0	90.5	34.4	78.2	0.06
	Wal	st3	67.6	42.8	65.7	65.6	60.1	69.3	57.1	75.2	78.6	64.6	61.9	45.2	95.1	73.4	52.5	74.9	67.7	6.99	32.4	72.5	64.5
		st2	44.5	31.0	49.1	43.6	38.3	43.9	42.1	49.2	54.3	42.1	44.8	31.2	61.3	50.9	36.2	46.5	44.6	46.9	26.7	58.8	44.3
		stl	22.0	16.5	28.2	23.4	19.0	21.4	24.4	28.9	29.6	21.3	26.1	15.6	31.3	27.5	18.9	22.2	22.1	26.1	16.0	36.7	23.9
,	No.		-	7	3	4	S	9	٢	∞	6	10	11	12	13	14	15	16	17	18	19	20	Mean
						_																	_

Table C.3.9Maximum accelerations of 4-storey building, (g)

Confidential

	T	—	1	1	—	Т	1-	Τ	Τ	Т	1	1	Т	<u> </u>	1	1					1	Т	Т	Т	7
			ct4	0 33	0.26	0.48	0.38	0.35	0.40	0.30	0.31	0.31	0.30	0.41	0.42	0.42	980	0.47	0.37	0.33	0.37	0.00	130	0.26	2222
7		S	et3	0.78	0.26	0.35	0.25	0.27	0.30	0.26	0.24	0.25	0.25	0.28	0.30	0.30	0.06	0.30	0.28	0.25	0.27	0.26	0.26	0.77	- -
		Ż	ct2	0.26	0.31	0.37	0.27	0.34	0.35	0.20	0.38	0.37	0.26	0.29	0.30	0.37	10.0	0.42	0.35	0.31	0.32	0.40	0.46	0 33	~~~~
	GWB		c†1	0.38	0.20	0.41	0.28	0.33	0.34	0.26	0.43	0,40	0.22	0.29	0.32	0.40	0.30	0.40	0.33	0.31	0.31	0.46	0.57	0.35	222
	Without		st4	0.41	0.38	0.55	0.50	0.36	0.45	0.37	0.39	0.38	0.36	0.56	0.47	0 47	0.36	0.47	0.40	0.37	0.42	0.47	0.38	0 42	1
		V	st3	0.34	0.34	0.43	0.35	0.28	0.36	0.34	0.34	0.29	0.28	0.40	0.32	0.34	0.33	0.35	0.34	0.26	0.33	0.35	0.34	0.34	-
		E-V	st2	0.45	0.37	0.42	0.35	0.32	0.37	0.30	0.26	0.31	0.29	0.31	0.38	0.38	0.38	0.45	0.31	0.27	0.30	0.48	0.46	0.36	-
'ood			st1	0.44	0.39	0.37	0.33	0.32	0.34	0.27	0.36	0.34	0.17	0.24	0.30	0.35	0.38	0.46	0.29	0.29	0.32	0.46	0.51	0.35	-
SAPW			st4	0.35	0.31	0.46	0.39	0.27	0.36	0.27	0.34	0.27	0.26	0.41	0.39	0.34	0.28	0.40	0.31	0.33	0.37	0.33	0.40	0.34	-
		S	st3	0.28	0.28	0.33	0.30	0.24	0.32	0.27	0.28	0.27	0.23	0.31	0.32	0.27	0.25	0.32	0.27	0.29	0.29	0.31	0.32	0.29	
		Z	st2	0.35	0.25	0.42	0.35	0.29	0.35	0.27	0.29	0.29	0.24	0.34	0.35	0.32	0.30	0.43	0.27	0.28	0.30	0.31	0.34	0.32	
	3WB		st1	0.34	0.32	0.37	0.31	0.32	0.34	0.20	0.33	0.33	0.27	0.30	0.23	0.34	0.39	0.42	0.28	0.30	0.33	0.42	0.46	0.33	
1	With (st4	0.39	0.38	0.54	0.44	0.27	0.33	0.41	0.47	0.28	0.27	0.51	0.44	0.28	0.39	0.45	0.27	0.33	0.41	0.47	0.51	0.39	
		N	st3	0.37	0.36	0.46	0.41	0.25	0.28	0.40	0.42	0.26	0.27	0.39	0.38	0.24	0.29	0.39	0.23	0.31	0.32	0.39	0.43	0.34	
1		Ъ	st2	0.31	0.37	0.39	0.42	0.26	0.29	0.34	0.32	0.29	0.25	0.42	0.38	0.23	0.34	0.38	0.24	0.26	0.29	0.42	0.35	0.33	
			stl	0.32	0.26	0.42	0.44	0.28	0.28	0.29	0.31	0.31	0.27	0.29	0.40	0.23	0.36	0.36	0.21	0.20	0.34	0.49	0.46	0.33	
	No.	£		-	~	ε	4	S	0	~	∞	6	10	=	12	13	14	15	16	17	18	19	20	Mean	Note:

The acceleration is the moving average acceleration over 0.1 sec relative to stationary reference coordinates. The reason the moving average is used is that sudden spikes in acceleration over a very short time will not have significant impact on the contents or residents in the building, while the moving average value is felt to be more correlated with content damage and human comfort.

© 2009 FPInnovations - Forintek Division. All rights reserved.

Confidential

Table C.3.10 Maximum accelerations of 6-storey building, (g)

												SAPV	Vood											
, c						With	GWB										M	ithout	GWB	ļ				
- Nor			പ്പ	W.					Ы	W					Ы	N					БV	\ \		
	stl	st2	st3	st4	st5	st6	stl	st2	st3	st4	st5	st6	stl	st2	st3	st4	st5	st6	st1	st2	st3	st4	st5	st6
1	0.33	0.29	0.38	0.34	0.33	0.40	0.22	0.27	0.22	0.30	0.26	0.32	0.24	0.23	0.22	0.28	0.30	0.35 (0.23 (0.21 (0.21	0.24	0.29 (0.37
7	0.31	0.28	0.26	0.28	0.34	0.37	0.27	0.21	0.25	0.24	0.27	0.30	0.28	0.25	0.21	0.32	0.32	0.35 (0.24 (0.24 (0.22	0.22 (0.27 (0.28
3	0.31	0.35	0.39	0.41	0.39	0.47	0.32	0.34	0.31	0.40	0.37	0.49	0.31	0.34	0.34	0.38	0.43	0.62	0.50 (0.39 ().36 (0.31	0.36 (0.50
4	0.40	0.36	0.32	0.30	0.31	0.36	0.33	0.31	0.24	0.27	0.26	0.35	0.36	0.30	0.32	0.23	0.29	0.39 (0.45 (0.32	0.27	0.30	0.29 (0.33
S	0.23	0.26	0.28	0.26	0.24	0.31	0.29	0.23	0.23	0.28	0.26	0.31	0.26	0.27	0.26	0.30	0.30	0.39 (0.27 (0.27	0.28	0.25	0.25 (0.34
9	0.24	0.27	0.31	0.28	0.28	0.36	0.31	0.23	0.23	0.29	0.30	0.35	0.28	0.30	0.29	0.34	0.36	0.44	0.34 (0.22	0.29	0.27	0.26 (0.35
5	0.32	0.26	0.29	0.34	0.32	0.40	0.28	0.21	0.23	0.26	0.25	0.26	0.36	0.29	0.20	0.30	0.29	0.35	0.27 (0.21	0.24	0.21	0.27 (0.30
~	0.32	0.28	0.22	0.26	0.32	0.34	0.37	0.32	0.27	0.30	0.25	0.32	0.39	0.42	0.29	0.32	0.29	0.42	0.33 (0.36	0.36	0.31	0.23 (0.32
6	0.30	0.25	0.21	0.25	0.28	0.31	0.36	0.24	0.26	0.34	0.28	0.36	0.37	0.28	0.34	0.30	0.31	0.46	0.41 (0.19	0.21	0.22	0.24 (0.33
10	0.15	0.19	0.19	0.21	0.23	0.24	0.17	0.15	0.17	0.19	0.18	0.21	0.25	0.17	0.19	0.21	0.21	0.23	0.25 (0.20	0.22	0.19	0.22	0.25
11	0.25	0.23	0.31	0.28	0.29	0.33	0.26	0.21	0.19	0.28	0.29	0.36	0.21	0.26	0.27	0.30	0.31	0.47	0.25 (0.22	0.29	0.33	0.25 (0.30
12	0.29	0.29	0.27	0.34	0.32	0.36	0.30	0.26	0.23	0.28	0.28	0.38	0.36	0.31	0.24	0.26	0.28	0.36	0.28	0.27	0.26	0.31	0.25 (0.36
13	0.25	0.26	0.31	0.30	0.27	0.34	0.26	0.24	0.29	0.41	0.33	0.42	0.27	0.33	0.29	0.31	0.34	0.44	0.32	0.24	0.26	0.32	0.30 (0.33
14	0.40	0.45	0.36	0.28	0.26	0.29	0.34	0.30	0.31	0.29	0.24	0.26	0.39	0.39	0.37	0.31	0.28	0.38	0.36	0.33	0.34	0.32	0.27 (0.32
15	0.34	0.39	0.38	0.35	0.38	0.44	0.33	0.33	0.41	0.41	0.32	0.41	0.32	0.41	0.46	0.42	0.34	0.48	0.30	0.33	0.35	0.33	0.26	0.36
16	0.20	0.22	0.22	0.24	0.25	0.27	0.31	0.26	0.33	0.33	0.25	0.28	0.26	0.24	0.32	0.32	0.27	0.37	0.24	0.22	0.21	0.24	0.24 (0.29
17	0.22	0.22	0.25	0.23	0.24	0.27	0.28	0.27	0.30	0.33	0.30	0.37	0.25	0.31	0.37	0.36	0.31	0.42	0.31	0.33	0.34	0.25	0.27	0.37
18	0.26	0.28	0.31	0.27	0.27	0.35	0.28	0.22	0.23	0.27	0.24	0.30	0.28	0.30	0.26	0.23	0.24	0.36	0.31	0.28	0.30	0.24	0.23	0.34
19	0.39	0.35	0.28	0.26	0.32	0.36	0.39	0.36	0.33	0.28	0.26	0.37	0.57	0,47	0.32	0.25	0.32	0.45	0.44	0.41	0.42	0.36	0.24	0.31
20	0.53	0.42	0.30	0.34	0.35	0.40	0.44	0.52	0.55	0.31	0.29	0.37	0.61	0.53	0.38	0.35	0.37	0.40	0.48	0.42	0.48	0.39	0.28	0.32
Note:																								
The i	occelen	ation i	s the 1	movin	g avera	age aci	celerat	ion ove	sr 0.1	sec rel	ative to	o stati	onary	referer	nce co	ordinat	es. Th	s reaso	n the 1	noving	g aver	age is	used is	that:

sudden spikes in acceleration over a very short time will not have significant impact on the contents or residents in the building, while the moving average value is felt to be more correlated with content damage and human comfort.

© 2009 FPInnovations - Forintek Division. All rights reserved.

C.4 Maximum inter-storey drift

Confidential

Table C.4.1Inter-storey drift of 4-storey building in E-W direction (with GWB), (%)

-	_			_		·····				_	_	-	-	_	_		-	_	_		T	·····T···			-	_
	m	5411 641	212	C1.0	0.14	0.2.U	0.27	0.13	0.16	0.13	0.18	0.12	0.12	71-0	17.0	0.31	0.10	0.77	100	11-0	11.0	0.13	0.20	0.50	010	0.17
Iood	tev dianhra		040	0.40	0.00	0.00	0.68	0.31	0.37	0.45	0.62	0.30	0.31	1020	4C-0	0.55	0.24	0.43	0.56	0270	10.0	10.0	1.1	0.70	7C.U	04.0
NdVS	ter of the sto		0 57	72.0	00.0	1.04	0.86	0.41	0.40	0.68	0.87	0 42	0.30	220	1.0	0.72	0.35	0 44	0.60	0.35	000	0.40	0.40	10.0	0.57	1 /
	Uen U	ct 1	0.80	1 10	01.1	70.0	0.74	0.56	0.40	1.15	0.71	0.40	037	0.40	00	0.63	0.39	0.76	0.60	0.36	050	67.0	710	500	0.64	
	;	ct4	0.33	0.31	20.0	0.22		07.0	0.22	0.27	0.34	0.24	0.28	0.20		0.54	0.24	0.27	0.29	PC 0	12:0	0.21	10.0	40.0	0.00	
	14	st3	0.69	0.63	0.50	70.0	00	1. 1	0.41	0.52	0.72	0.44	0.49	0.61	1210	0.00	0.47	0.46	0.58	0 47	0.41	0.58	0.66	0.87	0.57	
	Wal	st2	0.78	0.76	0.78	0.57	1000	0.4/	0.44	0.98	0.85	0.46	0.51	0.77	000	40.0	0.46	0.42	0.64	0.48	0.48	0.55	212 0	0 01	0.64	
-3D		st1	1.29	144	1 27	0.60	0.02	C	0.54	1.54	1.04	0.78	0.85	141	1 70	1./V	0.62	0.93	1.16	0.73	1.00	0.78	116	1 08	1.04	
Drain	3	st4	0.31	0.30	0.25	0.32	0.27	14.0	0.22	0.27	0.34	0.25	0.30	0.34	0.33		0.24	0.29	0.30	0.25	0.24	0.31	0.32	0.38	0.29	
	18	st3	0.67	0.61	0.51	0.67	0.46		0.41	0.53	0.75	0.45	0.51	0.63	0.63	20.0	0.45	0.47	0.57	0.46	0.41	0.54	0.66	0.87	0.56	
	Wal	st2	06.0	0.87	16.0	0.69	0.52	100	0.48	1.09	0.99	0.54	0.55	0.80	0.95		IC.U	0.46	0.83	0.54	0.54	0.60	0.87	1.05	0.73	
-		st1	1.23	1.27	1.18	0.66	0.88	0.57	10.0	1.49	0.88	0.68	0.80	1.35	1.60	1130	/ (0.89	1.18	0.70	0.97	0.71	1.07	1.01	86.0	,
1	No.		1	61	÷	4	5		5 0	~ (x	6	10	11	12	5	¢1	14	15	16	17	18	19	20	Mean	Note.

Note: Storey height = 2750 mm © 2009 FPInnovations - Forintek Division. All rights reserved.

FPInnovations

Table C.4.2 Inter-storey drift of 4-storey building in N-S direction (with GWB), (%)

Confidential

	m	st4	0.28	0.19	0.35	0.28	0.22	0:30	0.11	0.21	0.13	0.20	0.29	0.39	0.23	0.29	0.25	0.26	0.28	0.28	0.29	0.29	0.26
/ood	rey diaphrag	st3	0.79	0.75	1.07	96.0	0.55	0.77	0.55	0.81	0.56	0.56	0.88	0.99	0.63	0.67	1.16	0.58	09.0	0.76	0.87	0.79	0.77
SAPW	ter of the sto	st2	0.81	0.76	0.91	0.81	0.68	0.72	0.80	0.70	0.67	0.63	0.76	0.71	0.67	0.76	0.83	0.57	0.67	0.61	0.65	0.91	0.73
	Cent	st1	0.97	1.19	0.95	0.84	0.63	0.66	1.20	0.61	0.88	0.75	86-0	0.94	0.62	1.11	0.95	0.56	0.61	0.66	0.65	0.97	0.84
		st4	. 86.0	0.68	0.72	0.86	0.74	0.76	0.86	0.78	0.70	0.74	0.82	0.86	0.51	0.56	0.72	0.59	0.51	0.71	0.84	0.82	0.74
-	25	st3	1.33	66.0	86.0	1.14	66.0	0.97	1.17	1.04	1.01	0.97	1.12	1.10	0.70	0.68	0.98	0.80	0.72	0.81	1.10	1.16	0.99
	Wall	st2	1.14	0.94	06.0	06.0	0.89	96.0	1.19	0.73	1.00	0.94	1.14	1.21	0.67	0.72	0.87	0.74	0.65	0.78	0.73	1.03	16.0
-3D		stl	0.97	0.83	0.80	0.99	0.93	1.07	0.97	0.55	0.99	1.04	1.14	1.38	0.92	1.07	0.88	0.89	0.77	0.95	0.61	1.05	0.94
Drain		st4	0.98	0.68	0.72	0.86	0.74	0.76	0.86	0.78	0.70	0.74	0.82	0.86	0.52	0.56	0.72	0.59	0.51	0.71	0.84	0.82	0.74
	19	st3	1.34	0.99	0.98	1.14	0.99	0.97	1.17	1.04	1.02	0.97	1.13	1.10	0.70	0.69	0.98	0.80	0.72	0.81	1.09	1.16	0.99
	Wall	st2	1.14	0.94	06.0	0.90	0.89	0.96	1.19	0.72	1.01	0.94	1.15	1.21	0.67	0.72	0.87	0.74	0.65	0.78	0.73	1.03	0.91
		stl	0.97	0.83	0.80	0.99	0.93	1.07	0.97	0.55	0.99	1.05	1.14	1.38	0.92	1.07	0.88	0.89	0.77	0.95	0.61	1.05	0.94
	No.	L	1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Note: Storey height = 2750 mm © 2009 FPInnovations - Forintek Division. All rights reserved.

Table C.4.3Inter-storey drift of 6-storey building in E-W direction (with GWB), (%)

Confidential

		740	210	1.19	01.0	0.21	0.21	0.17	0.20	017	010	110		71.0	1.0	0.4.0	01.0	0.19	77.0	cr.n	0.13	0.17	0.10	0.00		01.0
	hraom	240	010	0.40	0.32	0.61	0.43	0.32	0.39	950	0.37	0.75	0.00	0.20	20.02		0.0	70-0	60.0	62.0	0.27	0.31	138	0.46	0.27	122
/ood	rev dian	644 ct	152	20.0	C+.7	0.71	0.52	0.35	0.38	0 47	0.54	0.33	0.77	0.45	010		0000	00	00.0	7.0	0.33	0.38	0.49	020	0.44	F
N D D D	of the str	ct2	200	0.00	<u></u>	0.61	0.60	0.42	0.43	0.73	0.52	0.47	0.36	0.53	0.55	242	C+:0	100	0.00	\ <u>c.</u> n	0.38	0.39	0.49	0.67	0 57	1 47.7
	Center	ct o	0 55	500	70.0	0.49	0.59	0.43	0.43	0.62	0.44	0 48	0 37	0.61	1 25		740	00.0	0.00	00	0.40	0.39	0.44	0.60	0.50	>
		15	0.51	120		60.0	0.51	0.45	0.42	0.64	0.37	0.53	0.45	0.50	0.63	0.45	71.0	c/.0	20.0	0000	0.38	0.37	0.36	0 55	0.50	>>>>
		et6	0.45	040		0.42	0.47	0.35	0.41	0.43	0.47	0.44	0.37	0.44	0 30	0.22	020	0000	010		0.30	0.39	0.47	0.44	0 40	-
		£	0.80	0.64	1000	co.n	0.82	0.54	0.66	0.65	0.82	0.70	0.55	0.68	0.62	0.50	0.50	220	0.07	5	0. 1 6	0.61	0.78	0.74	0.65	-
	14	st4	0.88	0.68	22.0	+0.0	0.88	0.61	0.63	0.72	0.75	0.77	0.59	0.73	0.68	0.52	120	1.01	0.60		0.49	0.58	0.61	0.81	0.67	-
	Wal	st3	1 2.6	0.88	200	C	1.23	0.87	0.79	1.09	0.79	1.19	0.81	1.11	1.07	0.66	0 73	0.86	0.07	240	000	0.82	0.56	1.09	16.0	- man
		st2	0.66	0.60	0.62	CO-0	0.70	0.64	0.65	0.68	0.55	0.72	0.61	0.79	0.75	0.54	0.63	0.61	0.60	0.50	<u></u>	0.62	0.51	0.67	0.63	
-3D		stl	0.68	0.64	0.65	200	0.74	0.81	0.81	0.63	0.47	0.76	0.74	0.88	0.79	0.54	0.87	0.60	0.60	0.50	20.0	0.68	0.44	0.60	0.68	
Draii		st6	0.47	0.39	0.70		0.47	0.37	0.41	0.43	0.47	0.39	0.35	0.42	0.43	0.32	0.32	0.43	0.39	0.21	10.0	0.41	0.44	0.42	0.42	
		st5	0.84	0.66	0.70	0.01	0.84	0.57	0.64	0.73	0.84	0.63	0.55	0.67	0.69	0.50	0.49	0.68	0.64	0.47	+->	0.66	0.76	0.73	0.66	ļ
	11 8	st4	0.92	0.75	0.69	000	<u>.</u>	0.67	0.68	0.85	0.84	0.79	0.66	0.83	0.72	0.59	0.55	0.73	0.74	0.53		00	0.62	0.87	0.73	
	Wa	st3	0.98	0.79	0.75	000	22.0	0.77	0.74	0.95	0.74	0.93	0.73	0.98	0.89	0.66	0.68	0.75	0.81	0.50		00	0.52	0.93	0.79	
		st2	0.77	0.62	0.67	0.70	21.0	0./8	0.81	0.73	0.54	0.83	0.68	0.88	0.86	0.59	0.68	0.69	0.66	0.57	220	C0.0	0.50	0.70	0.70	
		st]	0.75	0.62	0.67	0 75		61.0	0.86	0.65	0.45	0.77	0.68	0.81	0.78	0.61	06.0	0.70	0.62	0.63	0.66	000	0.45	0.59	0.69	
	No.		1	7	3	Ā	- 4		ام	~	∞	6	10	11	12	13	14	15	16	17	18	0	5	20	Mean	Note:

Storey height = 2750 mm

© 2009 FPInnovations - Forintek Division. All rights reserved.

F Pinnovations

Confidential

Table C.4.4Inter-storey drift of 6-storey building in N-S direction (with GWB), (%)

		st6	0.15	0.14	0.36	0.25	0.21	0.28	0.10	0.23	0.21	0.13	0.21	0.31	0.33	0.25	0.28	0.25	0.29	0.21	0.27	0.31	0.24
	hragm	st5	0.60	0.59	1.33	0.75	0.58	0.60	0.41	0.66	0.62	0.35	0.64	0.68	0.86	0.52	1.04	0.59	0.59	0.54	0.69	0.79	0.67
/ood	orey diap	st4	0.81	0.64	0.73	0.64	0.43	0.57	0.59	0.65	0.53	0.34	0.57	0.59	0.62	0.63	0.71	0.61	0.64	0.46	0.63	0.92	0.62
SAPU	of the sto	st3	0.67	0.60	0.68	0.64	0.47	0.53	0.61	0.58	0.58	0.47	0.59	0.53	0.52	0.57	0.69	0.56	0.57	0.45	0.51	0.74	0.58
	Center	st2	0.55	0.69	0.72	0.65	0.52	0.63	0.73	0.60	0.64	0.48	0.60	0.61	0.59	0.66	0.67	0.58	0.60	0.45	0.54	0.68	0.61
		st1	0.66	0.53	0.92	0.81	0.50	0.62	0.84	0.62	0.81	0.56	0.51	0.67	0.65	0.96	0.81	0.55	0.56	0.46	0.60	0.92	0.68
		st6	0.81	1.06	1.04	1.10	1.27	1.02	0.92	86.0	0.98	1.28	0.99	0.70	1.14	0.91	1.16	1.15	1.29	1.04	0.88	1.33	1.05
		st5	1.05	1.39	1.42	1.38	1.59	1.25	1.18	1.36	1.23	1.62	1.24	0.84	1.36	1.18	1.41	1.44	1.57	1.27	1.06	1.92	1.34
	1 25	st4	06.0	0.88	1.18	1.03	1.49	1.27	0.93	1.16	1.29	1.43	1.17	0.70	1.41	1.20	1.41	1.35	1.53	1.26	0.62	1.03	1.16
	Wal	st3	0.82	09.0	0.78	0.77	1.00	1.08	0.73	0.92	1.07	06.0	0.87	0.60	1.20	0.92	1.01	1.07	1.02	0.93	0.41	0.63	0.87
		st2	0.83	0.51	0.68	0.76	0.83	0.98	0.65	0.87	0.96	0.73	0.72	0.54	1.09	0.86	0.86	0.95	0.80	0.79	0.38	0.67	0.77
1-3D		stl	0.86	0.59	0.93	0.75	0.72	0.91	0.76	1.19	1.08	0.67	0.73	0.54	1.08	1.01	0.75	0.86	0.97	0.74	0.44	1.12	0.84
Drair		st6	0.82	1.06	1.05	1.10	1.28	1.02	0.92	0.99	0.99	1.29	1.00	0.70	1.14	0.91	1.16	1.15	1.30	1.04	0.88	1.33	1.06
		st5	1.06	1.39	1.42	1.38	1.59	1.25	1.18	1.36	1.24	1.62	1.24	0.84	1.36	1.18	1,41	1.44	1.57	1.27	1.06	1.93	1.34
	1 19	st4	0.90	0.89	1.18	1.03	1.49	1.27	0.93	1.17	1.30	1.43	1.17	0.70	1.41	1.21	1.41	1.35	1.54	1.26	0.62	1.04	1.16
	Wal	st3	0.82	0.60	0.78	0.77	1.00	1.08	0.74	0.92	1.08	0.91	0.87	0.60	1.20	0.92	1.01	1.07	1.02	0.93	0.41	0.63	0.87
		st2	0.83	0.51	0.69	0.76	0.83	0.98	0.65	0.87	0.96	0.73	0.72	0.54	1.09	0.86	0.86	0.96	0.80	0.79	0.38	0.68	0.77
		stl	0.86	0.59	0.93	0.75	0.72	0.91	0.76	1.19	1.08	0.68	0.73	0.54	1.09	1.01	0.75	0.86	0.98	0.74	0.44	1.12	0.84
	°Z			2	e	4	5	9	7	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Storey height = 2750 mm

© 2009 FPInnovations - Forintek Division. All rights reserved.

F Pinnovations

Table C.4.5Inter-storey drift of 4-storey building in E-W direction (without GWB), (%)

Confidential

	u	st4	0.77	0.18	0.37	0.2.0	0.74	0.00	0.11	0.74	0.13	0.21	0.31	0.37	0.72	0.00	0.75	0.27	0.27	0.27	0.70	0.29	0.26
poo	ev diaphrage	st3	0.79	0.68	112	0.07	0.58	0.76	0.52	0.87	0.57	0.55	0.87	0.98	0.63	0.68	1 16	0.59	0.57	0.77	0.83	0.80	0.76
SAPW	ter of the stor	st2	0.81	0.76	0.89	0.83	0.68	0.72	0.80	0.70	0.65	0.59	0.78	0.76	0.67	0.73	0.86	0.57	0.69	0.64	0.65	0.93	0.74
	Cent	st]	0.97	1.20	0.93	0.84	0.63	0.66	1.21	0.60	0.87	0.76	0.92	0.88	0.60	1.12	0.95	0.56	0.61	0.67	0.66	0.95	0.83
		st4	0.42	0.41	0.36	0.36	0.36	0.38	0.30	0.41	0.37	0.33	0.31	0.46	0.38	0.35	0.41	0.31	0.34	0.58	0.46	0.44	0.39
	l] 4	st3	1.67	1.13	1.29	1.42	0.91	0.84	0.73	1.79	1.10	0.71	0.63	1.32	0.94	0.62	1.11	0.75	0.82	0.68	1.76	1.36	1.08
	Wa	st2	0.85	0.78	0.67	0.76	0.64	0.58	1.01	0.44	0.70	0.77	0.86	1.04	0.61	0.58	0.72	0.62	0.55	0.52	0.51	0.84	0.70
1-3D		st1	1.07	1.08	1.09	1.10	0.79	1.53	1.31	0.49	0.95	1.16	1.37	1.10	0.83	1.39	0.98	0.81	0.93	1.11	0.68	1.17	1.05
Drair		st4	0.45	0.39	0.41	0.38	0.40	0.39	0.32	0.44	0.41	0.34	0.32	0.45	0.42	0.34	0.43	0.33	0.35	0.60	0.46	0.44	0.40
	11 8	st3	1.50	1.06	1.09	1.15	0.93	0.82	0.70	1.48	0.96	0.60	0.60	1.06	0.79	0.60	1.02	0.68	0.60	0.65	1.53	1.14	0.95
	Wa	st2	1.04	0.95	0.93	1.01	0.76	0.66	1.18	0.62	0.87	0.89	1.00	1.06	0.70	0.67	0.82	0.65	0.66	0.69	0.71	1.10	0.85
		st]	1.02	1.00	1.00	1.11	0.74	1.43	1.20	0.49	0.93	1.24	1.25	1.40	0.81	1.35	0.89	0.80	1.03	0.94	0.61	1.19	1.02
;	No.		1	2	3	4	5	6	~	~	6	10	11	12	13	14	15	16	17	18	19	50	Mean

Storey height = 2750 mm

© 2009 FPInnovations – Forintek Division. All rights reserved.

F Phnnovations FORINTEK

Confidential

(%)
nout GWB), (
tion (with
N-S direc
uilding in
4-storey b
ey drift of
Inter-stor
Table C.4.6

		st4	0.27	0.18	0.37	0.30	0.24	0.29	0.11	0.24	0.13	0.21	0.31	0.37	0.23	0.29	0.25	0.27	0.27	0.27	0.29	0.29	0.26	
pod	sy diaphragm	st3	0.79 (0.68 (1.12	0.92 (0.58	0.76	0.52	0.82	0.57	0.55	0.87	0.98	0.63	0.68	1.16	0.59	0.57	0.77	0.83	0.80	0.76	•
SAPWo	ter of the store	st2	0.81	0.76	0.89	0.83	0.68	0.72	0.80	0.70	0.65	0.59	0.78	0.76	0.67	0.73	0.86	0.57	0.69	0.64	0.65	0.93	0.74	
	Cent	st1	0.97	1.20	0.93	0.84	0.63	0.66	1.21	0.60	0.87	0.76	0.92	0.88	0.60	1.12	0.95	0.56	0.61	0.67	0.66	0.95	0.83	
		st4	1.05	0.86	0.69	0.88	0.92	0.86	0.82	0.89	0.85	0.99	0.93	0.85	0.57	0.68	0.68	1.00	0.50	0.86	1.68	0.94	0.88	
2	25	st3	1.49	1.25	1.11	1.20	1.26	1.17	1.33	1.31	1.20	1.27	1.33	1.15	0.81	0.94	1.00	1.27	0.72	1.04	1.08	1.38	1.17	
	Wall	st2	1.09	0.94	0.92	1.02	1.19	66.0	1.14	0.89	1.04	1.08	1.19	1.07	0.66	0.94	0.85	1.02	0.62	0.87	0.62	1.09	96.0	
-3D		st1	1.10	0.82	1.05	1.24	1.42	1.12	1.06	0.66	1.20	1.12	1.28	1.12	0.85	1.28	1.03	1.25	0.82	1.10	0.52	1.05	1.05	
Drain		st4	1.05	0.86	0.69	0.88	0.93	0.86	0.82	0.89	0.85	66.0	0.93	0.85	0.57	0.68	0.68	1.00	0.50	0.86	1.68	0.94	0.88	
	19	st3	1.49	1.25	1.12	1.20	1.26	1.17	1.33	1.31	1.20	1.27	1.33	1.15	0.81	0.94	0.99	1.27	0.72	1.04	1.08	1.38	1.17	
	Wall	st2	1.09	0.94	0.92	1.02	1.19	66.0	1.14	0.89	1.04	1.08	1.20	1.07	0.66	0.94	0.85	1.02	0.62	0.87	0.62	1.09	0.96	
		st1	1.10	0.82	1.06	1.24	1.42	1.12	1.06	0.66	1.20	1.12	1.28	1.12	0.85	1.28	1.03	1.25	0.83	1.10	0.52	1.05	1.05	
	No.		1	7	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean	Note:

Storey height = 2750 mm

© 2009 FPInnovations – Forintek Division. All rights reserved.

F Pinnovations

Table C.4.7Inter-storey drift of 6-storey building in E-W direction (without GWB), (%)

0
0
0
11
-
ō
O.
\mathbf{v}

	}	ctK	0.10	0.16	100	17.0	0.17	0.0	0.17	0.19	0.13	0.12	0 14	0.02	710	01.0	61.0	0.15	0.12	17	10		0770	0.10
	raem	et?	0.48	0 32	190	0.42	0.32	0.39	0.36	0.37	0.25	0.20	0 32	112			120	0.00	0.07	0.21	020	240	0.27	
poo	ev diaph	ct4	0.53	0.45	0 71	0 53	0.35	0.38	0.47	0.54	0.33	0.27	0.45	0.40	0.20	0.70	0 50	0.32	0 33	0.38	010	0 2 0	0.44	-
SAPW	f the stor	st3	0.63	0.63	0.61	0.60	0.42	0.43	0.73	0.52	0.47	0.36	0.53	0.55	0.43	1 L Y U	0.60	0.37	0.38	0.30	0.40	0.67	0.57	1.14
	Center o	st2	0.55	0.62	0 49	0.50	0.43	0.43	0.62	0.44	0.48	0.37	0.61	0.56	0.40	220	0.60	0.38	0.40	0.30	0.44	0.60	0.50	222
		st1	0.51	0.58	0.59	0.51	0.45	0.42	0.64	0.37	0.53	0.45	0.59	0.63	0.47	0 73	0.50	0.38	0.38	0.37	95.0	0.55	0.50	~~~~
		st6	0.48	0.49	0.48	0.45	0.43	0.42	0.38	0.40	0.47	0.42	0.48	0.49	0.47	0.43	0.41	0.40	0.44	0.39	0.48	0.42	044	
		st5	1.11	1.43	1.75	1.26	0.93	1.05	0.67	0.91	06.0	1.03	1.39	1.02	0 97	0.75	0.74	0.80	0.89	0.75	2.01	1.93	1.11	
	ll 4	st4	0.81	0.77	0.72	0.64	0.76	0.67	0.83	0.57	0.74	0.77	0.81	0.81	0.72	12.0	0.74	0.65	0.67	0.65	0.47	0.73	0.71	
	Wa	st3	1.04	0.91	0.96	1.05	1.47	1.13	1.17	0.81	1.43	1.22	1.12	0.90	1.39	1.31	1.63	1.03	1.35	1.22	0.49	1.00	1.13	
		t?	0.63	0.49	0.61	0.65	0.79	0.69	0.59	0.64	0.88	0.66	0.61	0.54	0.83	0.76	06.0	0.76	0.65	0.65	0.42	0.70	0.67	
n-3D		stl	0.80	0.45	0.82	0.95	1.05	0.96	0.58	1.23	1.19	0.88	0.51	0.57	1.16	1.20	1.34	1.29	0.85	0.79	0.54	1.14	0.91	-
Draii		st6	0.52	0.50	0.49	0.45	0.38	0.40	0.41	0.41	0.42	0.40	0.54	0.48	0.42	0,43	0.43	0.41	0.43	0.43	0.45	0.51	0.45	
		st5	1.35	1.62	1.58	1.19	0.66	0.74	0.92	1.04	0.74	0.81	1.37	0.86	0.75	0.76	0.76	0.73	0.79	0.82	2.04	1.91	1.07	
	118	st4	0.75	0.89	0.75	0.72	0.67	0.62	0.97	0.64	0.71	0.64	0.98	0.80	0.77	0.76	0.78	0.61	0.78	0.78	0.52	0.89	0.75	
	Wa	st3	0.83	0.78	0.78	0.84	1.12	0.92	16.0	0.72	1.05	0.85	1.01	0.78	1.11	0.99	1.26	0.77	1.07	0.98	0.54	0.72	06.0	
		st2	0.83	0.51	0.72	0.90	1.21	1.05	0.65	0.82	1.08	06.0	0.71	0.57	1.19	0.94	1.32	1.10	0.83	0.75	0.42	0.82	0.87	
		st1	0.76	0.48	0.82	0.92	1.28	1.08	0.58	1.16	1.27	1.03	0.58	0.58	1.35	1.21	1.44	1.29	1.00	0.75	0.54	1.15	0.96	
,	No.			5	ω	4	S	9		»	6		=	12	13	14	15	16	17	18	19	20	Mean	Note.

Storey height = 2750 mm

© 2009 FPInnovations – Forintek Division. All rights reserved.

Appendix C - 19

F Pennovations

Inter-storey drift of 6-storey building in N-S direction (without GWB), (%)

Table C.4.8

Drain-3D

Wall 19

So.

Confidential

0.19 0.16

0.32

0.63 0.63

0.55

st1 0.51

0.87

st6

Wall 25

0.62 0.49 0.43 0.43 0.43

0.58

1.02

1.17

st6

ŝ

st4 0.53 0.45

St3

th C

Center of the storey diaphragm

SAPWood

0.21

0.61

0.71

0.61

© 2009 FPInnovations - Forintek Division. All rights reserved.

FPInnovations FORINTER

Appendix C - 20

1.66 1.36 1.26 20 1.47 £ 5 1.13 06.0 1.23 1.03 1.47 0.94 st4 0.84 0.59 0.85 0.85 0.93 0.73 £ 0.55 0.820.75 0.84 0.83 0.77 đ 0.78 0.800.60 1.02 0.85 0.68 St. 0.95 1.39 0.881.02 1.17 1.01 st6 1.26 1.66 1.36 1.47 1.70 5 ŝt 1.241.12 0.00 0.94 1.03 1.47 st4 0.84 0.59 0.73 0.85 0.85 0.93 £ 0.84 0.82 0.75 0.55 0.83 0.77 ß 0.69 0.78 0.85 0.80 0.60 1.03 stl 2 9 ŝ 4 Ś

Note: Storey height = 2750 mm

0.19

0.22 0.15 0.13 0.17 0.19

0.59

0.50

0.60

0.60

0.32 0.33 0.38

0.37

1.06

1.41

0.31

0.38 0.39 0.49

0.39

0.20

0.46

0.50

0.67

0.60

1.49

F.

0.93

0.40

0.43 0.84 0.78

0.58

0.57

<u>1.33</u> 0.87

1.99

0.84

0.78

0.87

Mean

30

1.19

11

<u>1.02</u> 0.93

0.88 0.76 0.57 0.82 0.82

0.82

0.81 0.95

0.81

0.78 0.43

80

0.58 1.33

1.05

<u>1.63</u> 1.12

1.98

0.84

1.17

5

0.76

1.57

90

.52

0.88

0.81

0.80

1.04

0.80

0.37

0.44

0.52

0.50

0.50

1.49

1.19

0.82

0.38

0.49

0.16

0.19

0.13 0.12 0.23

> 0.20 0.32 0.38 0.38 0.32

0.36 0.53 0.43 0.57

0.37

0.47

0.45

0.49 0.38 0.36

0.56

1.23

I.59

42 23

0.93

0.00

0.94 1.24 1.58 0.84 1.49 1.13

1.35

0.97

1.58

1.53

1.90

0.63

0.94

1.58

0.93

1.37

0.95 1.54 1.50

 $\frac{0.53}{1.24}$

0.74 0.58 1.10

0.94

1.37

1.50 1.30 0.65

1.36

1.06 0.89 0.81

0.95

0.53

0.59

112

0.83

0.74

0.95

[]

0.77

0.77

10

1.54

1.59

1.24

1.10 0.93 0.61

1.14 1.00 0.69

14

<u>116</u>

0.77

0.77 0.95 0.57 1.14

0.56

0.17

0.43

0.35

0.60 0.42 0.43

> 0.45 0.420.64 0.37 0.53 0.45 0.59 0.63 0.42 0.73 0.52 0.38 0.38 0.37 0.36 0.55

0.96

1.39 0.94

1.35

<u>1.05</u> 1.53

 $\frac{0.75}{1.02}$

0.68 0.93

0.89

0.94

1.35

1.54

0.75

0.68 0.93

0.89 1.05 1.08

5

00

0.51

0.39

0.38

0.36 0.37 0.25

0.47 0.54 0.33 0.27

0.73

0.44

1.12

1.62

0.92

1.23

1.36

1.06 0.89 0.82

1.08

0.93

1.05

1.12

1.63 1.78

1.77

1.49 1.29 0.65

C.5 Maximum shear wall deformation at each storey

Confidential

Shear wall deformation of 4-storey building in E-W direction (with GWB), (mm) Table C.5.1

÷

© 2009 FPInnovations - Forintek Division. All rights reserved.

Appendix C – 21

F Pinnovations

Shear wall deformation of 4-storey building in N-S direction (with GWB), (mm) Table C.5.2

	Wall 25	st3 st4	22.8 11.3	14.8 7.5	16.0 7.0	19.2 11.4	16.2 8.2	16.2 8.4	16.6 6.7	15.7 6.8	16.5 6.6	13.9 6.4	15.1 6.0	18.6 9.6	10.3 5.0	11.5 7.9	14.9 6.9	12.3 5.7	9.0 3.7	11.7 7.7	17.7 9.0	17.5 8.5	153 75
3D		st1 st2	22.0 20.7	18.7 17.4	18.1 16.2	24.1 16.5	21.6 16.4	25.4 17.3	22.8 20.5	11.1 10.3	22.9 18.5	24.5 16.2	26.1 19.0	33.4 24.2	21.5 11.4	25.9 13.4	20.1 15.6	21.0 13.0	17.1 9.6	22.2 14.0	14.2 12.9	23.8 17.2	21.8 161
Drain-		st4	8.1	5.6	5.4	8.8	6.9	7.1	4.4	5.3	5.0	5.4	3.7	7.6	4,4	7.0	5.4	4.4	3.2	6.5	7.8	7.6	6.0
	1 19	st3	20.0	13.3	14.5	17.3	14.7	14.7	13.6	13.7	14.7	11.9	11.6	16.4	9.2	10.4	13.3	11.0	8.0	10.2	15.8	14.4	13.4
	Wal	st2	17.6	16.1	14.9	14.4	15.3	16.2	18.2	0.6	17.3	14.6	15.5	22.3	10.5	12.5	14.2	11.9	8.7	13.0	11.8	14.3	14.4
		st1	21.5	18.0	17.4	23.6	20.9	24.8	22.2	10.5	22.2	23.8	25.2	32.7	21.0	25.4	19.3	20.4	16.6	21.6	14.1	23.0	21.2
	No.		1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Confidential

© 2009 FPInnovations – Forintek Division. All rights reserved.

Shear wall deformation of 6-storey building in E-W direction (with GWB), (mm) Table C.5.3

					Drai	n-3D					
ļ		Wa	11 8					Wa	ul 4		
	st2	st3	st4	st5	st6	st1	st2	st3	st4	st5	st6
	19.0	23.1	20.8	17.6	7.0	17.0	14,6	29.9	18.2	15.0	5.0
	14.9	18.7	17.1	14.3	6.8	16.0	13.3	19.7	13.3	12.1	5.5
	16.2	16.8	14.4	15.0	7.4	16.1	14.3	21.6	12.0	12.0	5.2
	19.1	23.2	20.9	17.6	6.8	18.9	15.9	29.1	18.4	15.7	5.5
	18.8	17.4	14.1	10.7	5.0	20.6	14.4	19.5	11.4	93	4.0
·	20.1	17.2	14.8	12.6	5.9	20.6	14.5	17.5	11.7	11.7	4.6
	17.7	22.6	19.2	15.3	6.7	15.7	15.0	24.7	13.4	10.7	4.4
-	12.7	17.1	19.5	19.1	8.1	11.7	11.8	17.0	15.0	16.1	5.7
	20.1	22.0	17.3	12.2	5.2	19.0	16,4	28.1	15.6	12.4	4.8
	16.5	16.9	14.3	10.8	5.2	18.6	13.9	17.6	10.9	8.9	3.6
	21.8	23.4	19.0	13.7	6.4	22.5	18.3	25.5	14.0	11.8	4.7
	20.7	20.6	15.5	14.6	7.3	20.0	17.2	24.9	13.3	11.0	4.6
	13.8	14.7	12.2	9.2	4.6	13.3	11.9	14.2	9.7	8.5	3.6
- 1	16.4	15.8	11.7	10.0	5.9	22.4	14.7	16.7	10.2	6.6	4.6
I	17.1	17.5	16.0	14.1	6.8	15.1	13.3	18.9	12.1	11.4	4.6
I	15.6	18.5	16.0	12.3	6.0	14.9	13.2	22.3	13.5	11.4	4.4
	13.8	13.3	11.2	9.2	4.5	14.8	11.9	11.9	8.9	7.8	3.3
	15.3	16.1	15.5	13.7	6.9	17.1	13.9	18.5	11.0	11.6	5.1
	11.6	11.5	13.8	17.2	8.0	10.9	11.4	12.1	11.6	16.0	6.5
	17.0	22.5	20.6	16.5	7.6	14.7	14.8	25.1	16.8	14.0	5.4
	16.9	18.5	16.2	13.8	6.4	17.0	14.2	20.7	13.0	11.9	4.7
]

Confidential

Shear wall deformation of 6-storey building in N-S direction (with GWB), (mm) Table C.5.4

					Drair	-3D					
ł		Wall	19					Wal	125		
_	st2	st3	st4	st5	st6	stl	st2	st3	st4	st5	st6
	12.7	8.9	9.8	11.6	3.9	18.7	13.9	10.2	11.1	12.9	5.3
6	9.7	7.8	9.6	19.5	8.3	13.7	10.0	8.4	11.0	21.3	10.4
5	12.7	9.8	14.8	19.1	7.5	23.0	13.4	10.6	17.3	21.6	9.8
9	11.9	8.6	9.6	15.8	6.4	16.1	12.7	9.4	10.9	17.3	7.8
8	13.3	11.1	12.2	11.4	3.7	15.3	14.1	12.2	16.0	14.9	5.1
.0	13.6	11.1	13.0	9.6	3.0	18.6	15.4	13.3	15.2	11.5	4.4
4.	10.6	9.3	10.6	11.7	4.0	16.9	11.2	10.1	11.7	13.3	5.2
5	14.3	11.2	14.2	17.9	6.3	29.0	15.1	12.6	16.3	20.2	8.3
۲.	14.1	12.4	13.8	10.3	3.3	24.0	16.3	15.3	17.0	13.4	5.9
8.	12.1	10.4	15.1	18.5	7.6	15.2	12.7	11.5	18.6	21.3	10.3
.6	10.2	10.0	13.5	12.8	5.7	16,1	11.1	11.3	15.1	14.5	7.3
6.9	10.4	9.2	9.5	9.7	7.1	14.0	10.6	9.7	10.2	10.5	7.9
5	14.0	11.0	11.5	9.8	3.2	21.8	15.8	13.7	14,1	11.4	4.5
4.0	14.7	12.3	16.4	13.6	5.8	23.9	15.6	13.7	18.2	15.5	7.3
5.4	13.1	11.9	17.8	15.3	6.9	16.7	14.1	13.9	20.6	18.3	9.7
3.4	13.3	10.5	11.0	10.8	4.1	19.2	14.1	11.8	13.9	13.1	5.8
53	12.3	12.0	18.6	15.5	6.5	22.8	13.0	13.5	21.8	19.0	9.6
5.8	12.4	9.4	12.7	9.4	3.7	16.3	13.2	11.0	15.2	11.8	5.5
8.1	9.6	6.0	6.8	12.9	7.0	11.9	9.8	6.1	7.4	14.3	7.9
1.7	13.9	8.5	11.6	31.0	13.4	28.2	14.5	9.2	14.1	34.7	17.4
4	12.4	10.1	12.6	14.3	5.9	19.1	13.3	11.4	14.8	16.5	7.8

Confidential

© 2009 FPInnovations - Forintek Division. All rights reserved.

Shear wall deformation of 4-storey building in E-W direction (without GWB), (mm) Table C.5.5

		st4	9.8	9.4	8.3	8.4	8.3	9.1	6.6	9.8	8.5	7.4	7.0	10.8	85	8.2	9.2	6.7	7.5	14.5	10.9	10.7	9.0
	4	st3	44.8	29.8	34.2	37.7	23.7	22.1	18.5	48.0	28.9	18.3	16.0	35.0	24.4	15.8	29.2	19.2	21.1	17.3	47.3	36.1	28.4
	Wal	st2	22.1	20.1	17.4	19.9	16.4	15.1	26.6	11.1	18.3	20.0	22.5	27.6	15.7	15.3	18.8	16.1	14.0	13.2	13.0	21.8	18.2
-aD		st1	28.8	28.9	29.2	29.8	21.1	41.5	35.5	12.7	25.8	31.2	36.8	29.6	22.3	37.5	26.4	21.8	24.9	30.0	18.5	31.2	28.2
Drain		st4	10.3	9.1	9.2	8.7	0.6	9.2	7.3	10.3	9.5	7.7	7.2	10.9	10.0	8.3	10.2	7.7	8.2	15.2	11.7	10.5	9.5
	8	st3	39.7	28.0	28.2	30.1	23.8	21.6	18.0	39.5	24.9	15.1	15.3	28.1	20.4	15.2	26.6	17.1	15.2	16.8	41.0	30.1	24.7
	Wall	st2	27.5	25.3	24,4	26.7	19.8	17.0	31.3	16.1	22.7	23.5	26.4	28.0	18.0	17.9	21.4	16.6	17.2	18.2	18.5	29.3	22.3
		st1	27.6	26.8	26.7	29.9	19.7	38.9	32.2	12.9	24.9	33.4	33.8	37.8	21.7	36.3	23.8	21.3	27.7	25.4	16.7	32.0	27.5
	No.		1	2	3	4	S.	9	-	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Confidential

Shear wall deformation of 4-storey building in N-S direction (without GWB), (mm) Table C.5.6

_	1	1	T	F	T	1	1	r	r	T	r		1		1	1	,		r –	r	1	r .	1
		st4	17.9	14.1	9.7	15.8	17.0	13.7	10.3	11.4	10.0	13.4	11.1	11.8	7.3	10.2	8.9	14.3	5.9	11.4	38.5	17.9	13.5
	25	st3	30.7	23.2	22.0	24.8	25.6	22.9	24.6	24.4	21.0	22.5	23.6	23.0	14.6	18.5	18.7	22.8	10.9	17.5	21.4	28.5	22.1
	Wall	st2	22.5	17.0	18.9	21.2	25.7	19.1	22.5	15.7	21.0	21.2	24.4	22.5	12.3	18.5	16.1	21.3	10.9	16.0	6.6	20.8	18.9
-3D		st1	26.5	18.6	26.8	30.3	35.7	26.8	25.9	15.7	29.7	27.6	31.7	27.2	20.9	31.9	25.1	31.1	20.2	26.7	14.1	24.4	25.8
Drain		st4	15.6	12.5	8.7	14.1	15.1	12.0	8.2	8.5	7.8	9.7	7.9	9.9	6.6	9.1	7.6	10.3	5.2	9.5	36.9	16.2	11.6
	19	st3	28.7	20.7	20.8	23.1	23.8	21.0	22.4	21.6	19.1	19.3	20.6	21.7	13.4	17.4	17.5	19.5	9.8	15.2	20.0	26.8	20.1
	Wall	st2	21.0	15.3	17.8	20.2	24.5	16.7	20.7	14.0	19.9	19.8	23.3	21.4	11.4	17.2	15.0	20.2	10.1	15.1	9.1	18.1	17.5
		st1	25.8	17.8	26.3	29.7	35.2	26.2	25.3	15.2	29.2	27.0	31.1	26.7	20.5	31.4	24.5	30.5	19.8	26.1	14.1	23.6	25.2
	No.		1	2	3	4	5	6	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Confidential

FPInnovations FORMATER Shear wall deformation of 6-storey building in E-W direction (without GWB), (mm) Table C.5.7

,					2	Drail	n-3D					
 			Wa	11 8					Wa	114		
	stl	st2	st3	st4	st5	st6	st1	st2	st3	st4	st5	st6
	20.1	21.3	20.7	17.8	33.7	10.2	21.0	15.2	26.3	19.1	27.7	9.3
~	12.5	12.6	19.2	22.0	42.1	10.9	11.9	11.6	22.4	18.0	37.4	10.3
~	21.8	18.3	18.7	17.6	40.4	10.1	21.9	15.3	24.4	16.5	44.9	0.6
_	24.2	23.0	20.8	16.6	29.1	8.3	24.9	15.6	26.0	14.6	31.5	8.3
10	34.2	31.5	28.6	15.7	15.0	7.8	27.6	19.2	37.3	17.7	21.4	7.5
	28.7	27.2	23.2	14.3	16.9	7.5	25.2	16.8	28.6	15.4	25.3	7.5
	15.0	16.0	22.6	23.9	23.0	9.1	14,8	14.2	29.9	19.3	15.2	6.9
~	31.2	20.7	17.3	15.0	26.3	8.3	32.7	15.6	20.2	13.3	22.5	7.6
	34.1	28.3	26.0	16.4	17.1	2.6	31.5	22.1	36.3	17.6	21.9	8.5
_	27.2	23.1	21.3	14.7	19.6	1.7	23.0	16.0	30.3	17.2	24.4	7.8
	15.0	17.9	25.2	24.4	35.0	11.1	12.9	14.8	27.7	18.7	35.0	8.6
21	15.0	14.1	18.9	19.1	21.0	10.3	14.8	13.4	22.3	19.4	24.9	10.4
8	36.1	30.9	28.1	18.3	17.4	8.2	30.6	20.4	35.4	16.0	22.4	8.1
4	32.2	24.4	24.7	18.1	18.6	9.0	31.7	19.4	33.7	17.0	17.9	1.7
~	38.6	34.3	32.1	18.5	17.3	8.7	35.5	22.6	42.3	17.4	16.4	7.6
6	34.6	28.5	18.8	13.9	17.8	7.9	34.8	18.9	25.6	15.1	19.5	7.7
~	26.4	21.1	27.1	18.7	18.0	8.1	22.2	15.8	34.3	14.7	21.3	8.0
	19.5	18.9	24.5	18.6	19.3	8.7	20.9	15.8	30.6	14,4	16.5	7.2
6	14.6	10.8	13.1	12.2	55.1	11.5	14.4	11.2	11.7	10.8	54.0	11.5
_	30.7	21.1	17.9	22.2	50.6	10.7	30.6	17.8	25.8	16.9	50.7	9.4
an	25.6	22.2	22.4	179	767	ē						

Confidential

Shear wall deformation of 6-storey building in N-S direction (without GWB), (mm) Table C.5.8

						Drair	1-3D					
No.			Wal	1 19					Wal	I 25		
	stl	st2	st3	st4	st5	st6	stI	st2	st3	st4	st5	st6
1	16.8	13.3	10.3	12.0	19.1	8.3	17.4	14.3	11.5	13.2	20.4	9.7
2	13.7	10.0	7.4	11.1	27.0	13.7	14.1	10.6	7.9	12.7	28.6	15.4
3	25.4	15.7	10.2	18.9	27.8	13.6	25.7	16.4	11.2	20.9	30.1	16.1
4	19.4	13.3	10.1	11.4	20.6	9.0	19.7	14.2	11.2	12.9	22.1	10.9
5	15.1	12.4	10.2	13.2	14.0	6.3	15.4	13.1	11.4	15.1	16.3	7.6
6	17.2	13.4	11.8	17.9	18.1	9.7	17.7	14.3	13.2	20.3	21.4	12.5
7	20.3	11.5	10.2	15.4	19.5	7.1	20.8	12.4	11.1	16.7	21.1	8.4
∞	25.1	14.5	14.4	25.1	26.9	14.0	25.5	15.8	16.3	27.5	30.1	17.2
6	23.8	15.4	14.9	19.5	14.4	6.5	24.7	16.9	16.9	21.7	16.5	8.4
10	17.7	13.9	11.7	21.7	26.5	13.1	18.1	14.7	12.9	25.1	29.8	16.8
11	21.8	12.8	10.5	19.5	19.0	6.5	22.3	13.6	11.6	21.0	20.6	7.8
12	14.7	13.1	9.2	9.9	14.1	11.8	14.9	13.4	9.6	10.6	15.2	13.1
13	22.7	16.5	13.8	18.4	17.3	7.3	24.1	17.8	16.6	21.7	19.5	9.6
14	23.5	16.9	15.2	22.2	23.1	9.1	24.0	17.9	16.8	24.1	25.1	10.7
15	14.7	11.0	9.4	18.5	24.5	13.6	15.2	11.5	10.3	20.5	27.1	16.5
16	16.7	14.2	13.8	20.2	16.7	7.6	17.3	15.7	15.8	22.5	19.0	9.3
17	17.5	14.0	11.4	22.6	29.0	18.5	18.0	14.7	12.7	26.2	33.4	23.4
18	21.9	13.9	10.6	12.1	14.9	6.8	22.4	14.6	11.4	13.8	16.8	7.6
19	14.4	10.5	8.4	8.6	33.7	30.3	14.7	10.7	8.7	9.6	35.9	32.4
20	34.2	18.4	10.1	12.3	40.0	31.9	34.7	19.2	10.7	13.9	42.6	34.6
Mean	19.8	13.7	11.2	16.5	22.3	12.2	20.3	14.6	12.4	18.5	24.6	14.4

Confidential

© 2009 FPInnovations - Forintek Division. All rights reserved.
Confidential

C.6 Maximum uplift forces and deformations

Maximum uplift forces of 4-storey building in E-W direction (with GWB), (kN) Table C.6.1

		ct 1	110	202	9.5	11.0	6.1	7.1	4.0	9.2	5.8	65	12.6	17 5	5 4		10 0	57	66	101	10.1	10.0	8.3
	hod B	ef3	14.8	171	23.7	24.3	13.8	16.3	6.6	20.8	14.0	13.9	22.4	22.2	113	174	000	13.7	13.5	10.7	25.1	215	17.7
	all 4- met	ct 2	010	323	37.8	37.4	23.7	23.6	18.6	34.7	25.8	25.7	30.4	34.8	22.1	28.3	33.1	211	24.2	7.7	37.0	33.0	28.4
put	M	ct 1	10.8	30.0	33.3	35.2	22.8	25.3	21.4	30.7	22.5	21.8	33.1	32.9	22.8	37.8	32.7	23.2	30.1	26.8	32.2	353	28.9
SAPW		ct4	6.8	73	11.4	13.3	10.9	9.8	7.9	17.6	6.7	10.0	9.6	19.2	81	12.0	11.3	10.0	12.5	12.2	144	104	11.1
	ethod A	st3	20.1	19.6	26.4	29.1	18.3	21.1	16.2	23.5	16.0	18.5	26.9	36.7	15.3	18.9	23.1	20.1	23.5	24.6	28.4	19.7	22.3
	Vall 4 - m	st2	26.5	28.7	34.6	35.9	26.3	27.5	17.7	28.4	20.5	25.5	37.8	46.8	24.2	26.5	35.3	23.6	25.1	23.6	37.3	26.9	28.9
	Δ	st1	50.4	59.3	63.5	64.1	45.1	53.2	26.1	55.1	45.9	54.1	75.7	80.6	45.4	58.3	61.5	44.6	43.3	40.2	52.8	55.6	53.7
		st4	0	0.3	1.1	3.0	0.4	0	0	2.4	0	0	0.1	1.9	0	1.5	0	44.0	0	1.1	1.3	3.8	5.1
	14	st3	9.4	11.3	8.3	13.5	8.7	0	6.4	14.6	4.0	9.6	11.4	12.2	5.9	10.7	7.9	20.2	3.2	11.4	12.0	17.9	10.4
	Wal	55 25	30.8	32.9	14.0	27.3	16.6	17.0	32.2	39.2	22.2	23.2	32.7	31.9	24.0	8.5	25.8	44.0	21.1	31.2	33.0	42.1	27.5
1-3D		st1	59.8	63.2	36.3	36.8	32.9	36.7	66.4	62.7	43.5	37.0	62.2	58.1	45.2	25.5	49.4	20.2	48.3	52.6	61.7	70.6	48.4
Draii		st4	0.0	0.2	1.1	2.2	0.3	0.0	0.0	1.9	0.0	0.0	0.1	1.6	0.0	1.1	0.0	33.9	0.0	0.8	6.0	2.6	2.3
	ll 8	st3	8.2	8.0	7.3	12.1	7.1	0.0	4.7	10.5	3.3	7.3	8.1	10.8	4.7	9.2	7.1	18.3	2.8	8.0	8.3	12.1	7.9
	Wa	st2	20.8	22.3	11.6	22.4	15.8	12.4	20.9	26.5	16.5	18.5	28.1	25.0	17.2	8.7	18.6	36.6	15.1	21.1	21.8	27.8	20.4
		stl	39.0	49.3	29.4	30.6	32.3	27.9	42.9	50.7	37.3	36.2	51.3	46.0	32.1	23.2	36.5	15.1	33.1	36.5	40.8	46.0	36.8
	No.		-	7	ю	4	S	ı ا م		»	6	01	11	12	13	14	15	16	17	18	19	20	Mean

© 2009 FPInnovations - Forintek Division. All rights reserved.

Appendix C – 29

F Plunovations FORINTEK

Confidential

vith GWB), (kN)
ling in N-S direction (
rces of 4-storey build
Maximum uplift fo
Table C.6.2

	—							-								-						-	-
		st4	14.1	86	15.6	13.6	10.7	15.0	4.9	13.0	7.7	10.4	14.3	17.6	12.9	14.7	13.3	12.4	13.2	13.6	15.0	14.4	12.0
	nethod B	st3	26.5	24.2	29.1	27.5	23.2	24.6	11.6	25.8	21.1	23.6	27.7	28.3	24.0	23.5	28.8	23.4	24,0	25.6	26.7	26.5	946
	Vall 25 - r	st2	37.6	36.0	39.2	37.9	33.7	33.2	14.9	36.4	31.7	33.5	37.2	36.4	34.1	36.8	38.6	32.5	36.2	33.6	34.3	37.3	345
Vood		stI	34.9	40.3	39.4	38.5	32.7	31.7	213	33.6	35.9	32.7	39.5	38.9	33.3	40.9	42.1	31.0	32.8	33.5	31.6	38.6	25.7
SAPV		st4	4.0	5.9	4.8	6.3	5.0	5.0	3.3	8.2	3.2	4.8	5.1	7.4	4.1	5.8	6.3	4.3	5.5	5.5	5.8	7.2	5 4
	method A	st3	63	7.6	7.5	8.6	8.0	6.4	5.9	11.7	5.9	8.4	8.0	13.8	5.1	8.0	13.4	7.1	10.4	10.8	8.5	9.2	85
	Vall 25 - 1	st2	5.7	8.3	7.5	6.8	7.1	7.1	6.7	6.7	7.4	0.6	10.4	12.4	6.9	8.0	11.1	7.7	11.5	9.4	83	10.0	85
	Δ	stl	0.6	15.8	16.2	12.2	13.0	15.0	8.6	16.0	15.7	13.9	22.2	18.4	14.8	14.6	19.2	15.3	20.8	14.2	15.5	17.3	15.4
		st4	11.1	16.2	15.1	14.0	11.7	11.6	14.2	14.8	8.7	13.7	12.7	17.7	7.3	16.9	10.6	8.6	6.5	16.7	20.0	17.9	13.3
	25	st3	30.7	33.5	35.0	32.7	32.7	32.4	34.1	37.0	28.4	34.1	33.5	39.5	23.1	23.1	31.9	21.0	22.2	32.7	42.4	36.9	31.8
	Wall	st2	58.7	58.7	57.6	53.7	58.7	58.7	58.7	58.7	56.5	58.7	58.8	58.7	41.3	38.2	58.7	38.1	49.3	53.6	58.7	58.7	54.7
-3D		stI	97.5	90.9	74.3	75.2	88.7	98.4	101.2	84.5	89.8	93.5	103.0	89.4	69.0	62.5	94.4	69.1	79.8	75.7	78.2	99.0	85.7
Drain		st4	6.9	13.4	14.2	13.8	10.6	6.6	10.4	13.0	4.5	9.8	6.4	15.2	6.6	18.6	6.7	8.2	5.6	17.2	19.3	13.9	11.0
	19	st3	29.5	34.4	38.7	36.9	34.9	30.6	32.8	40.3	27.7	34.2	31.5	41.6	23.9	24.4	32.7	21.7	22.3	36.6	46.8	36.6	32.9
	Wall	st2	58.8	58.7	58.7	58.7	58.7	58.8	58.8	58.7	58.7	58.7	58.8	58.7	44.6	41.8	58.7	41.1	53.1	58.7	58.7	58.8	56.0
		stI	110.8	106.2	84.9	87.2	102.2	110.4	114.5	96.3	104.3	108.7	115.1	102.4	79.1	72.1	106.5	7.67	91.2	86.6	89.2	114.9	98.1
	No.			5	3	4	S	9	~	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean
			- 1		- ([

Appendix C – 30

FPInnovations FORINTEK

Final BSPB Report
Seismic Performance of 6-Storey Wood-Frame Buildings
Project No. 6482

Confidential

Table C.6.3Maximum uplift deformation of 4-storey building in E-W direction (with GWB), (mm)

_			,							-	-		_	-	_	_	-				1	-	-
		st4	0.44	0.41	0.66	0.76	0.42	0.49	0.27	0.64	0.40	0.45	0.87	0.87	0.37	0.55	0.76	0.40	0.46	0.70	0.86	0.71	0.57
	ethod B	st3	1.03	1.19	1.64	1.68	0.96	1.13	0.46	1.44	0.97	0.97	1.55	1 54	0.79	121	1.45	0.95	0.94	1.37	1 74	1 49	1.22
	Wall 4- m	st2	1.52	2.24	2.62	2.59	1.65	1.64	1.29	2.40	1.79	1.78	2.11	2.41	1.53	1.96	2.30	1.46	1.67	1.57	2.56	2.35	1.97
/ood		st1	0.70	1.38	1.18	1.24	0.81	0.89	0.76	1.09	0.80	0.77	1.17	1.16	0.81	1.34	1.16	0.82	1.06	0.95	1.14	1.25	1.02
SAPW		st4	0.47	0.51	0.79	0.92	0.76	0.68	0.55	1.22	0.46	0.69	0.66	1.33	0.56	0.83	0.78	69.0	0.86	0.84	66.0	0.72	0.77
	lethod A	st3	1.39	1.36	1.83	2.02	1.27	I.46	1.12	1.63	1.11	1.28	1.86	2.55	1.06	1.31	1.60	1.40	1.63	1.71	1.97	1.36	1.55
	Vall 4 - m	st2	1.84	1.99	2.40	2.49	1.82	1.91	1.22	1.97	1.42	1.76	2.62	3.24	1.68	1.84	2.44	1.64	1.74	1.64	2.58	1.86	2.01
		stl	1.78	2.10	2.24	2.27	1.60	1.88	0.92	1.95	1.62	1.91	2.68	2.85	1.60	2.06	2.17	1.58	1.53	1.42	1.87	1.97	1.90
		st4	0	0.01	0.10	0.20	0.03	0	0	0.14	0	0	0	0.13	0	0.11	0	0	0	0.07	0.07	0.25	0.11
	14	st3	0.62	0.76	0.59	0.92	0.61	0	0.44	0.97	0.27	0.65	0.77	0.83	0.38	0.74	0.56	0.19	0.21	0.76	0.80	1.21	0.65
, 1	Wal	st2	2.07	2.22	0.92	1.81	1.08	1.12	2.22	2.63	1.48	1.51	2.21	2.13	1.62	0.51	1.70	1.22	1.40	2.09	2.21	2.84	1.75
-3D		stl	2.10	2.22	1.27	1.29	1.15	1.28	2.35	2.20	1.52	1.28	2.19	2.03	1.59	0.07	1.73	1.32	1.69	1.84	2.15	2.48	1.69
Drain		st4	0.00	0.01	0.09	0.13	0.02	0.00	0.00	0.11	0.00	0.00	0.00	0.10	0.00	0.08	0.00	0.00	0.00	0.05	0.05	0.15	0.04
	18	st3	0.50	0.49	0.48	0.78	0.48	0.00	0.30	0.64	0.21	0.47	0.50	0.69	0.29	0.63	0.47	0.16	0.17	0.50	0.51	0.74	0.45
	Wal	сıs	1.26	1.35	0.70	1.38	1.04	0.76	1.29	1.55	1.07	1.12	1.77	1.49	1.04	0.52	1.14	0.98	0.95	1.28	1.47	1.64	1.19
		st1	1.40	1.78	1.03	1.16	1.14	1.06	1.53	1.79	1.30	1.24	1.71	1.61	1.12	0.06	1.27	1.00	1.17	1.28	1.50	1.63	1.29
L	No.		-	64	ω.	4	5	9	-	~	6	2	11	12	13	4	15	16	17	18	19	50	Mean

© 2009 FPInnovations - Forintek Division. All rights reserved.

Appendix C - 31

FPInnovations

Maximum uplift deformation of 4-storey building in N-S direction (with GWB), (mm) Table C.6.4

Confidential

	Ţ	T		1	Т	i		Т	Т		Т		T	Т	-T-		Т	Τ	Т	1	Т	1	
		ct4	0.08	0.68	1 08	0.94	0.74	1.04	0.34	0.90	0.54	0.72	66.0	1 23	0.00		0.00	0.86	0 92	0.94	1.04	000	
	nethod E	st3	1 84	1.68	2.02	1 90	1.61	1.70	0.81	1.79	1,46	1.64	1.92	961	166	163	00 1	162	1.67	1.78	1.85	1 83	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Vall 25 - 1	st2	2.61	2.50	2.72	2.63	2.33	2.30	1.03	2.52	2.20	2.32	2.58	2.53	2.36	2.55	2.68	2.25	2.51	2.33	2.38	2.58	
/ood		st1	1.23	1.42	1.39	1.36	1.15	1.12	0.75	I.19	1.27	1.16	1.40	1.38	1.18	1.45	1.49	1.10	1.16	1.18	1.12	1.36	
SAPW		st4	0.28	0.41	0.33	0.44	0.35	0.34	0.23	0.57	0.22	0.33	0.36	0.51	0.28	0.40	0.44	0.30	0.38	0.38	0.40	0.50	
	nethod A	st3	0.44	0.53	0.52	0.59	0.55	0.44	0.41	0.81	0.41	0.58	0.55	0.96	0.36	0.56	0.93	0.49	0.72	0.75	0.59	0.64	
	Vall 25 - 1	st2	0.39	0.57	0.52	0.47	0.49	0.49	0.47	0.67	0.51	0.62	0.72	0.86	0.48	0.55	0.77	0.54	0.80	0.65	0.58	0.69	
	Δ	st1	0.32	0.56	0.57	0.43	0.46	0.53	0.31	0.57	0.56	0.49	0.79	0.65	0.52	0.51	0.68	0.54	0.74	0.50	0.55	0.61	
		st4	0.77	1.13	1.05	0.97	0.81	0.81	0.99	1.03	09.0	0.95	0.88	1.23	0.50	1.17	0.74	0.60	0.45	1.16	1.39	1.25	
	125	st3	2.13	2.33	2.44	2.27	2.27	2.25	2.37	2.57	1.97	2.37	2.33	2.75	1.60	1.61	2.22	1.46	1.54	2.27	2.94	2.56	
	Wal	st2	5.53	4.67	4.00	3.73	4.31	5.81	7.32	5.13	3.92	4.53	7.54	5.36	2.87	2.65	5.12	2.65	3.43	3.73	4.53	6.59	
-3D		stl	3.46	3.22	2.64	2.67	3.15	3.49	3.59	3.00	3.18	3.32	3.65	3.17	2.45	2.22	3.35	2.45	2.83	2.68	2.77	3.51	
Drain		st4	0.48	0.93	0.98	0.96	0.74	0.46	0.72	16.0	0.31	0.68	0.44	1.06	0.46	1.29	0.47	0.57	0.39	1.19	1.34	0.97	
	19	st3	2.05	2.39	2.69	2.57	2.43	2.12	2.28	2.80	1.93	2.37	2.19	2.89	1.66	1.69	2.27	1.51	1.55	2.55	3.25	2.54	
	Wall	st2	8.27	6.91	4.94	4.58	5.88	8.88	10.29	6.55	5.51	7.23	10.78	7.46	3.10	2.90	7.33	2.86	3.69	4.29	5.84	9.64	
		st1	3.93	3.77	3.01	3.09	3.62	3.91	4.06	3.42	3.70	3.85	4.39	3.63	2.81	2.56	3.77	2.82	3.23	3.07	3.16	4.07	
	No.			5	ы	4	s	6	7	~	6	10	11	12	13	14	15	16	17	18	19	20	

© 2009 FPInnovations - Forintek Division. All rights reserved.

F Pannovations

Appendix C - 32

Confidential

Maximum uplift forces of 6-storey building in E-W direction (with GWB), (kN) Table C.6.5

	1	1	1		T	Т	Υ_	T		Т	L	1	T	1	Т	Г	Г		Т	T	Τ.	Т	[]
		st6	83	5.6	84	86	73	7.0	3.8	7.0	5.7	5.6	5.6	9.6	8.5	8.2	9.4	7.4	6.5	69	8	010	7.3
	B	st5	18.2	17.2	21.7	18.9	14.8	15.7	8.2	17.1	12.9	9.4	13.7	20.1	16.6	15.8	21.1	12.7	12.1	14.8	20.2	20.2	16.1
	nethod	st4	32.4	31.3	34.5	32.6	22.1	22.7	15.5	29.5	22.0	17.7	25.3	29.7	22.2	23.6	26.9	20.1	22.1	24.8	32.1	30.1	25.9
	ull 4- n	st3	35.6	38.0	35.1	33.2	28.4	28.1	21.5	28.0	27.5	21.6	29.6	33.6	24.9	34.5	35.0	26.5	24.1	27.1	27.3	35.1	30.0
	Wa	st2	40.8	46.6	41.9	43.5	35.3	34.1	32.0	35.5	35.3	28.4	38.5	44.3	31.0	44.9	46.9	32.1	31.4	31.9	37.9	39.1	37.6
poo		stl	37.2	46.0	44.8	40.5	33.5	34.0	30.9	31.7	37.5	33.0	38.8	42.8	33.0	52.9	45.1	29.9	31.5	29.2	30.8	37.8	37.1
APW		st6	2.6	8.9	0.2	4.3	9.7	6.11	6.7	15.1	10.2	8.8	10.6	16.4	13.5	14.4	4.2	12.1	12.0	6.1	20.1	11.9	12.3
S	-	st5	5.6	6.1	4.8	1.6	2.9	4.2	3.5	1.3	26.5	7.8	6.4	3.1	5.2	5.6	7.0	26.5	6.13	3.0	6.08	3.4	25.0
	thod /	st4	7.9 2	3.9	6.0	2.2	5.6 2	7.2 2	7.7	5.3 3	0.7 2	9.2 1	3.4	9.6	2.1 2	5.2	5.6 2	0.0	6.6	0.1	6.6	07 2	6.4
	4 - me	t3 1	5.4 3	5.8 2	7.0 4	2.4 4	1.0 3	6.4 3	5.2 1	5.0 3	5.2 4	8.8	9.0 4	5.8 3	2.7 4	9.3 4	5.3 4	6.1 3	1.5 3	5.3 3	3.3 3	8.6 3	7.5 3
	Wall 4	27 S	5.0 5	.0 4	0.0	6.9		5.5 6	5.4 2	3.9 5	.9 6.	2.6 4	0.6	7.1 5	7 4 7	1.7 6	.4 6	1.1 4	2.4 6	.1	3.3 6	5.6 4	8.1 5
		1 S	7 56	8 50	.3 82	8 55	7 51	2 66	0 2(9 58	.7 70	0 52	.4 67	1 57	5 77	17 6.3	.5 65	4	.6 62	4	0.00	6 45	0 58
		st	94.	77	137	97.	84	112	46.	89	122	6	Ξ	92.	126	112	107	78.	104	62.	81	68,	95.
		st6	1.6	3.0	22	0.4	0	0.1	0.0	3.5	0	0	0.8	0.5	0	0.4	0.5	0.1	0	1.9	5.7	2.5	1.5
		st5	11.3	14.8	14.6	11.4	4.9	11.1	11.1	17.8	8.5	6.9	13.1	12.3	5.6	8.5	12.7	10.7	2.1	14.1	20.3	14.7	11.3
	4	st4	29.4	35.2	31.8	30.6	16.5	32.1	34.2	41.4	30.4	28.4	36.6	29.0	21.6	14.7	35.0	27.2	16.3	27.1	40.3	40.2	29.9
	Wa	st3	57.5	62.9	49.3	50.5	38.1	57.6	65.1	68.6	57.1	53.5	67.9	48.6	40.4	35.3	61.5	48.1	33.6	51.6	58.4	71.4	53.8
		St2	94.2	87.1	67.3	69.4	71.6	91.3	102.4	92.7	92.6	86.3	101.5	64.5	60.7	57.6	97.2	74.4	54.9	80.9	67.0	100.9	80.7
-3D		stl	134.0	114.1	84.2	104.8	108.3	126.4	140.7	113.3	126.0	121.2	137.2	80.0	88.3	86.2	134.3	101.3	90.1	108.9	87.2	132.9	111.0
Drain		st6	1.3	2.2	4.2	0.3	0.0	0.0	0:0	2.3	0.0	0.0	0.6	0.4	0.0	0.3	0.4	0.0	0.0	1.5	3.7	1.5	6.0
		ŝŝ	8.7	9.9	10.0	9.3	4.5	8.9	7.4	11.1	6.6	5.0	8.9	8.9	4.6	7.5	8.2	8.5	1.7	12.3	13.1	8.1	8.2
	~	5	22.3	22.0	25.4	24.6	13.7	22.7	22.2	26.2	24.0	20.8	23.2	23.4	18.0	12.5	22.0	21.7	12.5	20.3	26.3	24.7	21.4
	Wall	st3	46.9	42.5	40.9	41.8	32.2	44.5	4.4	47.1	45.9	36.4	46.2	39.2	35.4	30.1	42.1	41.5	27.1	41.2	49.6	47.3	41.1
		55 Cl	53.8	59.2	49.2	58.3	60.1	56.8	63.6	62.0	73.0	66.8	73.7	52.8	51.7	1 6.6	55.3	58.2	40.8	63.9	54.1	57.3	58.3
		stI	77.1	03.5	72.9	78.6	96.0	88.7	30.8	50.2	09.4	06.3 (22.8	59.7	80.2	73.9	0.1	89.3	<u>\$0.0 </u>	70.8	75.0	97.3 (38.1
	ġ Ż	-		2	с 1	4	ري. 1	0	-	~	6	10	=	12	13	14	15	16	17	18	19	20	Mean

Appendix C - 33

Confidential

Table C.6.6Maximum uplift forces of 6-storey building in N-S direction (with GWB), (kN)

_	Γ	<u>ي</u>	c.	4	0.8	1.7	2.5	9.6	5	8.8	3.6	ŋ	4.8	5.3	6.9	5:	53	4.6	8.0	2.2	6,4	7.4	3.5
		S s	6 0:	5	<u> </u>	<u>-1</u>	4 12	6.	5 4	512	7	(U) (0)	1	11	2 16	7 12	2 1	4 12	0.1	1	- <u>1</u> -2) -	ς. 1
	nod B	st	5 26	5 25	0 31	0 27	9 24	1 25	1 13	1 26	6 25	8 18	8 25	3 26	8 28	1 23	2 29	4 25	3 25	5 24	0 26	0 28	4 25
	- metl	St4	41	40	40.	38.	29	35.	20.	35.	1 35.	25.	32.	37.	36	F 38.	40.	36.	7 38.	29.	37.	\$ 40.	5 35.
	all 25	SC SC	48.C	50.6	50.0	47.7	42.0	40.9	29.2	40.2	41.4	35.5	40.5	44.0	45.2	47.4	50.3	45.8	43.7	35.9	42.(49.8	43.6
	W:	St2	40.6	54.2	56.4	51.4	47.6	49.8	33.4	44.0	51.8	41.7	50.9	52.7	51.6	55.4	51.2	46.6	50.4	39.3	46.9	52.3	48.4
Wood		stl	35.1	52.0	62.0	52.4	41.0	51.3	37.6	48.6	54.4	42.8	47.5	54.7	53.4	65.9	56.8	47.1	51.8	40.3	50.5	60.0	50.3
SAP		st6	5.0	4.2	43	4.2	4.4	3.7	2.9	5.5	4.2		5.4	5.0	3.6	5.1	4.8	4.8	3.8	5.3	6.7	4.5	4.5
	1 A	st5	7.2	7.8	7.3	0.6	8.7	6.7	5.3	10.8	7.9	7.7	11.9	6.6	7.5	6.6	9.5	8.1	7.0	9.6	8.4	8.1	8.2
	nethoc	st4	9.8	12.9	0.6	9.8	12.9	9.1	7.6	14.0	9.8	9.8	17.0	12.0	11.8	10.4	14.3	9.7	11.5	13.1	11.2	11.3	11.4
	25 - n	st3	13.3	22.9	15.2	13.7	18.6	14.0	11.2	21.3	13.1	12.9	27.0	14.6	19.7	14.9	19.4	14.0	20.4	17.6	14.1	17.7	16.8
	Wall	st2	8.5	35.5	24.3	3.4	7.62	26.5	12.0	9.1.9	22.5	21.8	t0.2	23.1	30.1	23.4	29.6	22.1	33.5	26.7	23.0	29.3	26.6
		stl	9.6	1.9	6.6	9.3	1.0	9.3 2	6.5	0.0	9.2	5.5	0.6 4	24.6	3.4	7.3 2	1.7	24.5	5.6	2.7.6	2.8	27.9	.8.9
_		st6	9.6	0.5 3	8.2 2	9.1 2	2.0 3	5.5 2	1.2 1	1.3 3	2.4 2	9.8 2	9.7 4	3.3 2	S.2 3	7.1 2	4.4 3	0.1 2	3.1 2	2.3	9.0	6.0 2	1.0
		t5	6.3	3.3 1	0.9	2.0 1	6.0 1	8.7 (4.2 1	4.8 1	6.8	9.7	3.2	0.3 1	7.3	6.3 1	9.1	2.8 1	4.2]	2.1 1	1.4 1	1.9 1	2.1 1
	10	t4 s	3.3 2	3.7 3.	2.3 3(3.7 4:	3.8 3	8.7 2	3.7 3	3.7 3.	.6 1	3.7 2	3.7 3	3.2 3	8.7 2	7.1 3	5.1 1	8.7 3	8.8 3	8.7 3	5.8 4	8.8 4	4.8 3
	/all 24	3	4 48	.7 58	.5 52	.2 58	3.2 58	1.9 58	.0 58	.4 58	4 40	0 58	.4 58	4 4	3.6 58	8.4	7 4	5.2 58	2.4 58	3.1 58	.7 5:	7 51	5
	5	st	9 72	2 76	5 67	98 6.	5 1 13	.8 101	.5 80	.4 78	0 79	.5 98	.3 88	9 54	3 10	.9 72	.0 74	.2 105	.8 10	.7 10	4 60	5 87	.7 85
		st2	4 119	88.	7 78.	1 113	3 152	3 151	9 105	1 103	3 135	0 134	4 114	3 64.	3 158	1 107	6110	3 153	7 137	3 142	8 55.	3 91.	9115
n-3D		st1	177.	92.0	109.	162.	190.	190.	140.	137.	190.	175.	145.	97.5	190.	143.	157.	190.	179	183.	42.	83	148
Drai		st6	8.3	9.6	6.0	19.0	3.5	1.7	9.5	10.6	0.1	6.0	6.5	14.8	0.2	16.1	1.3	2.7	7.8	9.5	19.0	15.5	8.4
		st5	26.2	35.9	33.6	47.1	32.1	22.8	37.1	37.9	15.4	27.9	35.0	33.5	19.2	39.5	18.5	29.7	31.4	29.9	46.7	45.0	32.2
	19	st4	49.4	58.7	55.8	58.8	58.8	58.6	58.7	58.7	39.1	58.7	58.7	45.6	57.3	52.6	45.3	58.7	58.8	58.7	58.7	58.8	55.4
	Wall	st3	74.9	82.2	71.8	92.7	14.4	99.5	82.8	83.0	74.2	104.6	93.7	58.4	100.8	78.7	77.4	104.5	107.3	107.4	65.8	94.0	88.4
		ដ្ដ	26.1	4.4	3.6	22.0	52.9	54.5	11.6	10.8	36.5	45.4	22.7	1.2	59.7	15.4	16.6	51.6	45.6	49.9	59.5	98.0	21.4
		<u></u>	0.3 L	9.9	5.5 8	2.9 1.	0.3 1.	0.3 1	8.9 1	6.4 1	0.3 1.	0.2 1	2.5 1.	0.5 7	0.3 1	8.9 1	7.6 1	0.3 1	0.3 1	0.3 1	7.8	9.5	9.1 1
		य	19	96	2	18	19	19	15	15	19	5	16	H	91	4 15	5 17	5 19	7 19	8 19	4	ši o	an 15
	ž			2	ŝ	4	S	9	-	~	6	Ξ	-	7	Ч	-	-	Ξ	÷.	-	7	ล	Я

le Buildings	
srey Wood-Fram	
sport mance of 6-Sto	82
Final BSPB Re Seismic Perfor	Project No. 64

Table C.6.7Maximum uplift deformation of 6-storey building in E-W direction (with GWB), (mm)

Confidential

_							_		_	_			_							_	-		
		st6	0.58	0.30	0.58	0 40	0.51	0.49	0.77	0 40	0.30		0.20	7 7 V	2020	22.0	10.0	0.51	0.45	010	0 4 7	0.63	0.51
	 	st5	1 26	011	151	1.21	ς Ε	0	0.57	1 10	0 8 0	0.65	200	1 20	115		1 46	0.88	20.24	1 02	1 40	14	1.11
	lethod	st4	2.25	217	2 30	2.00	1 5.3	1.57	1 02	205	1 53	3 2	176	206	154	519	1 84	140	22	132	1.14	100	1.79
	11 4 m	st3	1 26	134	124	~	101	66.0	0.76	0 00	0.07	0.76	1 05	1 10	0 80	200	1 24	0 04	0.85	200	1 14	1 24	1.06
Î	Wa	tr La	44	1.65	4	154	1 25	1.21	13	1 25	1 25		98.1	2			19	113		113	72.1	38	1.33
poo'		st1	0.80	98.0	96.0	0.87	0.72	0.73	0.66	0.68	080	12.0	0 83	600	120	113	80	0.64	190	50	1990	200	0.79
SAPW		st6	.87 (0.62 (17.0	66	167 (0.82	.46	05	11	19	74	14	10	18	66	84	8	200	40	83	0.85
	A	st5	78 (.12 (67	000	59 (.68	94 (17	84	23	83	30.5	75	2	87	84 (52	50	14	60	.73
	ethod .	st4	.62	.66	[6[]	63	47	.58	33	45	82	8	8	7	38		19	08	54	ĕ	76	13	.53
	4 - m	st3	96.	.62	.72	12	80	.35	1 68.	-95	31	72 2	44	6	57	4		63	18	99	24	72	.03
	Wall	5 <u>7</u>	1 86.	77 1	90	98 2	82 1	.35 2	.93 0	.08	51 2	86 1	37 2	10	74 2	53	31	56 1	212	42	6	19	.05 2
		3t]	.03 1	.67 1	94 2	60	.81 1	64	0 86.	92 2	.62 2	1 26.	38	97 2	71 2	41	30 2	.68 1	24 2	33	73 2	47 1	.03 2
-		tç 12	11 2	21 1	16 2	02 02	0	00 2	00	24 1	0	-	06 2	03 1	0	03 2	40	00	0	13 1	39 1	18	11 2
		S S	78 0.	03 0.	0.0	79 0.	34	77 0.	77 0.	23 0.	59	8	0.	<u>86 0.</u>	68	0.0	38	74 0	4	0.0	11 0.	0.0	79 0.
		4 st	14 0.	1.(1.	2 0.	5 0.3	3 0.7	8 0.		1 0.4	0.7	5 0.0	2 0.5	0 0	0.5	3.0.5	0.6	3 0.]	800	1	9 1.(8 0.
	Vall 4	st	4 2.0	3 2.4	5 2.2	9 2.1	5 1.1	4 2.2	1 2.3	3 2.8	2 2.1	0 1.9	1 2.5	2 2.0	3 1.5	S 1.0	8 2.4	1 1.8	9 1.1	3.1.8	2.8	3 2.7	1 2.0
		£	1 2.0	2.2	1.7	1.7	1.3	1 2.0	2.3	2.4	2.0	9.1	2.4	1-	14	2	2.1	1.7	1.1	1.8	2.0	2.5	1.9
		£	3.34	3.05	2.39	2.46	2.54	3.24	3.63	3.25	3.28	3.06	3.60	2.29	2.15	2.04	3.45	2.64	1.94	2.87	2.38	3.58	2.86
n-3D		£	2.87	2.45	1.81	2.25	2.32	2.71	3.02	2.43	2.70	2.60	2.94	1.72	1.89	1.85	2.88	2.17	1.93	2.34	1.87	2.85	2.38
Drai		st6	0.09	0.15	0.29	0.02	0.00	0.00	0.00	0.16	0.00	00.0	0.04	0.02	0.00	0.02	0.02	0.00	0.00	0.11	0.26	0.10	0.06
		ŝťŚ	0.61	0.69	0.70	0.64	0.31	0.62	0.51	0.77	0.46	0.35	0.62	0.62	0.32	0.52	0.57	0.59	0.12	0.86	0.91	0.56	0.57
	8	st4	1.55	1.53	1.77	1.71	0.95	1.58	1.54	1.82	1.67	1.45	1.61	1.63	1.25	0.87	1.53	1.51	0.87	1,41	1.83	1.72	1.49
	Wal	г у С	1.66	1.51	1.45	1.48	1.14	1.58	1.58	1.67	1.63	1.29	1.64	1.39	1.26	1.07	1.49	1.47	0.96	1.46	1.76	1.68	1.46
	ľ	<u>t</u> i	1.91	2.10	1.75	2.07	2.13	2.01	2.25	2.20	2.59	2.37	2.61	1.87	1.83	1.65	1.96	2.06	1.45	2.26	1.92	2.39	2.07
	ļ	st1	1.65	2.22	1.56	1.69	2.06	1.90	2.81	1.08	2.35	2.28	2.63	1.50	1.72	1.59	1.93	1.92	1.72	1.52	1.61	2.09	1.89
l.	Š.	\uparrow	-	5	с С	4	2	9	~	~	6	10	=	12	13	14	15	16	17	18	19	50	Acan

© 2009 FPInnovations - Forintek Division. All rights reserved.

FPInnovations

Appendix C – 35

Confidential

Table C.6.8Maximum uplift deformation of 6-storey building in N-S direction (with GWB), (mm)

		st6	0.64	0.65	1.25	1.02	0.87	1.08	0.32	0.89	0.94	0.57	0.93	1.13	1.17	0.99	1.06	1.01	1.09	0.84	1.03	1.20	0.93
	В	st5	1.80 (1.74 (2.15	1.93	1.69 (1.79	0.92	1.84	1.78	1.27	1.78	1.81	1.95	1.65	2.02	1.76	1.74	1.67	1.85	1.95	1.75
	nethod	st4	2.88	2.81	2.77	2.63	2.07	2.43	1.39	2.44	2.46	1.79	2.27	2.58	2.55	2.64	2.79	2.53	2.65	2.05	2.57	2.77	2.45
	25 - n	st3	1.70	1.79	1.77	1.69	1.48	1.45	1.03	1.42	1.46	1.26	1.43	1.59	1.60	1.67	1.78	1.62	1.55	1.27	1.48	1.76	1.54
	Wal	<u>s</u> t2	0.87	1.16	1.21	1.10	1.02	1.06	0.71	0.94	1.11	0.89	1.09	1.13	1.10	1.19	1.09	1.00	1.08	0.84	1.00	1.12	1.04
Vood		st1	0.75	1.11	1.33	1.12	0.88	1.10	0.80	1.04	1.16	16.0	1.02	1.17	I.14	1.41	1.22	1.01	1.11	0.86	1.08	1.28	1.08
SAPV		st6	0.34	0.29	0.30	0.29	0.30	0.26	0.20	0.38	0.29	0.23	0.38	0.34	0.25	0.35	0.33	0.34	0.26	0.37	0.47	0.31	0.31
	ЧA	st5	0.50	0.54	0.50	0.63	0.60	0.46	0.37	0.75	0.55	0.53	0.83	0.69	0.52	0.46	0.66	0.56	0.49	0.67	0.58	0.56	0.57
	metho	st4	0.68	0.89	0.62	0.68	06.0	0.63	0.53	0.97	0.68	0.68	1.18	0.83	0.82	0.72	0.99	0.67	0.80	16.0	0.78	0.78	0.79
	ll 25 -	st3	0.47	0.81	0.54	0.48	0.66	0.50	0.40	0.75	0.46	0.46	0.95	0.52	0.70	0.53	69.0	0.50	0.72	0.62	0.50	0.63	0.59
	Wal	st2	0.39	0.76	0.52	0.50	0.64	0.57	0.36	0.68	0.48	0.47	0.86	0.49	0.64	0.50	0.63	0.47	0.72	0.57	0.49	0.63	0.57
		stl	0.42	0.81	0.64	0.63	0.66	0.63	0.35	0.64	0.63	0.54	0.87	0.53	0.71	0.58	0.68	0.52	0.80	0.64	0.49	09.0	0.62
		st6	0.66	0.73	0.57	1.33	0.83	0.45	0.78	0.78	0.16	0.68	0.68	0.93	0.36	1.19	0.31	0.70	0.91	0.85	1.32	1.11	0.77
		st5	1.83	2.31	2.15	2.92	2.50	1.99	2.37	2.42	1.16	2.07	2.30	2.10	1.90	2.52	1.33	2.28	2.37	2.23	2.88	2.91	2.23
	ll 25	st4	3.35	4.29	3.63	6.41	9.83	4.16	4.09	4.88	2.82	5.18	5.45	3.00	4.25	3.27	3.13	6.14	8.53	5.71	3.88	7.82	4.99
	Wa	st3	2.57	2.72	2.39	3.16	4.01	3.61	2.83	2.78	2.82	3.47	3.14	1.93	3.67	2.58	2.65	3.73	3.63	3.66	2.15	3.11	3.03
		st2	2.55	1.89	1.68	2.44	3.27	3.26	2.26	2.22	2.89	2.88	2.45	1.39	3.39	2.31	2.36	3.29	2.95	3.06	1.19	1.96	2.49
n-3D		st1	3.80	1.97	2.35	3.48	5.17	7.07	3.02	2.94	4.78	3.75	3.12	2.09	9.75	3.07	3.38	7.27	3.85	3.93	0.92	1.79	3.88
Drai		st6	0.58	0.67	0.42	1.32	0.24	0.12	0.66	0.74	0.01	0.42	0.45	1.02	0.01	1.12	0.09	0.19	0.54	\$ 0.66	1.32	3 1.08	t 0.58
		st5	1.82	2.50	2.34	3.27	2.23	1.58	2.58	2.63	1.07	1.94	2.43	2.33	1.34	2.75	1.28	2.06	2 2.18	2.08	3.24	3.13	1 2.24
	11 19	st4	3.44	5.01	3.88	7.53	11.8	4.08	4.67	5.76	2.72	6.85	6.29	3.17	3.98	3.65	3.15	6.98	10.7.	7.28	4.36	9.51	5.74
	Wa	st3	2.66	2.91	2.55	3.29	4.06	3.53	2.93	2.94	2.63	3.71	3.32	2.07	3.57	2.79	2.74	3.70	3.81	3.81	: 2.33	3.33	3.13
		st2	2.70	2.02	1.79	2.62	3.28	3.31	2.39	2.38	2.93	3.12	2.63	1.53	7 3.42	2.48	2.50	3.25	3.12	3.21	1.28	2.10	2.60
		stl	4.70	2.14	2.69	3.92	7.23	10.15	3.41	3.35	7.57	4.23	3.48	2.37	13.17	3.41	3.81	9.93	4.74	5.18	1.02	1.92	1 4.92
	No.		-	7	m	4	ŝ	9	~	∞	6	10	11	12	13	14	15	16	17	18	19	20	Mear

© 2009 FPInnovations - Forintek Division. All rights reserved.

Appendix C – 36

F Ptnnovations FORUNTER

Final BSPB Report
Seismic Performance of 6-Storey Wood-Frame Buildings
Project No. 6482

Confidential

Table C.6.9Maximum uplift forces of 4-storey building in E-W direction (without GWB), (kN)

	_	-	-	_		-			T		T	-	-	_	-	1	_	_	_	_	- <u>T</u>		
	-	st4	19.0	14.5	23.7	23.7	20.5	20.0	5.1	19.9	14.1	181	224	000	10.2	201	18.3	18 5	16.0	10.2	206	10.7	18.7
	lethod B	st3	27.6	25.0	28.4	27.4	24.9	25.8	10.2	27.8	22.1	23.0	26.1	76.7	25.5	0.7.0	0.7.0	24.1	747	25.0	1 90	77.0	25.3
	Wall 4- m	st2	39.1	37.6	39.2	37.9	34.0	34.9	20.1	36.2	31.9	33.2	363	20 4	35.0	37.8	38.0	30.6	37.0	35.3	28.7	38.7	35.6
/ood		stl	25.5	36.5	37.4	37.0	31.1	32.4	21.8	30.8	32.8	33.3	39.2	37.5	310	38.4	37.2	318	32.6	30.6	31.0	38.3	33.4
SAPW		st4	6.8	7.3	11.4	13.3	10.9	9.8	6.7	17.6	6.7	10.0	9.6	19.7		12.0	113	10.0	12.5	12.2	14.4	104	11.1
;	lethod A	st3	20.1	19.6	26.4	29.1	18.3	21.1	16.2	23.5	16.0	18.5	26.9	36.7	15.3	18.9	23.1	20.1	23.5	24.6	28.4	19.7	22.3
	Vall 4 - m	댕	26.5	28.7	34.6	35.9	26.3	27.5	17.7	28.4	20.5	25.5	37.8	46.8	24.2	26.5	35.3	23.6	25.1	23.6	373	26.9	28.9
ł		st1	50.4	59.3	63.5	64.1	45.1	53.2	26.1	55.1	45.9	54.1	75.7	80.6	45.4	58.3	61.5	44.6	43.3	40.2	52.8	55.6	53.7
		st4	0	0	0	0	0	0	0	0	0	0	0	0.3	0	0	0	0	0	1.3	0.3	0	0.7
	14	st3	0	0	0	0	0	0	0	0.1	0	0	0	1.5	0	0	0	0	0	0	0.1	0	0.6
	Wal	st2	0	1.8	0	0	0.1	0	0	3.0	0.1	0	0	2.1	1.0	0	3.5	0	0	0	1.9	3.9	1.9
-3D		st1	8.8	12.5	8.1	3.2	6.0	1.5	8.4	2.5	7.7	6.4	10.9	1.5	8.1	0	9.3	2.5	5.6	0.6	1.4	15.6	6.4
Drair		st4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	1.1	0.2	0.0	0.1
	18	St3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1
	Wa	\$12	0.0	1.5	0.0	0.0	0.1	0.0	0.0	3.0	0.2	0.0	0.0	2.4	1.2	0.0	3.9	0.0	0.0	0.0	1.8	3.1	0.8
		stl	7.3	10.6	7.0	3.1	6.5	1.5	9.8	2.3	8.3	5.3	8.9	1.7	10.1	0.0	10.7	2.6	4.4	0.5	1.3	12.3	5.7
	No.		-	2	m -	4	5	ا د		~	6	10	=	12	13	14	15	16	17	18	19	20	Mean

Appendix C - 37

F PUNDOVALIONS

Confidential

	_	T	<u> </u>		—	-	1	T	1	1			T	T	T	<u> </u>	1		T	—	1	—
	st4	17.0	13.4	21.9	21.7	18.8	18.3	0.6	18.1	15.5	17.0	19.1	22.9	20.5	19.3	19.5	18.3	18.9	18.5	18.2	15.3	181
nethod B	st3	28.7	27.3	30.1	28.9	27.4	27.8	15.8	28.0	26.4	25.3	28.3	29.3	27.8	25.5	29.2	26.6	27.7	26.8	28.1	28.7	27.2
/all 25 - 1	st2	40.0	37.7	40.7	39.3	36.4	37.3	19.6	39.4	36.8	31.5	40.1	34.5	39.8	38.0	39.9	36.8	37.2	35.4	37.0	38.0	36.8
vood V	st1	37.1	38.2	43.2	38.8	34.6	36.1	26.0	37.9	38.2	37.3	42.2	40.5	42.2	43.1	40.6	34.2	33.5	34.0	37.9	42.1	37.9
SAPU	st4	4.0	5.9	4.8	6.3	5.0	5.0	3.3	8.2	3.2	4.8	5.1	7.4	4.1	5.8	6.3	4.3	5.5	5.5	5.8	7.2	5.4
nethod A	st3	6.3	7.6	7.5	8.6	8.0	6.4	5.9	11.7	5.9	8.4	8.0	13.8	5.1	8.0	13.4	7.1	10.4	10.8	8.5	9.2	8.5
Vall 25 - 1	st2	5.7	8.3	7.5	6.8	7.1	7.1	6.7	9.7	7.4	0.6	10.4	12.4	6.9	8.0	1.1	7.7	11.5	9.4	8.3	10.0	8.5
A	st1	0.6	15.8	16.2	12.2	13.0	15.0	8.6	16.0	15.7	13.9	22.2	18.4	14.8	14.6	19.2	15.3	20.8	14.2	15.5	17.3	15.4
	st4	11.5	16.9	12.1	15.2	15.5	15.2	16.1	16.6	16.3	17.1	16.6	16.7	6.9	12.6	8.8	17.3	7.3	16.5	22.5	16.7	14.7
1 25	st3	25.6	33.1	26.9	26.6	29.6	30.4	29.5	34.1	32.2	34.2	33.8	30.4	17.8	24.7	23.8	34.4	19.1	32.5	32.3	34.5	29.3
Wall	st2	50.8	56.8	44.6	39.3	53.8	55.3	55.5	58.3	57.7	58.4	58.7	45.6	37.3	45.6	48.4	56.6	38.5	52.9	49.8	58.7	51.1
-3D	st1	78.0	78.7	60.8	67.9	78.2	83.6	82.4	75.2	81.1	83.7	88.0	62.2	63.1	69.6	75.0	77.7	64.0	69.3	68.6	85.1	74.6
Drair	st4	10.3	19.7	11.3	15.4	14.3	13.8	15.8	16.8	15.0	20.0	15.5	20.1	6.6	12.5	7.1	20.5	7.6	19.1	27.5	17.4	15.3
19	st3	28.5	37.5	30.0	30.2	32.6	33.5	30.9	37.9	34.6	40.5	36.4	35.3	18.6	27.7	26.1	40.9	22.1	37.6	39.6	36.9	32.9
Wall	st2	58.7	58.7	52.5	46.8	58.7	58.7	58.7	58.7	58.7	58.7	58.7	52.3	40.6	54.0	57.0	58.7	43.2	58.7	57.6	58.7	55.4
	stl	93.5	94.2	72.5	80.8	92.4	97.6	96.5	90.2	96.3	99.0	102.1	72.2	73.1	84.3	90.2	91.5	75.3	83.8	79.1	100.9	88.3
			+				-				-	-	-1		+		-	1				-

Appendix C – 38

FPInnovations

Confidential

Table C.6.11Maximum uplifit deformation of 4-storey building in E-W direction (without GWB), (mm)

		et4	1 2 7	100	1.64	1.65	1.42	1.39	0.35	1.38	0.98	1.25	1.56	145	1 27	135	1 27	1 28	1 13	134	1.57	133	1.30
	nethod B	et 3	1 91	1 73	1.97	1.90	1.72	1.79	0.71	1.92	1.53	1.60	1.81	1.85	1 77	1.87	1 93	167	171	1.73	1.97	1.93	1.75
	Wall 4- m	st7	2.71	2.61	2.71	2.63	2.36	2.42	1.39	2.51	2.21	2.30	2.52	2.73	2.49	2.62	2.63	2.12	2.62	2.45	2.68	2.65	2.47
Vood		41	06.0	1 29	1.32	1.31	1.10	1.15	0.77	1.09	1.16	1.18	1.39	1.33	113	1.36	131	1.12	1.15	1.08	1.13	1.35	1.18
NDN		st4	0.47	0.51	0.79	0.92	0.76	0.68	0.55	1.22	0.46	0.69	0.66	1.33	0.56	0.83	0.78	0.69	0.86	0.84	0.99	0.72	0.77
	nethod A	st3	1.39	1.36	1.83	2.02	1.27	1.46	1.12	1.63	1.11	1.28	1.86	2.55	1.06	1.31	1.60	1.40	1.63	1.71	1.97	1.36	1.55
	Wall 4 - n	st2	1.84	1.99	2.40	2.49	1.82	1.91	1.22	1.97	1.42	1.76	2.62	3.24	1.68	1.84	2.44	1.64	1.74	1.64	2.58	1.86	2.01
		st1	1.78	2.10	2.24	2.27	1.60	1.88	0.92	1.95	1.62	1.91	2.68	2.85	1.60	2.06	2.17	1.58	1.53	1.42	1.87	1.97	1.90
		st4	0	0	0	0	0	0	0	0	0	0	0	0.02	0	0	0	0	0	0.09	0.02	0	0.05
	ll 4	st3	0	0	0	0	0	0	0	0.01	0	0	0	0.11	0	0	0	0	0	0	0.01	0	0.04
	Wa	st2	0	0.13	0	0	0.01	0	0	0.21	0.01	0	0	0.15	0.07	0	0.24	0	0	0	0.13	0.27	0.14
1-3D		stl	0.31	0.44	0.29	0.11	0.21	0.05	0.30	0.09	0.27	0.23	0.39	0.05	0.29	0	0.33	0.09	0.20	0.02	0.05	0.55	0.23
Draii		st4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	00.00	0.00	00.0	00.0	0.00	0.08	0.01	0.00	0.01
	11 8	st3	00.0	00°0	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01
-	Wa	st2	0.00	0.10	0.00	0.00	0.01	0.00	0.00	0.21	0.01	0.00	0.00	0.16	0.08	0.00	0.27	0.00	0.00	0.00	0.12	0.22	0.06
		st1	0.26	0.38	0.25	0.11	0.23	0.05	0.35	0.08	0.29	0.19	0.32	0.06	0.36	0.00	0.38	0.09	0.16	0.02	0.04	0.44	0.20
	No.		I	5	en	4	S	9	-	~	6	10	=	12	13	14	15	16	17	18	19	20	Mean

© 2009 FPInnovations – Forintek Division. All rights reserved.

Appendix C – 39

FPinnovations

Confidential

(mm)
3WB), (
without (
rection (
n N-S di
building in
4-storey
tion of
deforma
ı uplift (
Maximum
Table C.6.12

		1		1		T	r	r	T -				-	-	1	-			T	T	т—	T	1
		st4	1.18	0.93	1.52	1.51	1.31	1.27	0.62	1.25	1.07	1.18	1.32	1.58	1.42	1.33	1.35	1.27	1.31	1.28	1.26	1.06	1.25
	nethod B	st3	1.99	1.89	2.09	2.00	1.90	1.92	1.10	1,94	1.83	1.76	1.96	2.03	1.92	1.77	2.03	1.84	1.92	1.86	1.95	1.99	188
	/all 25 - r	st2	2.77	2.61	2.82	2.72	2.52	2.58	1.36	2.73	2.55	2.18	2.78	2.39	2.76	2.63	2.76	2.55	2.58	2.46	2.57	2.64	2.55
/ood	M	st1	1.31	1.35	1.53	1.37	1.22	1.28	0.92	1.34	1.35	1.32	1.49	1.43	1.49	1.53	1.44	1.21	1.19	1.20	1.34	1.49	1.34
SAPW		st4	0.28	0.41	0.33	0.44	0.35	0.34	0.23	0.57	0.22	0.33	0.36	0.51	0.28	0.40	0.44	0.30	0.38	0.38	0.40	0.50	0.37
	nethod A	st3	0.44	0.53	0.52	0.59	0.55	0.44	0.41	0.81	0.41	0.58	0.55	0.96	0.36	0.56	0.93	0.49	0.72	0.75	0.59	0.64	0.59
	/all 25 - n	st2	0.39	0.57	0.52	0.47	0.49	0.49	0.47	0.67	0.51	0.62	0.72	0.86	0.48	0.55	0.77	0.54	0.80	0.65	0.58	0.69	0.59
	M	stl	0.32	0.56	0.57	0.43	0.46	0.53	0.31	0.57	0.56	0.49	0.79	0.65	0.52	0.51	0.68	0.54	0.74	0.50	0.55	0.61	0.54
		st4	0.80	1.18	0.84	1.06	1.07	1.06	1.12	1.16	1.13	1.19	1.15	1.16	0.48	0.88	0.61	1.20	0.51	1.15	1.56	1.16	1.02
	25	st3	1.78	2.30	1.87	1.85	2.05	2.11	2.05	2.37	2.24	2.37	2.35	2.11	1.24	1.71	1.66	2.39	1.33	2.26	2.24	2.40	2.03
	Wall	st2	3.53	3.95	3.10	2.73	3.74	3.84	3.86	4.05	4.01	4.06	4.54	3.17	2.59	3.17	3.37	3.93	2.67	3.68	3.46	4.52	3.60
-3D		stl	2.77	2.79	2.16	2.41	2.77	2.96	2.92	2.67	2.88	2.97	3.12	2.21	2.24	2.47	2.66	2.75	2.27	2.46	2.43	3.02	2.65
Drain		st4	0.72	1.37	0.78	1.07	1.00	0.96	1.10	1.17	1.04	1.39	1.08	1.40	0.46	0.87	0.49	1.42	0.53	1.33	1.91	1.21	1.06
	19	st3	1.98	2.61	2.09	2.10	2.27	2.33	2.15	2.64	2.40	2.82	2.53	2.45	1.29	1.92	1.81	2.84	1.54	2.61	2.75	2.56	2.28
	Wall	st2	4.20	5.74	3.65	3.25	4.73	5.57	5.46	6.02	5.65	6.77	7.25	3.63	2.82	3.75	3.96	6.64	3.00	4.75	4,00	7.47	4.91
		stl	3.32	3.34	2.57	2.86	3.27	3.46	3.42	3.20	3.41	3.51	3.62	2.56	2.59	2.99	3.20	3.24	2.67	2.97	2.80	3.58	3.13
1	No.		-	2	ŝ	4	5	9	٢	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean

FPinnovations FORINTER

Appendix C -- 40

Table C.6.13Maximum uplift forces of 6-storey building in E-W direction (without GWB), (kN)

Confidential

	}	7-	-				<u></u>	1	J		1-	1	.	1.0	1		1.						_
		etk	17 4	1111	1.20	176	3.5	100	74	19.7	10	12	19.9	20.6	19.5	200	107	100		171	21.0		1111
	B	et5	255	25.2	100	26.2	26.1	26.3	12.0	27.0	23.9	19.7	23.9	22.2	25.5	26.5	787	24.5	14	21 4	28.0	200	2
	nethod	ct4	28.2	38.4	202	38.5	37.0	36.8	20.5	356	33.7	28.4	35.0	35.3	35.9	39.4	38.7	32.5	28.0	217	36.4	37.9	2
	ull 4- n	c†3	30.7	415	40.6	414	295	277	26.0	36.2	39.3	30.4	35.7	37.6	39.0	38.6	301	35.0	202	204	37.0	37.6	2
	Wa	£	315	444	231	49.5	47.8	45.8	410	45.0	49.4	35.6	39.4	48.5	49.4	49.7	519	46.3	40.7	10.4	43.3	531	
/ood		st1	35.6	42.4	543	45.2	36.8	44.6	38.1	47.4	49.5	37.0	37.0	43.4	52.1	52.3	520	45.5	44.4	30.8	416	504	
SAPW		st6	12.6	0	10.2	14.9	6.7	0 11	29	15.1	10.2	88	10.6	16.4	13.5	14.4	14.2	121	12		201	11.9	
	×	st5	25.6	191	28.4	29.7	22.9	24.2	13.5	31.3	26.5	17.8	26.4	33.1	25.2	26.6	0.7.0	590	010	23.0	0.05	23.4	-
	thod /	st4	37.9	3.9	10.9	12.2	35.6	37.2	17.7	35.3	t0.7	2.62	13.4	39.6	1.2	15.2	15.6	0 0	199		6 6 6	20.7	
	4 - m(st3	5.4 3	5.8 2	7.0 4	244	1.0 3	643	5.2	5.0 3	5.2 4	8.8	9.0 4	5.8 3	12.7 4	9.3 4	5.3 4	613	15 3	5.3	333	8.6 3	
	Wall	<u>t</u>	6.0 5	0.0 4	2.0 7	5.9 6	1.5 5	6.5 6	6.4 2	8.9 5	0.9 6	2.6 4	7.0 6	7.1 5	7.4.7	1.7 6	5.4 6	414	24 6		0.3 6	5.6 4	-
		#1 5	4.7 5	7.8 5	17.3 8	7.8 5	4.7 5	226	6.0 2	9.9 5	277	2.0 5	1.4 6	2.1 5	26.5 7	2.9 7	17.5 6	8.4 4	466	2.4 4	1.0	8.6 4	
		t6 5	6	6	7 13	6	8	11	4	8	0 12	6	.0 11	6 0	0 12	1	12	2			2	0	_
		S S			0 m								6 0))						5 1	8	
		st st	εi	6	<u>6</u> 6		0	9	1	5	0	6	.8 2.	7 0	3	5	0	8	0	5	4	2	
	Vall 4	3 SI	7 6	<u>5</u> 8	11 2.	S:	4	0.0	5	0	6	2 5	.0 12	3 1	9 8	8.0	1	.1 3	7 3	0		3 13	
		S.	2 17	2 22	6 22	9 12	5 23	1 11	1 15	5 9.	8 9.	4 21	2 28	3 11	2 24	4 11	4 10	4 15	6 18	1 18		8 23	
		,у	0 37.	7 31.	6 26.	1 35.	9 48.	1 34.	4 27.	4 23.	6 33.	5 44.	1 37.	8 19.	7 50.	5 33.	0 25.	9 32.	2 41	2 37.	0	5 27.	
an-SL		st1	62.1	37.	31.(61.	76.	61.	48.4	41.4	63.(64.:	53.	29.(80.	59.(40.(53.5	65.2	57.2	0	30.6	
nr.		st6	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	
		st5	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.1	0.0	0.0	0:0	0.0	0.0	0.0	0.0	3.8	2.1	L
\$		st4	6.0	6.8	10.8	0.0	4.9	0.6	3.1	0.6	0.0	4.1	9.4	1.7	6.8	0.5	2.3	3.7	2.2	2.1	0.0	10.1	
	Ň	£	16.5	18.5	29.6	10.2	17.1	9.2	17.1	10.2	8.9	14.3	21.4	11.4	19.8	12.9	9.6	13.4	14.9	14.2	0.0	28.5	
		ਈ ਪ੍ਰੈ	27.3	26.0	26.8	26.8	33.0	25.1	25.6	22.7	22.9	32.6	33.1	20.7	35.4	39.0	22.4	31.4	37.2	30.5	0.0	31.4	:
	-	stl	52.9	50.8	30.3	48.1	56.5	47.3	45.5	32.6	46.0	52.9	50.3	30.2	60.1	44.3	36.6	64.3	60.6	56.2	0.0	34.0	1
ļ	No.		-	2	m	4	Ś	9	~	∞	6	9		12	13	4	15	16	17	18	19	20	·

Appendix C - 41

Confidential

Table C.6.14Maximum uplift forces of 6-storey building in N-S direction (without GWB), (kN)

	I	1.0	m	5	6	~	~	~	4	6	ŝ	0	0	0	9	6	-	8	6	2	0	9	0
		st	18.	12.	33.	21.	17	16.	13.	17.	15.	14	4.	21.	18.	18.	.61	15.	21.	<u>[61</u>	21.	21	18.
	d B	st5	28.6	28.7	32.1	30.0	27.4	25.3	20.8	29.2	24.8	23.3	27.5	28.9	28.3	28.2	30.0	24.9	28.6	26.1	27.8	30.8	27.6
	metho	st4	36.3	42.8	44.2	42.9	38.6	37.3	28.1	42.4	38.0	33.0	41.2	35.1	39.6	43.4	43.9	34.2	41.3	38.3	40.0	38.6	39.0
	125 -	st3	34.0	50.0	54.0	49.4	47.6	45.7	32.4	48.4	49.6	42.8	46.0	44.9	48.8	51.3	50.4	46.6	49.0	40.2	46.8	48.7	46.3
	Wal	512 212	33.0	51.9	67.1	54.0	47.5	53.0	40.9	56.2	58.6	45.9	48.7	51.9	59.6	61.0	54.4	48.2	55.0	43.0	54.8	60.4	52.3
/ood		stl	38.3	49.5	67.7	52.5	42.6	56.8	53.4	55.0	6.09	43.4	50.3	48.0	6.09	65.3	52.7	48.6	45.5	40.8	55.3	60.0	52.4
SAPW		st6	5.0	4.2	4.3	4.2	4,4	3.7	2.9	5.5	4.2	3.4	5.4	5.0	3.6	5.1	4.8	4.8	3.8	5.3	6.7	4.5	4.5
	V	st5	7.2	7.8	7.3	9.0	8.7	6.7	5.3	0.8	7.9	7.7	6.11	6.6	7.5	6.6	9.5	8.1	7.0	9.6	8.4	8.1	8.2
	ethod	st4	9.8	2.9	0.6	9.8	2.9	9.1	7.6	4.0	9.8	9.8	7.0	2.0	1.8	0.4	4.3	9.7	1.5	3.1	1.2	1.3	1.4
	25 - m	t) ti	3.3	2.9	5.2	3.7	8.6]	4.0	1.2	1.3	3.1	2.9	7.0 1	4.6	9.7	4.9	9.4	4.0	0.4	7.6	4,1	7.7	6.8
	Wall :	ਹ <u>ੋ</u>	8.5 1	5.5 2	4.3 1	3,4 1	9.7 1	6.5 1	7.0 1	1.9 2	2.5 1	1.8 1	0.2	3.1 1	0.1	3.4 1	9.6	2.1 1	3.5 2	6.7	3.0	9.3 1	6.6 1
		11	9.6 1	7.9 3	9.9 2	9.3 2	1.0 2	9.3 2	6.5 1	0.03	9.2 2	5.5 2	0.6 4	4.6 2	3.4 3	7.3 2	1.7 2	4.5 2	7.6 3	9.7 2	2.8 2	7.9 2	8.9 2
		t6 s	1.5	5.6 3	11	7.9 2	1.4 3	3.7 2	5.1 10	5.7 3	5 2	6.).1	5.7 2	2.8 3.	3.0 2	9 3	1.5 2	8.3 3	2.6 2	3.4 2	9.5 2	4.1 2
		s s	.1	4 1	0.	.8	7 11	.6 18	8 1	.1 16	.1 5	2.6	.9 1(.3 15	3 12	.2 18	-4 6	.3 14	.6 18		4.7	.8 10	.7 1/
		4 st	0 26	5 34	7 26	0 35	2 28	8 37	.1 29	.7 36	.8 19	6 24	3 26	6 30	7 29	.7 29	9 24	.6 28	.7 36	.7 25	.7 44	.7 40	.6 30
	all 25	St	1 47.	1 58	9 38.	8 48	0 56.	0 58.	7 51.	3 58	8 39	2 51	6 44	0 39	4 58	8	2 51	9 57	1 58	5 52	9 58	6 58	9 51
	M	£	5 67.	71.	48.6	2 78.	8 81.0	8 98.0	67.	77.	5 74.	1 80.	61.	48.	7 103	3 71	74.	5 98.	4 83.	2 80.	53.	77.	4 74.
		st2	113.0	79.7	72.1	119.	114.	132.	83.6	94.2	122.	111.	78.5	59.5	153.	106	93.2	140.	116.	110	44.0	82.3	5 101.
<u>n</u>		stl	163.3	84.2	114.2	167.2	153.6	175.2	123.6	122.2	176.3	145.7	130.7	89.6	190.3	146.8	129.4	184.5	165.0	147.4	41.7	80.4	136.6
Drain		st6	10.8	13.9	10.8	17.9	9.3	16.3	14.6	14.4	4.7	4.9	8.8	17.9	5.5	20.2	6.1	10.3	17.0	13.4	28.2	22.9	13.4
		st5	29.1	36.5	29.2	40.3	30.9	39.7	32.9	38.4	18.2	25.6	29.9	34.8	24.3	32.8	26.0	27.5	38.9	27.0	53.8	48.6	33.2
	19	st4	50.3	58.7	41.8	56.1	58.7	58.8	55.7	58.7	38.5	58.7	46.7	43.3	58.7	45.8	58.7	58.7	58.7	58.7	58.7	58.8	54.1
	Wall	st3	71.7	79.6	52.7	85.2	89.0	04.6	72.6	84.6	73.7	88.3	66.4	52.1	07.4	76.3	81.9	104.8	90.9	88.5	60.8	86.6	80.9
		st2	23.8	7.4	0.1	29.8	25.5	42.7	4.0	03.8	31.5	21.7	6.8	54.2	63.5	17.1	01.5	50.6	28.4	18.8	t8.7	39.8	10.3
	-	tl s	4.6 1.	3.3 8	2.4 8	8.3 1	1.7 1.	0.2 1	3.0 9	9.7 1(0.3 1.	3.2 1	0.4 8	0.7 6	0.3 1.	771	8.9 1	0.3 1.	7.0 1	9.5 1	5.8 4	3 6.7	2.1 1
		SI	18.	95	13:	28	17	19	1	13	19	0 16	15	2	3 19	4 16	5 14	6 19	7 18	8 16	4	0 8	an 15
	ž		-	~1	ή	4	N	9	5	~	5	Ξ	-			ΞÌ	-	Ē	-	-	-	N.	Ž

© 2009 FPInnovations - Forintek Division. All rights reserved.

FPInnovations FORINTER

Appendix C – 42

Confidential

ion (without GWB), (mm)
y building in E-W direct
lift deformation of 6-store
C.6.15 Maximum upl
Table

_	_		-						-	_	_	_	_	_	_	_		· • • • • • • • • • • • • • • • • • • •		_	_	_	_	7
		¢‡¢	0.86		1 78	1 22	154	1.55	0.51	137	133	0 04	1 38	1 43	1 35	140	1 34	1 44	146	1 18	1 53	1 22		-
:	2	15	1 77	1 75	00 0	1 81	181	1.82	0.83	1.94	1.66	137	166	154	177	1 84	66	1.70	8	1 48	1 04	100	1.73	
	ethod	st4	2 65	2.66	11 0	2.67	2.56	2.55	1.42	2.47	2.34	1 97	2 43	3 45	2 40	2.73	2.65	2.32	2.70	0000	0 2 2 0	2 63	2.46	
	ll 4- m	st3	1 39	147	44	146	1.30	1.33	0.92	1.28	139	101	1.26	33	138	136	138	1.27	143	1 14	31	3	1.31	
	Wa	st2	1	1.64	1.88	1.75	1.51	1.62	1.45	1.59	1.75	1.26	139	17	1 75	1.76	1.84	1.64	1.70	1 39	1 53	1 88	1.61	
/ood		st1	0.76	16.0	1.16	0.97	0.79	0.95	0.82	1.01	1.06	0.79	0.79	0.03		1.12	1.11	0.97	0.95	0.85	0.89	80	0.95	
SAPW		st6	0.87	0.62	0.71	66.0	0.67	0.82	0.46	1.05	0.71	0.61	0.74	1.14	0.94	0	66.0	0.84	0.83	0.83	140	0.83	0.85	
		st5	1.78	1.12	1.97	2.06	1.59	1.68	0.94	2.17	1.84	1.23	1.83	2.30	1.75	1.85	1.87	1.84	1.52	1.59	2.14	162	1.73	
	nethod	st4	2.62	1.66	3.19	2.93	2.47	2.58	1.23	2.45	2.82	2.02	3.00	2.75	2.92	3.13	3.16	2.08	2.54	2.08	2.76	2.13	2.53	-
	ll 4 - m	st3	1.96	1.62	2.72	2.21	1.80	2.35	0.89	1.95	2.31	1.72	2.44	1.97	2.57	2.45	2.31	1.63	2.18	1.60	2.24	1.72	2.03	
:	Wa	st2	1.98	1.77	2.90	1.98	1.82	2.35	0.93	2.08	2.51	1.86	2.37	2.02	2.74	2.53	2.31	1.56	2.21	1.42	2.13	1.61	2.05	
		stl	2.03	1.67	2.94	2.09	1.81	2.40	0.98	1.92	2.62	1.97	2.38	1.97	2.71	2.41	2.30	1.68	2.24	1.33	1.73	1.47	2.03	
		st6	0	0	0.05	0	0	0	0	0	0	0	0.0	0	0	0	0	0	0	0	0.12	0	0.06	
		st5	0	0	0.16	0	0	0	0	0	0	0	0.18	0	0	0	0	0	0	0	0.31	0.20	0.21	
	14	st4	0.44	0.62	0.82	0	0.42	0.04	0.26	0.03	0	0.41	0.89	0.12	0.57	0.03	0.15	0.26	0.21	0.17	0	0.92	0.37	
	Wa	st3	0.63	0.80	0.80	0.44	0.83	0.39	0.55	0.33	0.35	0.75	66.0	0.40	0.88	0.42	0.36	0.54	0.66	0.64	0	0.83	0.61	
		st2	1.32	1.10	0.94	1.27	1.72	1.21	0.96	0.83	1.20	1.57	1.32	0.68	1.78	1.18	0.90	1.15	1.47	1.32	0	66.0	1.21	
1-3D		stl	1.33	0.81	0.68	1.31	1.65	1.31	1.04	0.89	1.36	1.38	1.14	0.64	1.73	1.28	0.86	1.16	1.40	1.23	0	0.66	1.15	
Drait		st6	0.00	0.00	0.04	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00	0.01	
		st5	0.00	0.00	0.16	0.00	0.00	0.00	0.0	0.0	0.00	0.0	0.15	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.26	0.15	0.04	
	8	st4	0.42	0.48	0.75	0.0	0.34	0.04	0.21	0.04	0.00	0.29	0.66	0.12	0.47	0.04	0.16	0.25	0.15	0.14	0.00	0.70	0.26	
1	Wa	st3	0.59	0.66	1.05	0.36	0.61	0.33	0.61	0.36	0.31	0.51	0.76	0.40	0.70	0.46	0.34	0.47	0.53	0.50	0.00	1.01	0.53	
		55 C	0.97	0.92	0.95	0.95	1.17	0.89	0.91	0.80	0.81	1.15	1.17	0.73	1.25	1.38	0.79	1.12	1.32	1.08	0.00	1.11	0.97	
		stl	1.14	1.09	0.65	1.03	1.21	1.01	0.98	0.70	0.99	1.13	1.08	0.65	1.29	0.95	0.78	1.38	1.30	1.21	0.00	0.73	0.96	
	No.		-	2	ы	4	Ś	9	~	∞	6	2	=	12	13	14	15	16	17	18	61	20	Mean	

FPInnovations

Appendix C - 43

Confidential

Table C.6.16Maximum uplift deformation of 6-storey building in N-S direction (without GWB), mm

$ No \ \ \ \ \ \ \ \ \ \ \ \ \ $	<u> </u>	Γ	1	E.	9	4	0	0	9	0	4	5	-	Þ	<u>و</u>	0	-	2	0	0	ŝ	5	0	9	
No.			st	12	0.8	1.6	1.5	1.2	1.1	6.0	1	1.0	10	0.0	1.4	1.2	1		1.1	1.5	1 1	1.4	1.5	-	
$ No. \ \ \ \ \ \ \ No. \ \ \ \ \ \ \ \ \ \ \ \ \ $		BP	st5	1.98	1.99	2.22	2.08	1.90	1.76	1.4	2.02	1.72	1.62	1.91	2.00	1.96	1.96	2.08	1.72	1.98	1.81	1.92	2.14	1.91	
No. Mall 19 SAPWood S		metho	st4	2.51	2.97	3.06	2.98	2.67	2.59	1.95	2.94	2.64	2.29	2.85	2.44	2.74	3.00	3.04	2.37	2.86	2.65	2.77	2.67	0L C	
No. Wall 19 SAP Wood No. Wall 19 Mall 19 SAP Wood Mall 25 SAP Wood Mall 27 SAP Wood Mall 27 SAP Wood Mall 25 Mall 26 SAP Wood Mall 27 SAP Wood Mall 27 SAP Wood Mall 27 SAP Wood Mall 25 Mall 26 SAP Stat Stat Stat Stat Stat Stat Stat Sta		125 -	st3	1.20	1.77	1.91	1.75	1.68	1.61	1.15	1.71	1.75	1.51	1.63	1.59	1.72	1.81	1.78	1.65	1.73	1.42	1.66	1.72	164	
No. Mail 19 SAPWood sti		Wal	st2	17.0	1.11	1.44	1.15	1.02	1.13	0.87	1.20	1.25	0.98	1.04	1.11	1.27	1.31	1.16	1.03	1.18	0.92	1.17	1.29	1.12	
No. Wall 19 Mail 125	poo		st1	0.82	1.06	1.45	1.12	16.0	1.21	1.14	1.18	1.30	0.93	1.08	1.03	1.30	1.40	1.13	1.04	0.97	0.87	1.18	1.28	1 12	
No. Mail 19 Mail 25 Mail 26 Mail 27 Mail 26 Mail 26 Mail 27 Mail 27 Mail 27 Mail 27 Mail 26 Mail 26 Mail 26 Mail 26 Mail 26 Mail 26 Mail 27 M	SAPW		st6	.34 (.29	30	.29	30 (0.26).20	.38).29).23	38	.34	.25).35).33).34).26	37 1	.47	0.31	131	
No. Mail 19 Mail 15 Ma	01	V	st5	50 0	.54 0	50 0	.63 (.60	.46 (37 (.75 0	.55 (53 (.83) 69.	.52 (.46 (.66 (.56 (.49 (.67 (.58 (.56 (57 (
No. Wall 19 Wall 25 - m 1 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st4 st5 st3 st3 <t< td=""><td>:</td><td>sthod</td><td>4</td><td>68 0</td><td>89 0</td><td>62 0</td><td>68 0</td><td>0 06</td><td>63 0</td><td>53 0</td><td>97 0</td><td>68 0</td><td>.68 0</td><td>.18 0</td><td>83 0</td><td>.82 0</td><td>.72 0</td><td>0 66.</td><td>.67 0</td><td>80 0</td><td>910</td><td>.78 0</td><td>.78 0</td><td>79 0</td></t<>	:	sthod	4	68 0	89 0	62 0	68 0	0 06	63 0	53 0	97 0	68 0	.68 0	.18 0	83 0	.82 0	.72 0	0 66.	.67 0	80 0	910	.78 0	.78 0	79 0	
No. Wall 19 Mall 125 Mall 25		5 - m(t3 S	47 0	81 0	54 0	48 0	66 0	50 0	40 0	75 0	46 0	46 0	95 1	52 0	70 0	53 0	69 0	50 0	72 0	62 0	50 0	63 0	59 0	
No. Wall 19 Drain-3D $st1$ st2 st3 st4 st5 st6 st1 st5 st6 st1 st st1 st2 st3 st4 st5 st6 st1 st st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st6 st1 st7 st6 st1 st2 st3 st4 st5 st6 st1 st7 st6 st1 st6 st4 st5 st4 st5 st6 st1 st7 st6 st1 st7 st6 st1 st7 st6 st6 <td< td=""><td></td><td>Vall 2</td><td>2 S</td><td>39 0.</td><td>76 0.</td><td>52 0.</td><td>50 0.</td><td>54 0.</td><td>57 0.</td><td>36 0.</td><td>58 0.</td><td><u>48 0.</u></td><td>47 0.</td><td><u>86 0.</u></td><td><u> 19</u>0.</td><td>54 0.</td><td>50 0.</td><td>53 0.</td><td>47 0.</td><td>72 0.</td><td>57 0.</td><td>49 <u>0</u>.</td><td><u>53 0.</u></td><td>57 0.</td></td<>		Vall 2	2 S	39 0.	76 0.	52 0.	50 0.	54 0.	57 0.	36 0.	58 0.	<u>48 0.</u>	47 0.	<u>86 0.</u>	<u> 19</u> 0.	54 0.	50 0.	53 0.	47 0.	72 0.	57 0.	49 <u>0</u> .	<u>53 0.</u>	57 0.	
No. Wall 19 Wall 19 Wall 25 std st5 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st6 st1 st7 st6 st1 st6 st6 st1 st7 st6 st6 st6 st7 st6 st6 st7 st6 st7 st6		-	st	2 0.	1 0.1	4 0 4	30	6 0.6	3 0.4	5 0	4 0.0	3 0.2	4 0	7.0	3 0.2	1 0.0	8 0.	8 0.0	2 0.4	0.0	40.	~0 61	0 0	20	
No. Wall 19 Wall 15 1 st1 st2 st3 st4 st5 st6 st1 st2 st5 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st6 st1 st7 st9 st6 st1 st7 st6 st6 st1 st7 st6 st5 st6 st6 st1 st6			st	0.4	8 0.8	7 0.6	4 0.6	9 0.6	0 0.6	5 0.3	6 0.6	8 0.6	8 0.5	0.8	9 0.5	9 0.7	5 0.5	8 0.6	1 0.5	7 0.8	7 0.6	3 0.4	5 0.6	8 0.6	
No. Wall 19 Mail 15 1 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 2 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 2 2.13 1.87 2.82 5.38 2.24 0.96 1.81 1.71 2.52 4.06 2.18 3 2.84 1.72 1.87 2.80 2.03 0.75 2.45 1.73 2.69 1.81 2.15 2.45 1.87 2.83 2.45 1.87 2.83 2.45 1.87 2.83 2.45 1.87 2.83 2.45 1.87 2.45 1.87 2.45 1.87 2.45 1.87 2.45 2.45 1.87 2.45 2.45 2.45 2.45 2.45 2.46 1.81 2.46 2.45 2.40 2.45 2.47 1.82 2.46 2.55 2.46			st6	0.8(1.0	0.7	1.2	0.7	1.3	7 1.03	1.1	0.3	9.4	7.0.7	1.0	0.8	1.2	0.4	7 1.0	11.2	1 0.8	1.6	1.3	3 0.9	
No. <th ma<="" td=""><td></td><td></td><td>st5</td><td>1.82</td><td>2.39</td><td>1.81</td><td>2.49</td><td>2.00</td><td>2.61</td><td>2.07</td><td>2.51</td><td>1.32</td><td>1.68</td><td>1.8</td><td>2.11</td><td>2.03</td><td>2.03</td><td>1.7(</td><td>1.97</td><td>2.52</td><td>1.72</td><td>3.05</td><td>2.82</td><td>2.1</td></th>	<td></td> <td></td> <td>st5</td> <td>1.82</td> <td>2.39</td> <td>1.81</td> <td>2.49</td> <td>2.00</td> <td>2.61</td> <td>2.07</td> <td>2.51</td> <td>1.32</td> <td>1.68</td> <td>1.8</td> <td>2.11</td> <td>2.03</td> <td>2.03</td> <td>1.7(</td> <td>1.97</td> <td>2.52</td> <td>1.72</td> <td>3.05</td> <td>2.82</td> <td>2.1</td>			st5	1.82	2.39	1.81	2.49	2.00	2.61	2.07	2.51	1.32	1.68	1.8	2.11	2.03	2.03	1.7(1.97	2.52	1.72	3.05	2.82	2.1
No. <th ma<="" td=""><td></td><td>11 25</td><td>st4</td><td>3.27</td><td>4.06</td><td>2.69</td><td>3.34</td><td>3.91</td><td>7.91</td><td>3.55</td><td>4.58</td><td>2.77</td><td>3.59</td><td>3.08</td><td>2.75</td><td>4.42</td><td>2.96</td><td>3.61</td><td>4.00</td><td>4.57</td><td>3.66</td><td>4.09</td><td>5.73</td><td>3.93</td></th>	<td></td> <td>11 25</td> <td>st4</td> <td>3.27</td> <td>4.06</td> <td>2.69</td> <td>3.34</td> <td>3.91</td> <td>7.91</td> <td>3.55</td> <td>4.58</td> <td>2.77</td> <td>3.59</td> <td>3.08</td> <td>2.75</td> <td>4.42</td> <td>2.96</td> <td>3.61</td> <td>4.00</td> <td>4.57</td> <td>3.66</td> <td>4.09</td> <td>5.73</td> <td>3.93</td>		11 25	st4	3.27	4.06	2.69	3.34	3.91	7.91	3.55	4.58	2.77	3.59	3.08	2.75	4.42	2.96	3.61	4.00	4.57	3.66	4.09	5.73	3.93
No. Mail 19 stl st2 st3 st4 st5 st6 st1 st2 1 3.96 2.66 2.54 3.49 2.02 0.75 3.50 2.44 2 2.13 1.87 2.82 5.38 2.54 0.96 1.81 1.71 3 2.84 1.72 1.87 2.82 5.38 2.545 0.55 2.45 1.55 4 4.04 2.78 3.02 3.90 2.03 0.75 2.45 1.55 5 3.66 3.71 11.70 2.76 1.14 3.76 2.85 7 3.07 1.94 2.57 3.87 2.05 1.79 8 3.00 6.11 2.67 1.00 2.65 1.79 9 4.89 2.82 2.61 2.79 2.35 2.65 1.79 10 3.50 6.11 2.76 1.14 3.76 2.85 1.6		Wa	st3	2.38	2.52	1.73	2.79	2.87	3.48	2.40	2.74	2.65	2.84	2.18	1.70	3.67	2.55	2.63	3.51	2.95	2.85	1.91	2.75	2.66	
No. Wall 19 Drain-3D 1 st1 st2 st3 st4 st5 st6 st1 1 3.96 2.66 2.54 3.49 2.02 0.75 3.50 2 2.13 1.87 2.82 5.38 2.54 0.96 1.81 3 2.84 1.72 1.87 2.90 2.03 0.75 2.45 4 4.04 2.78 3.02 3.90 2.03 0.75 2.45 5 3.66 3.71 11.70 2.76 1.14 3.76 7 3.07 1.94 2.57 3.87 2.99 2.65 3.59 6 4.35 3.06 6.11 2.77 1.02 2.65 3.78 9 4.89 2.82 2.61 2.61 2.10 2.65 3.78 10 3.50 6.11 2.77 3.87 1.02 2.65 3.78 10 3.50 <			st2	2.44	1.71	1.55	2.56	2.46	2.85	1.79	2.02	2.63	2.38	1.69	1.28	3.30	2.28	2.00	3.01	2.50	2.36	0.94	1.76	2.18	
No. wall 19 st1 st2 st3 st4 st5 st6 1 3.96 2.66 2.54 3.49 2.02 0.75 2 2.13 1.87 2.82 5.38 2.54 0.96 3 2.84 1.72 1.87 2.90 2.03 0.75 4 4.04 2.78 3.02 3.90 2.80 1.25 5 3.68 2.69 3.16 4.91 2.15 0.65 7 3.07 1.94 2.57 3.87 2.29 1.00 9 4.35 3.06 3.71 11.70 2.76 1.14 7 3.07 1.94 2.57 3.87 2.29 1.02 9 4.89 2.82 3.06 6.11 2.67 1.00 9 4.89 2.82 2.61 3.13 4.09 1.78 10 3.50 2.61 3.13 4.09 1.78 0.34 11 3.23 1.86 2.35 3.24 2.08 0.61 12 2.16 1.38 1.85 3.01 2.42 1.25 13 12.02 3.51 3.51 <td>3D</td> <td></td> <td>stl</td> <td>3.50</td> <td>1.81</td> <td>2.45</td> <td>3.59</td> <td>3.29</td> <td>3.76</td> <td>2.65</td> <td>2.62</td> <td>3.78</td> <td>3.12</td> <td>2.80</td> <td>1.92</td> <td>6.80</td> <td>3.15</td> <td>2.77</td> <td>3.96</td> <td>3.54</td> <td>3.16</td> <td>0.89</td> <td>1.72</td> <td>3.06</td>	3D		stl	3.50	1.81	2.45	3.59	3.29	3.76	2.65	2.62	3.78	3.12	2.80	1.92	6.80	3.15	2.77	3.96	3.54	3.16	0.89	1.72	3.06	
No. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drain-		st6	0.75	96.0	0.75	1.25	0.65	1.14	1.02	1.00	0.33	0.34	0.61	1.25	0.38	1.40	0.42	0.71	1.18	0.93	1.96	1.59	0.93	
No. <u>stl st2 st3 st4 19</u> 1 3.96 2.66 2.54 3.49 2 2 2.13 1.87 2.82 5.38 2 3 2.84 1.72 1.87 2.82 5.38 2 5 3.68 2.69 3.16 4.91 2 5 3.68 2.69 3.16 4.91 2 6 4.35 3.06 3.71 11.70 2 7 3.07 1.94 2.57 3.87 2 9 4.89 2.82 2.61 2.68 1 10 3.50 2.21 3.13 4.09 1 11 3.23 1.86 2.35 3.24 2 11 3.23 1.86 2.35 3.24 2 11 3.23 1.86 2.35 3.24 2 12 2.16 1.38 1.85 3.01 2 13 12.02 3.51 2.18 3.01 2 13 12.02 3.51 2.18 3.01 2 13 12.02 3.51 2.18 3.01 2 13 12.02 3.51 2.18 2.90 4.14 1 15 3.19 2.18 2.90 4.14 1 15 3.19 2.18 2.90 4.14 1 16 5.34 3.23 3.72 5.40 1 17 4.01 2.75 3.22 6.44 2 18 3.64 2.55 3.14 4.30	,		st5	2.02	2.54 (2.03 (2.80	2.15	2.76	2.29	2.67	1.27	1.78	2.08	2.42	1.69	2.28	1.80	1.91	2.70	1.87	3.74	3.38	2.31	
No. <u>stl st2 st3 st3 11</u> 1 3.96 2.66 2.54 3 2 2.13 1.87 2.82 5 3 2.84 1.72 1.87 2.82 5 5 3.68 2.69 3.16 4 6 4.35 3.06 3.71 1 7 3.07 1.94 2.57 3 8 3.00 223 3.00 6 9 4.89 2.82 2.61 2 10 3.50 2.21 3.13 4 11 3.23 1.86 2.35 3 12 2.16 1.38 1.85 3 13 12.02 3.51 3.13 4 14 3.60 2.51 2.71 3 15 3.19 2.18 2.90 4 16 5.34 3.23 3.72 5 17 4.01 2.75 3.22 6 18 3.64 2.55 3.14 4		6	14	.49 2	.38 2	2 06:	06.	.91	1.70 2	.87 2	.11 2	.68	60	24 2	.01	.28	.18	.14	40	44	.30	.43	.51	1.85	
No. stl st2 st 1 3.96 2.66 2 2 2.13 1.87 2.1 2 2.13 1.87 2.1 2 2.13 1.87 2.1 1 3.96 2.69 3. 5 3.68 2.69 3. 7 3.07 1.94 2. 8 3.00 2.23 3.06 3. 1 0 3.50 2.61 3. 1 0 3.50 2.61 3. 1 3 3.60 2.51 2. 1 3 3.60 2.51 2. 1 3 3.60 2.51 2. 1 5 3.19 2.18 2. 1 7 4.01 2.75 3. 1 8 3.64 2.55 3.		Vall 1	3 S	54 3.	82 5.	87 2.	3	16 4	71 11	57 3	00 6	61 2	13 4	35 3	85 3	81 4	71 3	90	72 5	22 6	14 4	15 5	07 8	87 4	
No. stl st st st st st st st st st st st st st			2 st	6 2.	17 2.4	2 1.1	78 3.1	<u></u> б З.	3.	2	23 3.4	32 2.1	51 3.	36 2.	38 1.	51 3.	51 22	18	23 3.	75 3.	55 3.	24 2.	93 3.	37 2.	
No. st1 1 3.9(2 2.8(2 2.1) 2 2.8(2 3.6(1 3.6(1 3.5(1 3.5())))))))))))))))))))))))))))))))))))			sť	5 2.6	3 1.8	4 1.7	4 2.7	\$ 2.6	5 3.0	7 1.5	0 2.2	9 2.5	0 2.6	3 1.8	6 1.5	12 3.5	0 2.5	9 2.1	4 3.2	1 2.1	4 2.4	8 1.(9 1.5	7 2	
No. No. No. No. No. No. No. No. No. No.			st1	3.9(2.15	2.82	4.0	3.6	4.3	3.0	Э. <u>0</u>	4.8	3.5(3.2.	2.1(12.0	3.6	3.1	5.3.	4.0	3.6	6.0	1.8	n 3.7	
		No.		Г	2	З	4	Ś	9	~	∞	6	10	11	12	13	14	15	16	17	18	19	20	Mean	

Appendix C – 44

F Pinnoval jons FORINTER

Confidential

Appendix D

Results of Representative Wood-Frame Buildings Designed in Accordance with 2010 NBCC

Confidential

D.1 Fundamental period of the Building

	4-storey b	uilding (s)	6-storey bu	ilding (s)
	E-W	N-S	E-W	S-N
Drain-3D	0.54	0.68	0.78	0.96
SAPWood	0.	52	0.6	9

D.2 Maximum base shear

	Vood	N-S	761	972	957	943	936	893	1006	985	1032	679	669	1003	847	1203	156	864	800	902	1277	6601	938
ilding (kN)	SAPV	E-W	1066	1099	833	1244	887	739	1141	878	996	675	752	1175	782	1267	1172	641	750	971	1426	1278	987
6-storey bu	1-3D	S-N	1656	1644	1527	1602	1563	1590	1648	1612	1492	1652	1760	1708	1603	1116	1584	1583	1517	1456	1703	1635	1583
	Drain	E-W	1713	1682	1663	1687	1737	1734	1765	1642	1676	1658	1446	1738	1708	1340	1722	1589	1756	1621	1607	1815	1665
	/ood	N-S	844	908	905	889	784	755	583	1029	813	708	807	703	807	1045	921	705	704	759	1030	1144	842
lding (kN)	SAPW	E-W	883	785	1179	1336	864	814	667	777	907	822	951	1225	686	986	166	746	539	1094	1209	1298	938
4-storey bui	-3D	N-S	1065	1048	1044	1028	1077	1058	1098	1024	1077	1002	963	1062	1056	1005	1096	1033	1065	1120	1038	1096	1053
	Drain	E-W	1411	1426	1477	1388	1222	1358	1205	1257	1468	1319	1332	1262	1279	1401	1298	1323	1503	1530	1194	1366	1351
	No.		1	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean

© 2009 FPInnovations – Forintek Division. All rights reserved.

FPtinnovations FORMATION

Appendix D – 2

D.3 Maximum displacement and acceleration at each storey

Confidential

Maximum displacements of 4-storey building in E-W direction (with GWB), (mm) Table D.3.1

	_	_	-	-	-,					-	_	_			-	_	-1		· · · ·		-r	-
m	st4	512	63.7	7.00	61 7	0 80	23.6	647	64.6	30.0	28.0	50.7	50.2	1 200	1.12	1.00	0.00	30.0	27.8	57.0	70.6	47.5
rev diaphras	st	48.5	5.05	202	20.2	25.00	30.1	619	009	28.0	25.9	45.0	20.4	1.00	2.7.2	46.8	2.01	35.4	33.0	49.0	65.9	43.5
ter of the sto	st2	36.8	40.5	43.6	111	10.01	21.8	503	44.9	20.1	19.7	30.0	36.7	10.2	31.8	37.0	0.61	25.2	000	1 er 1 er	48.4	32.2
Cen	stl	23.0	37.6	18.4	20.8	8.07	10.9	33.3	21.7	0.11	10.0	16.0	17.7	11 3	215	16.9	66	13.9	11.4	153	26.6	17.6
	st4	78.5	78.8	76.1	577	49.9	42.7	90.1	73.1	52.4	53.5	79.1	2 96	48.7	50.9	67.6	49.7	583	56.7	76.8	86.6	66.2
4	st3	71.7	72.6	69.7	49.7	45.9	37.3	82.9	65.4	45.9	47.7	71.1	87.8	41.8	46.2	61.3	44.0	51.6	49.5	68.7	78.1	59.4
Wall	st2	56.6	59.2	56.0	32.0	37.8	26.6	68.8	45.8	33.9	36.2	57.8	69.7	29.3	36.9	49.0	33.0	40.8	35.9	51.0	54.3	45.5
	st1	35.4	39.3	34.7	16.4	25.5	15.0	42.3	28.5	21.4	23.3	38.6	46.6	17.0	25.6	31.8	20.2	27.6	21.5	31.7	30.0	28.6
	st4	79.9	78.9	77.3	62.4	53.0	45.3	91.6	74.0	51.9	55.6	83.2	94.0	48.5	50.6	75.4	52.5	59.3	56.9	80.0	88.5	67.9
8	st3	72.9	71.4	70.9	54.2	46.6	39.8	84.5	65.2	45.2	48.5	73.9	85.5	41.9	45.8	68.1	45.9	52.7	48.3	71.3	79.6	60.6
Wall	st2	58.4	57.7	57.5	37.0	37.5	29.0	70.5	45.1	32.9	37.2	56.9	68.3	29.6	37.1	54.3	33.8	41.5	35.0	53.3	55.8	46.4
	stl	33.7	34.9	32.4	18.2	24.2	15.8	41.0	24.2	18.8	22.1	37.1	44.0	15.8	24.4	32.3	19.1	26.7	19.5	29.4	27.8	27.1
No.		1	2	3	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean
	No. Wall 8 Wall 4 Center of the storey diaphraem	No. Wall 8 Wall 4 Center of the storey diaphragm st1 st2 st3 st4 st1 st2 st3 st4 st1 st3 st4 st1 st3 st4 st1 st2 st3 st4 st1 st2 st3 st4 st1 st3 st4 st3 st4 st3 st4 <	No. Wall 8 Wall 8 Wall 4 Center of the storey diaphragm st1 st2 st3 st4 st1 st2 st3 st4 st4 st4 st4 st2 st3 st4 st4 st4 st4 st3 st4 st4	No. Wall 8 Wall 8 Wall 4 Center of the storey diaphragm st1 st2 st3 st4 st4 st4 st1 st2 st3 st4 st4	No. Wall 8 Wall 8 Wall 4 Center of the storey diaphragm st1 st2 st3 st4 st1 st4 st1 st4 st1 st4 st4	No. Wall 8 Wall 8 Wall 8 Wall 4 Center of the storey diaphragm 1 st1 st2 st3 st4 1 33.7 58.4 72.9 79.9 35.4 56.6 71.7 78.5 23.0 36.8 48.5 51.3 2 34.9 57.7 71.4 78.9 39.3 59.2 72.6 78.8 32.6 49.5 60.5 63.2 3 32.4 57.5 70.9 77.3 34.7 56.0 69.7 76.1 18.4 43.6 58.3 64.4 4 18.2 37.0 54.2 62.4 16.4 32.0 49.7 57.7 71.1 55.0 51.7	No. Wall 8 Wall 8 Wall 8 Wall 4 Center of the storey diaphragm 1 st1 st2 st3 st4 st4 st3 st4 st3 st4 st4 st3 st4 st3 st4 s	No. Wall 8 Wall 8 Wall 8 Center of the storey diaphragm 1 st1 st2 st3 st4 st1 st2 st4 st3 st4 st4 st4 st4 st4 st4 st4 st4 st4 st4	No. Wall 8 Wall 8 Wall 8 Wall 8 Center of the storey diaphragm 1 st1 st2 st3 st4 st3 st4 st3 st4 st3 st4 st4	No. Wall 8 Wall 8 Wall 8 Center of the storey diaphragm 1 st1 st2 st3 st4 st3 st4 st3 st4 st3 st4 st3 st4 st4	No. Wall 8 Wall 8 Wall 4 Center of the storey diaphragm 1 $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st3$ $st3$ $st3$ $st4$ $st3$ $st3$ $st3$ $st4$ $st4$ $st3$ st	No. Wall 8 Wall 8 Wall 4 Center of the storey diaphragm 1 31.7 58.4 72.9 51.4 $st1$ $st2$ $st3$ $st4$ $st3$ $st4$ $st3$ $st4$ $st3$ $st4$ $st3$ $st4$ <td< td=""><td>No. Wall 8 Wall 4 Center of the store vision and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store v</td><td>No. Wall 8 Wall 4 Center of the story diaphragm 1 31.7 58.4 72.9 79.9 35.4 56.6 71.7 78.5 23.0 36.8 85.5 51.3 2 33.7 58.4 72.9 79.9 35.4 56.6 71.7 78.5 23.0 36.8 85.5 51.3 2 34.9 57.7 71.4 78.9 39.3 59.2 72.6 78.8 32.6 60.5 63.2 63.2 63.2 51.3 54.4 56.0 69.7 76.1 88.2 58.3 64.4 56.0 69.7 77.7 20.8 49.5 60.5 63.2 /td><td>No. Wall 8 Wall 8<td>No. Wall 8 Wall 8 Wall 4 Center of the storey diaphragm 1 33.7 58.4 72.9 79.9 35.4 56.6 71.7 78.5 23.0 36.8 48.5 51.3 2 34.9 57.7 71.4 78.9 39.3 59.2 72.6 78.8 31.0 56.5 61.7 76.5 63.5 63.5 63.2 64.4 3 32.4 57.5 70.9 35.4 56.0 69.7 76.1 18.4 43.6 58.3 64.4 4 18.2 37.0 54.2 65.0 69.7 76.1 18.4 43.6 58.3 64.4 5 24.2 37.0 54.2 65.0 69.7 76.1 18.4 43.6 58.3 64.7 5 24.2 37.0 54.5 57.3 47.9 90.1 25.8 28.9 61.7 76.1 76.1 76.7 20.8 41.7 55.9 61.7 76.</td><td>No. Wall 8 Wall 8 Wall 4 Center of the story diaphragm 1 33.7 513 $st4$ $st1$ $st2$ $st3$ $st3$ $st3$ $st4$ $st1$ $st2$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st3$ $st4$ $st4$ $st4$ $st3$ $st4$ $st4$ $st4$ $st4$ $st3$ $st4$ $st3$ $st3$ $st4$ $st4$ $st3$ $st4$ $st4$ $st3$ $st4$ st</td><td>No. Wall 8 Wall 8 Wall 4 Center of the store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store v</td><td>No. Wall 8 Wall 8 Wall 8 Wall 8 Center of the store diphragm 1 33.7 58.4 72.9 79.9 55.4 56.6 71.7 78.5 $s12$ $s13$ $s49.5$ 60.5 51.3 $s44$ $s1$ $s22.6$ $s13.7$ 58.4 72.9 79.9 55.4 56.6 71.7 78.5 51.3 $s13.5$ 51.3 $s49.5$ 51.3 <</td><td>No. Wall 8 Wall 4 Center of the storey diaphragm $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st4$ $st3$ $st4$ $st3$ $st4$ $st1$ $st4$ $st1$ $st4$</td><td>No. wall st wall st wall st wall st std stl sto sto</td><td>No. Wall 8 Wall 8 Wall 4 Center of the storey diaphragm 1 337 584 511 $s12$ $s13$ $s43$ $s11$ $s12$ $s13$ $s13$ $s14$ $s11$ $s12$ $s13$ $s14$ $s11$ $s12$ $s13$ $s14$ $s11$ $s12$ $s13$ $s45$ 513 $s14$ $s11$ $s12$ $s13$ $s45$ 513 $s14$ $s11$ $s22$ $s13$ $s45$ 513 $s45$ 513 $s47$ 566 71.7 78 49.5 56.5 51.7 51.9 51.3 /td></td></td<>	No. Wall 8 Wall 4 Center of the store vision and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store vision state and the store v	No. Wall 8 Wall 4 Center of the story diaphragm 1 31.7 58.4 72.9 79.9 35.4 56.6 71.7 78.5 23.0 36.8 85.5 51.3 2 33.7 58.4 72.9 79.9 35.4 56.6 71.7 78.5 23.0 36.8 85.5 51.3 2 34.9 57.7 71.4 78.9 39.3 59.2 72.6 78.8 32.6 60.5 63.2 63.2 63.2 51.3 54.4 56.0 69.7 76.1 88.2 58.3 64.4 56.0 69.7 77.7 20.8 49.5 60.5 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2	No. Wall 8 Wall 8 <td>No. Wall 8 Wall 8 Wall 4 Center of the storey diaphragm 1 33.7 58.4 72.9 79.9 35.4 56.6 71.7 78.5 23.0 36.8 48.5 51.3 2 34.9 57.7 71.4 78.9 39.3 59.2 72.6 78.8 31.0 56.5 61.7 76.5 63.5 63.5 63.2 64.4 3 32.4 57.5 70.9 35.4 56.0 69.7 76.1 18.4 43.6 58.3 64.4 4 18.2 37.0 54.2 65.0 69.7 76.1 18.4 43.6 58.3 64.4 5 24.2 37.0 54.2 65.0 69.7 76.1 18.4 43.6 58.3 64.7 5 24.2 37.0 54.5 57.3 47.9 90.1 25.8 28.9 61.7 76.1 76.1 76.7 20.8 41.7 55.9 61.7 76.</td> <td>No. Wall 8 Wall 8 Wall 4 Center of the story diaphragm 1 33.7 513 $st4$ $st1$ $st2$ $st3$ $st3$ $st3$ $st4$ $st1$ $st2$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st3$ $st4$ $st4$ $st4$ $st3$ $st4$ $st4$ $st4$ $st4$ $st3$ $st4$ $st3$ $st3$ $st4$ $st4$ $st3$ $st4$ $st4$ $st3$ $st4$ st</td> <td>No. Wall 8 Wall 8 Wall 4 Center of the store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store v</td> <td>No. Wall 8 Wall 8 Wall 8 Wall 8 Center of the store diphragm 1 33.7 58.4 72.9 79.9 55.4 56.6 71.7 78.5 $s12$ $s13$ $s49.5$ 60.5 51.3 $s44$ $s1$ $s22.6$ $s13.7$ 58.4 72.9 79.9 55.4 56.6 71.7 78.5 51.3 $s13.5$ 51.3 $s49.5$ 51.3 <</td> <td>No. Wall 8 Wall 4 Center of the storey diaphragm $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st4$ $st3$ $st4$ $st3$ $st4$ $st1$ $st4$ $st1$ $st4$</td> <td>No. wall st wall st wall st wall st std stl sto sto</td> <td>No. Wall 8 Wall 8 Wall 4 Center of the storey diaphragm 1 337 584 511 $s12$ $s13$ $s43$ $s11$ $s12$ $s13$ $s13$ $s14$ $s11$ $s12$ $s13$ $s14$ $s11$ $s12$ $s13$ $s14$ $s11$ $s12$ $s13$ $s45$ 513 $s14$ $s11$ $s12$ $s13$ $s45$ 513 $s14$ $s11$ $s22$ $s13$ $s45$ 513 $s45$ 513 $s47$ 566 71.7 78 49.5 56.5 51.7 51.9 51.3 /td>	No. Wall 8 Wall 8 Wall 4 Center of the storey diaphragm 1 33.7 58.4 72.9 79.9 35.4 56.6 71.7 78.5 23.0 36.8 48.5 51.3 2 34.9 57.7 71.4 78.9 39.3 59.2 72.6 78.8 31.0 56.5 61.7 76.5 63.5 63.5 63.2 64.4 3 32.4 57.5 70.9 35.4 56.0 69.7 76.1 18.4 43.6 58.3 64.4 4 18.2 37.0 54.2 65.0 69.7 76.1 18.4 43.6 58.3 64.4 5 24.2 37.0 54.2 65.0 69.7 76.1 18.4 43.6 58.3 64.7 5 24.2 37.0 54.5 57.3 47.9 90.1 25.8 28.9 61.7 76.1 76.1 76.7 20.8 41.7 55.9 61.7 76.	No. Wall 8 Wall 8 Wall 4 Center of the story diaphragm 1 33.7 513 $st4$ $st1$ $st2$ $st3$ $st3$ $st3$ $st4$ $st1$ $st2$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st3$ $st4$ $st4$ $st4$ $st3$ $st4$ $st4$ $st4$ $st4$ $st3$ $st4$ $st3$ $st3$ $st4$ $st4$ $st3$ $st4$ $st4$ $st3$ $st4$ st	No. Wall 8 Wall 8 Wall 4 Center of the store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store vision with store v	No. Wall 8 Wall 8 Wall 8 Wall 8 Center of the store diphragm 1 33.7 58.4 72.9 79.9 55.4 56.6 71.7 78.5 $s12$ $s13$ $s49.5$ 60.5 51.3 $s44$ $s1$ $s22.6$ $s13.7$ 58.4 72.9 79.9 55.4 56.6 71.7 78.5 51.3 $s13.5$ 51.3 $s49.5$ 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 <	No. Wall 8 Wall 4 Center of the storey diaphragm $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st2$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st3$ $st4$ $st1$ $st3$ $st4$ $st1$ $st3$ $st4$ $st3$ $st4$ $st3$ $st4$ $st1$ $st4$ $st1$ $st4$	No. wall st wall st wall st wall st std stl sto sto	No. Wall 8 Wall 8 Wall 4 Center of the storey diaphragm 1 337 584 511 $s12$ $s13$ $s43$ $s11$ $s12$ $s13$ $s13$ $s14$ $s11$ $s12$ $s13$ $s14$ $s11$ $s12$ $s13$ $s14$ $s11$ $s12$ $s13$ $s45$ 513 $s14$ $s11$ $s12$ $s13$ $s45$ 513 $s14$ $s11$ $s22$ $s13$ $s45$ 513 $s45$ 513 $s47$ 566 71.7 78 49.5 56.5 51.7 51.9 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3 51.3

Appendix D-3

© 2009 FPInnovations - Forintek Division. All rights reserved.

FPUnnovations

Maximum displacements of 4-storey building in N-S direction (with GWB), (mm) Table D.3.2

				Dwin	20						(7 1	
No.		Wal	1 19			Wal	125		Cen	ter of the str	v oou arev dianhra	8m
-	st1	st2	st3	st4	st1	st2	st3	st4	st1	st2	et3	s ct∆
-	30.9	57.4	88.7	111.4	30.9	57.3	88.5	111.2	26.7	46.6	62.6	66.7
2	27.4	52.8	76.3	91.0	27.4	52.7	76.1	90.8	32.9	52.1	69.0	72.3
θ.	24.7	47.5	71.9	87.5	24.7	47.5	71.8	87.4	25.7	49.7	77.1	86.9
4	27.6	47.9	76.9	97.8	27.6	47.9	76.8	97.6	23.0	44.6	67.0	75.3
Ş	30.3	54.2	81.7	101.1	30.3	54.3	81.7	101	17.2	31.5	41.2	43.7
و	31.8	54.5	78.9	97.2	31.7	54.4	78.9	97.2	18.1	34.9	54.6	62.4
7	31.2	62.1	92.3	111.0	31.1	62.0	92.2	110.9	33.2	55.0	68.6	70.9
8	15.6	33.4	57.1	76.8	15.6	33.3	57.2	76.9	16.4	35.7	52.2	57.2
6	30.2	55.6	81.1	97.2	30.2	55.4	80.9	96.9	23.9	41.3	56.5	59.1
10	31.3	56.3	78.4	93.3	31.3	56.3	78.4	93.4	21.0	36.3	48.7	51.3
11	33.7	62.9	90.1	108.0	33.6	62.8	0.06	107.9	25.2	42.3	61.2	67.4
12	43.1	75.1	102.8	120.3	43.1	75.0	102.6	119.9	24.2	44.4	69.7	78.7
13	25.3	41.8	59.6	73.2	25.3	41.8	59.5	72.9	16.5	31.4	47.0	52.9
14	29.9	47.2	63.5	74.5	29.9	47.1	63.4	74.4	30.7	48.1	62.1	65.0
15	27.6	50.6	75.6	92.7	27.6	50.6	75.6	92.7	26.1	48.8	74.5	81.4
16	23.3	41.5	60.9	75.4	23.3	41.5	60.9	75.3	15.3	26.9	40.7	47.4
17	21.9	38.3	57.2	70.4	21.9	38.2	57.1	70.3	16.9	34.0	49.2	53.9
18	27.2	46.8	64.7	78.2	27.2	46.8	64.7	78.1	18.3	34.3	49.3	53.8
19	18.1	37.9	61.6	78.3	18.1	37.8	61.5	78.1	18.2	28.9	45.4	48.7
20	30.1	55.8	84.2	103.4	30.1	55.8	84.3	103.5	26.1	50.4	68.5	75.0
Mean	28.1	51.0	75.2	91.9	28.0	50.9	75.1	91.3	22.8	40.9	58.3	63.5

© 2009 FPInnovations - Forintek Division. All rights reserved.

FPInnovations FORINTER

Appendix D - 4

Confidential

Final BSPB Report
Seismic Performance of 6-Storey Wood-Frame Buildings
Project No. 6482

Maximum displacements of 6-storey building in E-W direction (with GWB), (mm) Table D.3.3

		oth	01 5	76.0	121 7	87.8	613	70.0	79.4	899	78.2	57.6	76.1	777	83.7	73.1	08.8	64.2	7.10	57.0	2.4	77.8	76.2
	hraom	15 T	17 T	1.11	111 8	811	57.8	74.1	77.4	66.1	75.8	55.8	73.2	71.8	77.5	6.69	03.4	600	7-70 V	246	40.0	683	72.2
Vood	orev diar	ctA	64.6	505	817	612	461	58.4	69.4	59.3	65.5	49.5	60.5	56.7	60.5	62.4	75.9	50 5	58.5	41.8	43.0	54.9	59.1
SAPI	of the st	ef3	45.3	46.5	623	50.4	35.5	45.4	57.9	46.1	52.0	40.3	44.9	47.3	44.9	52.2	56.7	415	44.2	33.0	357	55.1	46.9
	Center	t,	32.7	32.4	43.8	38.4	25.1	33.4	42.8	31.0	37.2	27.8	30.1	33.8	32.2	41.5	40.4	28.1	30.9	22.9	28.9	43.6	33.8
		t1	181	14.6	25.4	22.2	13.7	17.0	23.1	17.0	22.2	15.3	14.0	18.5	18.0	26.5	22.2	151	15.4	12.6	16.4	25.4	18.6
		st6	124.8	6.7	102.3	128.0	103.8	102.0	114.0	98.8	123.1	97.4	117.1	116.0	81.6	86.8	103.6	105 3	72.4	0.96	80.7	111.7	103.1
	*	sts	112.9	85.9	92.7	116.7	94.2	92.4	102.3	86.1	112.0	87.4	105.1	105.2	73.2	79.6	92.0	94.9	66.0	86.3	70.6	7.66	92.8
	all 4	st4	91.1	69.1	7.77	95.0	79.5	77.8	84.7	64.8	93.1	72.8	90.1	89.0	60.2	69.8	74.0	77.6	56.4	71.9	52.4	80.3	76.4
	Ŵ	st3	67.4	54.4	60.7	70.9	63.0	61.6	65.0	45.8	72.0	57.3	73.3	71	46.1	57.4	56.4	58.6	44.9	56.5	39.3	60.0	58.5
		55	36.6	33.4	34.8	36.9	39.6	40.2	35.0	27.1	40.5	37.0	43.6	42.3	29.5	40.6	33.1	32.8	30.5	35.8	25.4	34.7	35.5
n-3D		st1	18.8	17.6	17.7	20.5	22.3	22.3	17.2	12.8	20.8	20.2	24.2	21.7	14.8	23.9	16.7	16.5	16.2	18.7	12.2	16.5	18.6
Drai		st6	122.0	96.7	99.2	127.3	107.9	106.9	118.1	100.2	117.6	98.4	122.0	114.0	87.5	87.4	105.6	104.9	79.4	101.2	77.9	109.8	104.2
		st5	109.9	86.3	89.7	115.9	98.0	97.7	106.8	87.7	107.5	88.7	110.8	103.9	79.1	80.9	94.8	94.9	71.8	89.9	68.4	98.4	94.1
	ali 8	st4	87.1	69.7	74.3	93.3	82.5	83.4	86.8	62.9	90.6	74.0	92.4	87.7	65.5	71.5	77.0	77.7	61.3	71.8	51.9	79.5	77.2
Í	W:	st3	62.7	52.3	56.5	67.7	64.1	63.9	63.6	44.9	69.0	56.7	70.3	68.2	50.2	58.5	58.1	57.3	48.5	53.4	37.9	58.1	58.2
		st2	41.4	33.9	36.5	40.3	43.0	45.7	37.7	26.3	43.4	36.7	45.4	44.2	32.7	42.3	38.3	35.0	32.6	35.5	24.8	34.9	37.5
		stI	20.6	17.0	18.4	20.7	21.8	23.5	18.0	12.3	21.2	18.7	22.3	21.4	16.8	24.7	19.3	17.0	17.2	18.1	11.9	16.1	18.8
	No.		-	2	ŝ	4	ŝ	9	Г	∞	6	10	11	12	13	14	15	16	17	18	19	20	Mean
							_		_	_					_					_	_		

© 2009 FPInnovations – Forintek Division. All rights reserved.

FPinnovations FORMATEK

Confidential

Confidential

n N-S direction (with GWB), (mm)	
building i	
Maximum displacements of 6-storey	
Table D.3.4	

		r	T	.	T	T	7	I	1	·	T	T-	T		T	T	TT	.	T	T	<u> </u>	T	<u> </u>
		st6	70.8	69.5	84.3	71.5	50.1	56.0	74.8	59.1	59.4	47.0	67.0	73.8	52.8	59.4	78.2	47.6	49.2	46.1	50.8	72.9	62.0
	hragm	st5	66.4	65.5	78.3	66.3	46.9	51.1	70.2	54.6	55.9	44.3	63.9	69.2	48.7	56.3	72.5	45.0	45.8	43.9	48.5	68.7	58.1
/ood	rey diap	st4	56.7	56.9	63.6	54.8	40.8	41.5	61.3	46.1	49.7	39.7	56.3	59.0	41.1	51.1	58.2	38.1	38.7	37.5	38.7	58.9	49.4
SAPW	of the sto	st3	43.2	47.1	45.6	41.6	33.4	32.6	48.8	35.0	40.7	32.3	45.3	47.1	31.9	43.5	45.1	29.7	31.7	29.8	29.4	46.0	39.0
	Center c	st2	29.1	32.0	28.9	27.2	23.0	22.5	32.8	22.6	27.9	22.6	30.3	32.6	21.3	32.9	29.8	20.1	22.2	19.8	19.3	30.5	26.4
		stl	14.2	15.7	16.4	14.1	12.4	11.5	17.6	10.8	14.7	12.4	17.2	17.3	11.2	19.9	14.0	10.4	10.8	10.0	10.3	15.2	13.8
		st6	129.1	122.0	147.4	146.8	198.9	171.5	125.8	150.4	180.2	177.6	145.3	96.9	196.9	147.2	168.9	204.2	180.2	150.4	77.2	131.8	152.4
		\$ţ	114.0	96.7	122.7	118.0	164.6	149.2	104.2	126.9	156.5	146.3	123.6	80.4	169.4	126.6	143.6	165.4	156.5	126.9	56.7	103.2	127.6
U.C.	25	st4	93.0	63.9	87.4	83.4	119.4	120.1	76.5	96.7	124.9	102.8	91.9	59.4	134.9	95.1	107.8	115.5	124.9	96.7	38.4	74.8	95.4
	Wall	st3	71.9	45.0	61.6	62.0	76.8	85.8	55.6	67.2	88.1	66.4	61.3	41.7	96.0	71.7	73.7	73.2	88.1	67.2	26.7	59.2	67.0
		st2	49.0	31.2	43.8	41.4	45.0	55.1	38.8	41.8	57.5	38.8	38.0	28.9	61.4	50.5	46.5	47.2	57.5	41.8	20.7	46.4	44.1
3D		stl	25.7	16.7	26.7	20.7	22.4	28.1	21.6	19.8	31.1	19.5	20.6	15.1	31.3	27.8	23.4	24.1	31.1	19.8	12.2	29.6	23.4
Drain		st6	129.1	122.6	147.9	146.8	199.0	171.9	125.6	150.5	181.0	178	145.5	97.1	197.1	147.7	169.5	204.4	181.0	150.5	77.0	132.3	151.4
		st5	114.0	97.1	123.0	118.0	164.7	149.5	104.1	127.0	157.1	146.6	123.7	80.5	169.6	127	144.0	165.5	157.1	127.0	56.5	103.5	127.8
0	61	st4	93.0	64.2	87.6	83.4	119.5	120.4	76.5	96.8	125.4	103.0	92.0	59.5	135.1	95.4	108.1	115.7	125.4	96.8	38.5	75.0	95.6
11~111	Wall	st3	71.9	45.2	61.8	62.0	76.9	86.0	55.6	67.3	88.5	66.5	61.3	41.8	96.1	71.8	73.8	73.3	88.5	67.3	26.8	59.3	67.1
-		5 <u>1</u> 2	49.1	31.3	43.8	41.4	45.0	55.3	38.9	41.9	57.6	39.0	38.2	29.0	61.5	50.5	46.6	47.2	57.6	41.9	20.8	46.4	44.1
	,	st1	25.7	16.8	26.7	20.7	22.4	28.2	21.7	19.8	31.2	19.5	20.7	15.1	31.4	27.9	23.5	24.2	31.2	19.8	12.2	29.6	23.4
	 o		-	7	e	4	Ś	9	~	∞	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Appendix D - 6

F Planovalions FORMATER

Table D.3.5Maximum accelerations of 4-storey building (with GWB), (g)

Confidential

	1100	et4	035	0.31	0.46	0.39	0.28	0.36	0.27	0.33	0.26	0.26	0.41	038	035	0.08	0.30	0.31	0.31	10.2	0.33	040	0.34
		st3	0.28	0.29	0.34	0.30	0.25	0.30	0.27	0.28	0.26	0.23	0.31	0.32	0.27	0.25	0.31	70.07	0.79	0.29	032	0.31	0.29
	S-N	st2	0.35	0.27	0.43	0.35	0.30	0.34	0.27	0.28	0.29	0.25	0.34	0.37	0.32	0.30	0.43	0.26	0.28	0.30	0.32	0.33	0.32
/ood		st1	0.34	0.34	0.36	0.32	0.33	0.34	0.19	0.33	0.33	0.28	0.30	0.24	0.35	0.40	0.42	0.29	0.29	0.33	0.42	0.46	0.33
NdVS		st4	0.41	0.38	0.50	0.43	0.28	0.32	0.40	0.46	0.29	0.30	0.50	0.44	0.28	0.40	0.46	0.26	0.37	0.39	0.48	0.50	0.39
	N	st3	0.39	0.36	0.43	0.39	0.25	0.28	0.39	0.42	0.26	0.28	0.38	0.39	0.24	0.28	0.39	0.23	0.32	0.31	0.41	0.42	0.34
	E-1	st2	0.31	0.39	0.41	0.39	0.26	0.29	0.34	0.34	0.30	0.24	0.39	0.32	0.24	0.35	0.37	0.25	0.26	0.30	0.40	0.39	0.33
		stI	0.32	0.28	0.39	0,44	0.30	0.28	0.28	0.31	0.30	0.27	0.28	0.40	0.22	0.37	0.38	0.21	0.23	0.35	0.44	0.44	0.32
	No.		-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Note:

The acceleration is the moving average acceleration over 0.1 sec relative to stationary reference coordinates. The reason the moving average is used is that sudden spikes in acceleration over a very short time will not have significant impact on the contents or residents in the building, while the moving average value is felt to be more correlated with content damage and human comfort.

© 2009 FPInnovations - Forintek Division. All rights reserved.

Maximum accelerations of 6-storey building (with GWB), (g) Table D.3.6

Confidential

						SAPU	Vood					
No.			Ъ	W		2	100	-	Ż	S	1	
	stl	st2	st3	st4	st5	st6	st1	st2	st3	st4	\$15	sth
1	0.32	0.29	0.38	0.33	0.33	0.38	0.22	0.28	0.22	0.31	0.26	0.37
2	0.30	0.28	0.25	0.28	0.34	0.38	0.27	0.21	0.20	0.24	0.27	0.30
3	0.30	0.35	0.38	0.41	0.39	0.45	0.32	0.35	0.33	0.40	0.37	0.40
4	0.40	0.34	0.33	0.30	0.31	0.35	0.33	0.31	0.25	0.30	0.26	034
5	0.24	0.26	0.29	0.25	0.23	0.31	0.30	0.22	0.23	0.28	0.26	0.31
9	0.24	0.29	0.31	0.29	0.27	0.36	0.29	0.25	0.28	0.34	0.30	0.37
۲	0.31	0.25	0.30	0.34	0.33	0.40	0.27	0.21	0.23	0.26	0.25	0.26
~	0.32	0.27	0.22	0.26	0.33	0.36	0.37	0.32	0.26	0.29	0.23	0.30
6	0.29	0.24	0.20	0.25	0.28	0.31	0.36	0.26	0.25	0.33	0.28	0.37
10	0.16	0.19	0.19	0.21	0.23	0.24	0.18	0.15	0.17	0.19	0.18	0.22
=	0.23	0.22	0.29	0.28	0.29	0.33	0.23	0.18	0.21	0.29	0.28	0.38
12	0.29	0.28	0.28	0.33	0.31	0.36	0.30	0.27	0.24	0.28	0.27	0.37
13	0.24	0.26	0.30	0.30	0.28	0.36	0.26	0.24	0.28	0.37	0.33	0.40
14	0.41	0.46	0.36	0.28	0.25	0.30	0.35	0.32	0.31	0.29	0.24	0.26
15	0.35	0.38	0.38	0.35	0.38	0.45	0.33	0.34	0.41	0.41	0.32	0.40
16	0.21	0.23	0.22	0.24	0.25	0.27	0.31	0.26	0.33	0.32	0.25	0.29
17	0.24	0.24	0.24	0.22	0.23	0.25	0.30	0.29	0.25	0.32	0.28	0.34
18	0.27	0.28	0.32	0.28	0.26	0.35	0.29	0.25	0.22	0.26	0.24	0.30
19	0.41	0.37	0.26	0.23	0.32	0.35	0.37	0.37	0.29	0.29	0.26	0.37
20	0.52	0.42	0.30	0.33	0.36	0.41	0.44	0.54	0.54	0.33	0.30	0.38
Mean	0.30	0.30	0.29	0.29	0.30	0.35	0.30	0.28	0.28	0.31	0.27	0 34
Vote:												

The acceleration is the moving average acceleration over 0.1 sec relative to stationary reference coordinates. The reason the moving average is used is that sudden spikes in acceleration over a very short time will not have significant impact on the contents or residents in the building, while the moving average value is felt to be more correlated with content damage and human comfort.

Confidential

Table D.4.1Inter-storey drift of 4-storey building in E-W direction (with GWB), (%)

Wall 8 Wall 4 Center of the storey diaphtragm 2 st3 st4 st1 st2 st3 st4 st3 st4 st1 st3 st4 st3 st3 st4 st3 st3 st4 st3 st3 st4 st3 st4 st3 st4 st3 st4 st3 st3 st4 st3 st4 st3 st4 st3 st4 st3 st3 st4 st3 st4 st3 st4 st3 st4 st4 st3 st4 st4 st4 st4 st4 st4 st4 st4 <t< th=""><th></th><th></th><th></th><th>Drait</th><th>n-3D</th><th></th><th>, , , , , , , , , , , , , , , , , , ,</th><th></th><th>-</th><th>SAPI</th><th>Nood</th><th></th></t<>				Drait	n-3D		, , , , , , , , , , , , , , , , , , ,		-	SAPI	Nood	
st3 st4 st1 st2 st3 st4 st1 st2 st3 st4 st1 st2 st3 st4 st1 st3 st4 st1 st2 st3 st4 st1 st3 st4 st3 st4 st4 st3 st4 st4 <td></td> <td>Wa</td> <td>11 8</td> <td></td> <td></td> <td>Wa</td> <td>all 4</td> <td></td> <td>Cer</td> <td>nter of the st</td> <td>orey diaphra</td> <td>m</td>		Wa	11 8			Wa	all 4		Cer	nter of the st	orey diaphra	m
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tî		st3	st4	st1	st2	st3	st4	stl	st2	st3	st4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	06.0		0.67	0.31	1.29	0.77	0.69	0.32	0.84	0.51	0.43	0.15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.87		0.61	0.30	1.43	0.75	0.62	0.30	1.19	0.63	0.41	0.14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.91		0.51	0.25	1.26	0.78	0.52	0.26	0.67	0.92	0.56	0.23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6		0.67	0.32	09.0	0.57	0.71	0.33	0.76	0.85	0.64	0.24
8 0.41 0.22 0.54 0.44 0.41 0.22 0.40 0.41 0.37 0.15 9 0.52 0.27 1.54 0.97 0.52 0.26 1.21 0.62 0.44 0.17 9 0.52 0.34 1.04 0.85 0.72 0.36 1.21 0.62 0.44 0.12 5 0.45 0.36 0.75 0.78 0.46 0.44 0.23 0.121 0.12 6 0.51 0.30 0.85 0.51 0.49 0.28 0.36 0.31 0.12 6 0.51 0.46 0.47 0.28 0.36 0.31 0.12 0.12 7 0.63 0.33 1.70 0.89 0.66 0.34 0.63 0.35 0.31 0.12 6 0.47 0.23 0.41 0.23 0.41 0.34 0.35 0.31 0.12 6 0.47 0.23 0.41<	0.5	2	0.46	0.27	0.93	0.47	0.44	0.26	0.36	0.40	0.32	0.12
9 0.52 0.27 1.54 0.97 0.52 0.24 0.44 0.62 0.44 0.12 9 0.75 0.34 1.04 0.85 0.72 0.34 0.79 0.66 0.63 0.17 5 0.45 0.25 0.78 0.46 0.44 0.24 0.63 0.63 0.17 6 0.51 0.34 1.40 0.72 0.61 0.36 0.63 0.12 0.63 0.34 1.40 0.72 0.61 0.36 0.63 0.31 0.12 0.63 0.33 1.70 0.89 0.66 0.34 0.60 0.34 0.79 0.31 0.12 0.63 0.24 0.64 0.24 0.28 0.66 0.63 0.24 0.12 0.64 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24	0.4	\$	0.41	0.22	0.54	0.44	0.41	0.22	0.40	0.41	0.37	0.15
9 0.75 0.34 1.04 0.85 0.72 0.34 0.79 0.86 0.63 0.17 5 0.45 0.25 0.78 0.46 0.44 0.24 0.40 0.41 0.32 0.12 5 0.51 0.30 0.85 0.51 0.49 0.28 0.60 0.31 0.12 6 0.51 0.30 0.85 0.51 0.49 0.28 0.60 0.31 0.12 7 0.63 0.36 0.36 0.36 0.56 0.31 0.12 9 0.65 0.34 0.60 0.58 0.60 0.24 0.28 0 0.63 0.33 1.70 0.89 0.66 0.34 0.60 0.56 0.24 0 0.47 0.29 0.64 0.72 0.41 0.56 0.63 0.10 0 0.47 0.29 0.64 0.58 0.26 0.61 0.24 0.10 0 0.47 0.24 0.73 0.41 0.23 0.41 0.24 0.10 0 0.47 0.29 0.64 0.58 0.26 0.61 0.61 0.24 0.10 0 0.44 0.24 0.73 0.41 0.61 0.61 0.73 0.14 0.23 0 0.44 0.23 0.61 0.26 0.61 0.61 0.61 0.24 0.10 1 0.44 0.73 0.64 0.73 0.61 0.71 0		6	0.52	0.27	1.54	0.97	0.52	0.26	1.21	0.62	0.44	0.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.0	6	0.75	0.34	1.04	0.85	0.72	0.34	0.79	0.86	0.63	0.17
	0.5	~	0.45	0.25	0.78	0.46	0.44	0.24	0.40	0.41	0.32	0.12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.5	5	0.51	0.30	0.85	0.51	0.49	0.28	0.36	0.37	0.31	0.12
0.63 0.33 1.70 0.89 0.66 0.34 0.68 0.55 0.31 0.0 0.45 0.24 0.62 0.46 0.47 0.23 0.41 0.55 0.31 0.0 0.47 0.29 0.93 0.46 0.47 0.23 0.41 0.34 0.24 0.10 0.057 0.29 0.93 0.46 0.27 0.78 0.43 0.24 0.10 0.41 0.24 0.64 0.58 0.29 0.61 0.61 0.29 0.20 0.41 0.24 0.47 0.23 0.36 0.36 0.36 0.29 0.20 0.41 0.24 0.41 0.23 0.31 0.43 0.31 0.16 0.29 0.21 0.12 0.54 0.31 0.23 0.31 0.23 0.31 0.16 0.26 0.21 0.29 0.21	3.0	0	0.63	0.34	1.40	0.72	0.61	0.29	0.58	0.60	0.56	0.28
0 0.45 0.24 0.62 0.46 0.47 0.23 0.41 0.34 0.24 0.10 6 0.47 0.29 0.93 0.42 0.46 0.27 0.78 0.43 0.24 0.10 6 0.47 0.29 0.93 0.42 0.46 0.27 0.78 0.43 0.29 0.20 0.20 0.20 0.20 0.29 0.20 0.20 0.20 0.20 0.29 0.20	5.0	S	0.63	0.33	1.70	0.89	0.66	0.34	0.64	0.68	0.55	0.31
6 0.47 0.29 0.93 0.42 0.46 0.27 0.78 0.43 0.44 0.23 3 0.57 0.30 1.16 0.64 0.58 0.29 0.61 0.61 0.59 0.20 4 0.46 0.24 0.73 0.47 0.23 0.61 0.59 0.20 4 0.41 0.23 0.41 0.25 0.36 0.31 0.12 0.91 0.24 0.78 0.41 0.25 0.36 0.31 0.16 0.21 0.54 0.31 0.78 0.53 0.51 0.25 0.51 0.71 0.77 0.37 0.16 0.56 0.31 1.15 0.57 0.56 0.71 0.77 0.77 0.32 0.56 0.29 1.09 0.57 0.57 0.57 0.57 0.57 0.71 0.27 0.21 <tr< td=""><td>2.0</td><td>0</td><td>0.45</td><td>0.24</td><td>0.62</td><td>0.46</td><td>0.47</td><td>0.23</td><td>0.41</td><td>0.34</td><td>0.24</td><td>0.10</td></tr<>	2.0	0	0.45	0.24	0.62	0.46	0.47	0.23	0.41	0.34	0.24	0.10
3 0.57 0.30 1.16 0.64 0.58 0.29 0.61 0.61 0.59 0.20 4 0.46 0.24 0.73 0.48 0.47 0.23 0.61 0.59 0.20 4 0.41 0.24 0.73 0.48 0.41 0.23 0.36 0.31 0.12 6 0.41 0.25 0.41 0.25 0.37 0.37 0.16 0.54 0.78 0.55 0.58 0.30 0.41 0.41 0.76 0.37 0.16 1.7 0.56 0.31 1.15 0.57 0.57 0.56 0.71 0.77 0.32 1.7 0.667 0.31 0.56 0.51 0.77 0.77 0.21 1.09 0.90 0.64 0.57 0.57 0.67 0.21 1.04 0.54 0.57 0.57 0.57	0.4	16 16	0.47	0.29	0.93	0.42	0.46	0.27	0.78	0.43	0.44	0.73
54 0.46 0.24 0.73 0.48 0.47 0.23 0.36 0.31 0.12 54 0.41 0.24 1.00 0.48 0.41 0.25 0.36 0.31 0.12 59 0.54 0.31 0.78 0.58 0.31 0.46 0.21 87 0.66 0.31 1.15 0.73 0.67 0.31 0.46 0.21 87 0.66 0.31 1.15 0.73 0.67 0.31 0.71 0.77 0.32 0.55 0.87 0.31 0.56 0.71 0.77 0.32 7 0.66 0.31 1.09 0.90 0.87 0.37 0.97 0.71 0.77 0.32 73 0.56 0.29 1.04 0.64 0.57 0.80 0.67 0.21	ö	ŝ	0.57	0.30	1.16	0.64	0.58	0.29	0.61	0.61	0.59	0.20
54 0.41 0.24 1.00 0.48 0.41 0.25 0.51 0.43 0.37 0.16 59 0.54 0.31 0.78 0.55 0.58 0.30 0.41 0.43 0.37 0.16 87 0.66 0.31 1.15 0.57 0.58 0.30 0.41 0.46 0.21 37 0.66 0.31 1.15 0.73 0.67 0.31 0.56 0.71 0.77 0.32 35 0.87 0.37 0.37 0.37 0.97 0.80 0.67 0.31 73 0.56 0.28 0.37 0.37 0.97 0.80 0.67 0.21	0	4	0.46	0.24	0.73	0.48	0.47	0.23	0.36	0.36	0.31	0.12
59 0.54 0.31 0.78 0.55 0.58 0.30 0.41 0.46 0.46 0.21 87 0.66 0.31 1.15 0.73 0.67 0.31 0.56 0.71 0.77 0.32 35 0.87 0.38 1.09 0.90 0.87 0.37 0.97 0.67 0.31 73 0.56 0.29 1.04 0.67 0.37 0.97 0.67 0.21 73 0.56 0.29 1.04 0.57 0.28 0.64 0.57 0.18	0	54	0.41	0.24	1.00	0.48	0.41	0.25	0.51	0.43	0.37	0.16
87 0.66 0.31 1.15 0.73 0.67 0.31 0.56 0.71 0.77 0.32 35 0.87 0.38 1.09 0.90 0.87 0.37 0.97 0.67 0.32 73 0.56 0.29 1.04 0.57 0.57 0.67 0.21	õ	59	0.54	0.31	0.78	0.55	0.58	0.30	0.41	0.41	0.46	0.21
35 0.87 0.38 1.09 0.90 0.87 0.37 0.97 0.80 0.67 0.21 73 0.56 0.29 1.04 0.57 0.57 0.47 0.18	0	87	0.66	0.31	1.15	0.73	0.67	0.31	0.56	0.71	0.77	0.32
73 0.56 0.29 1.04 0.64 0.57 0.28 0.64 0.57 0.47 0.18		5	0.87	0.38	1.09	0.90	0.87	0.37	0.97	0.80	0.67	0.21
	Ö	73	0.56	0.29	1.04	0.64	0.57	0.28	0.64	0.57	0.47	0.18

Storey height = 2750 mm

© 2009 FPInnovations - Forintek Division. All rights reserved.

F Plunovations

Appendix D – 9

Table D.4.2Inter-storey drift of 4-storey building in N-S direction (with GWB), (%)

Confidential

	ohraem	st4	0.27	0.18	0.37	0.30	0.24	0.29	0.11	0.24	0.13	0.21	0.31	0.37	0.23	0.29	0.25	0.27	0.27	0.27	0.29	0.29	
Pur/Nd	storev diar	, St3	0.79	0.68	1.12	0.92	0.58	0.76	0.52	0.82	0.57	0.55	0.87	0.98	0.63	0.68	1.16	0.59	0.57	0.77	0.83	0.80	
40	enter of the	st2	0.81	0.76	0.89	0.83	0.68	0.72	0.80	0.70	0.65	0.59	0.78	0.76	0.67	0.73	0.86	0.57	69.0	0.64	0.65	0.93	4
	Ū	stl	0.97	1.20	0.93	0.84	0.63	0.66	1.21	09.0	0.87	0.76	0.92	0.88	0.60	1.12	0.95	0.56	0.61	0.67	0.66	0.95	
-		st4	0.83	09.0	0.65	0.76	0.73	0.68	0.70	0.72	0.58	0.66	0.66	0.77	0.49	0.52	0.62	0.54	0.48	09.0	0.72	0.71	1
	125	st3	1.22	96.0	16.0	1.12	1.04	0.93	1.10	1.01	0.93	16.0	1.00	1.05	0.67	0.65	16.0	0.75	0.69	0.71	1.10	1.12	
-	Wal	st2	1.03	0.94	0.88	0.83	0.89	0.87	1.14	0.68	0.93	0.92	1.07	1.19	0.62	0.70	0.85	0.67	0.62	0.72	0.74	0.98	
-3D	Drain-3D W	st1	1.12	1.00	06.0	1.00	1.10	1.15	1.13	0.57	1.10	1.14	1.22	1.57	0.92	1.09	1.00	0.85	0.80	66.0	0.66	1.10	~~ -
Drair		st4	0.83	0.60	0.65	0.76	0.73	0.68	0.70	0.72	0.59	0.66	0.66	0.77	0.49	0.52	0.62	0.54	0.48	0.60	0.72	0.71	2 1
	19	st3	1.22	0.96	0.91	1.12	1.04	0.93	1.10	1.01	0.93	0.91	1.01	1.05	0.67	0.65	0.91	0.75	0.69	0.71	1.09	1.12	
	Wall	st2	1.03	0.94	0.88	0.83	0.89	0.88	1.15	0.68	0.93	0.92	1.07	1.19	0.63	0.70	0.85	0.67	0.62	0.72	0.74	0.98	
	Wall 19	st1	1.12	1.00	0.90	1.00	1.10	1.16	1.13	0.57	1.10	1.14	1.22	1.57	0.92	1.09	1.00	0.85	0.80	0.99	0.66	1.10	001
	No.		1	7	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Man

Note: Storey height = 2750 mm © 2009 FPInnovations - Forintek Division. All rights reserved.

Appendix D - 10

FPInnovations FORMTER

Table D.4.3Inter-storey drift of 6-storey building in E-W direction (with GWB), (%)

Confidential

	-	ct6	010	016	0.22	0.10	017	0.20	0.17	0.18	0.13	012	0.14	0.20	016	0170	10.0	0 15		016	012	010	110
	hraem	et 5	0.47	CE 0	0.50	0.43	0.37	0.39	0.37	0.37	0.23	0.21	0.31	0.41	0.40	0.32	0.60	0.78	0.270	0 33	57.0	0.45	0.38
/ood	rev dian	ct4	0.57	0.44	0 75	0 57	034	0.38	0.47	0.56	0.33	0.27	0.45	0.47	0.38	0.36	0 51	0.32	133	0 37	0.12	050	0.43
SAPW	f the sto	st3	0.61	0.63	0.62	0 59	0.42	0.43	0.73	0.49	0.47	0.35	0.55	0.54	0.43	0.55	0.61	0.37	0.38	0.41	0.50	0.66	0.52
	Center o	st2	0.56	0.61	0.49	0.57	0.43	0.43	0.62	0.44	0.49	0.38	0.60	0.57	0.41	0.56	0.61	0 38	0.40	0 30	0.44	0.59	0.50
		st1	0.52	0.57	0.60	0.51	0.45	0.42	0.64	0.39	0.53	0.45	0.63	0.63	0.41	0.72	0.51	0 38	0.39	0.36	0.37	0.55	0.50
		st6	0.45	0.39	0.42	0.47	0.35	0.41	0.42	0.47	0.44	0.37	0.44	0.39	0.33	0.30	0.43	0.40	0.30	0.38	0 46	0.43	0.40
		st5	0.79	0.64	0.65	0.83	0.54	0.66	0.65	0.82	0.70	0.55	0.68	0.62	0.50	0.50	0.67	0.65	0.46	0.61	0.78	0.74	0.65
	14	st4	0.87	0.68	0.64	0.88	0.61	0.62	0.72	0.75	0.77	0.59	0.73	0.68	0.52	0.51	0.67	0.69	0.48	0.57	0.61	0.81	0.67
	Wal	5f3	1.26	0.89	0.95	1.24	0.87	0.79	1.09	0.79	1.19	0.81	1.12	1.08	0.66	0.73	0.86	0.97	0.56	0.82	0.56	1.09	0.92
		st2	0.66	0.60	0.63	0.70	0.64	0.65	0.68	0.55	0.73	0.61	0.79	0.75	0.54	0.63	0.61	0.60	0.53	0.62	0.51	0.67	0.63
1-3D		st1	0.68	0.64	0.64	0.74	0.81	0.81	0.63	0.47	0.76	0.73	0.88	0.79	0.54	0.87	0.61	09:0	0.59	0.68	4.0	0.60	0.68
Drair		st6	0.46	0.39	0.43	0.46	0.37	0.41	0.42	0.46	0.39	0.35	0.41	0.43	0.32	0.32	0.42	0.38	0.31	0.41	0.44	0.41	0.40
		st5	0.83	0.65	0.70	0.85	0.57	0.65	0.73	0.84	0.64	0.56	0.67	0.69	0.50	0.49	0.68	0.64	0.47	0.66	0.76	0.73	0.66
	11 8	st4	0.91	0.75	0.68	0.93	0.67	0.68	0.84	0.83	0.79	0.66	0.83	0.72	0.58	0.55	0.73	0.74	0.53	0.69	0.62	0.87	0.73
	Wa	st3	0.98	0.79	0.75	1.00	0.77	0.75	0.96	0.74	0.94	0.73	0.98	0.89	0.66	0.68	0.76	0.81	0.59	0.70	0.52	0.94	0.80
		st2	0.77	0.62	0.67	0.80	0.78	0.81	0.73	0.54	0.84	0.68	0.88	0.85	0.59	0.68	0.69	0.66	0.58	0.65	0.50	0.71	0.70
		stl	0.75	0.62	0.67	0.75	0.79	0.86	0.65	0.45	0.77	0.68	0.81	0.78	0.61	0.90	0.70	0.62	0.63	0.66	0.43	0.59	0.69
	No			7	m.	4	ŝ	9	~	∞	6	2		12	13	14	15	16	17	18	19	20	Mean

Note: Storey height = 2750 mm © 2009 FPInnovations - Forintek Division. All rights reserved.

Appendix D – 11

Inter-storey drift of 6-storey building in N-S direction (with GWB), (%) Table D.4.4

Г Т Т T T Т

Confidential

		st6	0.14	0.14	0.36	0.25	0.20	0.29	0.10	0.21	0.19	0.13	0.22	0.30	0.33	0.23	0.24	0.74	0.28	0.22	0.27	0.30	023
	hraem	ŞŞ	0.60	0.59	131	0.77	0.58	0.64	0.41	0.59	0.62	0.32	0.66	0.71	0.80	0.53	101	0.59	0.56	0.55	0.70	0.74	0.66
Vood	prev diap	st4	0.83	0.64	0.75	0.65	0.48	0.64	0.59	0.67	0.56	0.37	0.55	0.55	0.60	0.62	0.70	0.62	0.56	0.46	0.59	0.95	0.62
SAPV	of the sto	st3	0.66	0.61	0.67	0.61	0.46	0.54	0.61	0.58	0.58	0.46	0.58	0.52	0.52	0.58	0.69	0.57	0.56	0.47	0.51	0.76	0.58
	Center	st2	0.55	0.69	0.73	0.63	0.53	0.58	0.73	0.60	0.65	0.47	0.56	0.67	0.65	0.63	0.69	0.57	0.61	0.44	0.53	0.68	0.61
		stl	0.66	0.53	0.90	0.81	0.49	0.56	0.84	0.63	0.85	0.59	0.53	0.65	0.63	0.95	0.79	0.57	0.57	0.45	0.59	0.93	0.68
		st6	0.77	1.01	0.92	1.08	1.25	0.87	0.86	5.45	0.92	1.22	0.98	0.69	1.01	0.89	1.05	1.41	6.97	0.97	0.83	1.27	1.52
-		st5	1.05	1.46	1.45	1.45	1.67	1.15	1.16	4,62	1.20	1.68	1.34	0.84	1.27	1.15	1.41	1.86	5.73	1.24	1.02	1.97	1.74
	125	st4	0.93	0.85	1.18	1.04	1.62	1.26	06.0	3.65	1.36	1.34	1.11	0.70	1.42	1.19	1.41	1.64	4.10	1.18	0.57	1.04	1.42
	Wal	513	0.84	0.64	0.80	0.83	1.27	1.14	0.75	2.73	1.19	1.10	0.93	0.61	1.28	0.93	1.06	1.28	2.63	86.0	0.41	0.69	1.10
		st2	0.85	0.55	0.68	0.75	0.91	1.00	0.68	2.06	1.03	0.76	0.73	0.54	1.11	0.86	0.88	0.84	1.70	0.82	0.38	0.63	0.89
n-3D		stl	0.94	0.61	0.97	0.75	0.81	1.02	0.79	1.25	1.13	0.71	0.75	0.55	1.14	1.01	0.85	0.88	0.97	0.72	0.44	1.08	0.87
Drai		st6	0.77	1.02	0.92	1.08	1.25	0.87	0.86	5.47	0.92	1.23	0.98	0.69	1.01	0.89	1.05	1.41	1.25	0.97	0.83	1.28	1.24
		st5	1.06	1.46	1.46	1.45	1.67	1.15	1.16	4.64	1.21	1.68	1.34	0.83	1.27	1.15	1.41	1.86	1.65	1.24	1.02	1.98	1.53
	11 19	st4	0.93	0.85	1.18	1.04	1.62	1.26	16.0	3.66	1.37	1.35	1.11	0.70	1.42	1.20	1.41	1.64	1.52	1.18	0.57	1.04	1.30
	Wa	st3	0.84	0.64	0.80	0.83	1.27	1.15	0.75	2.74	1.20	1.11	0.93	0.61	1.28	0.93	1.07	1.28	1.14	0.98	0.42	0.69	1.03
		st2	0.85	0.55	0.69	0.75	0.91	1.00	0.68	2.07	1.04	0.76	0.73	0.54	1.11	0.86	0.88	0.84	0.79	0.82	0.38	0.63	0.84
		stl	0.94	0.61	0.97	0.75	0.81	1.02	0.79	1.25	1.13	0.71	0.75	0.55	1.14	1.01	0.85	0.88	0.97	0.72	44.0	1.08	0.87
	No.		-	2	З	4	s	9	~	∞	6	10	=	12	13	14	15	16	17	18	19	20	Mean

т

Note: Storey height = 2750 mm

FPInnovations FORMATER

Appendix D – 12

D.5 Maximum shear wall deformation at each storey

Shear wall deformation of 4-storey building in E-W direction (with GWB), (mm) Table D.5.1

	-			Drai	n-3D		-	
Ño.		Wa	11.8			Wa	11 4	
	stl	st2	st3	st4	stl	st2	st3	st4
	32.9	23.2	16.2	6.0	34.1	19.2	16.4	6.0
7	33.8	22.5	14.7	5.9	37.9	18.6	14.3	5.0
ŝ	31.5	23.4	11.8	5.1	33.5	19.4	11.6	5.3
4	17.1	17.4	16.2	6.8	15.2	13.7	17.0	6.1
ŝ	23.5	13.1	10.9	5.7	24.7	11.7	10.0	5.1
9	15.1	12.0	9.4	3.9	14.0	10.2	9.2	3.7
7	40.0	28.5	12.4	5.1	40.8	24.5	11.4	4.0
8	23.1	25.7	18.7	6.8	27.3	21.0	17.1	6.2
6	17.8	13.4	10.4	4.9	20.3	10.9	9.7	4.0
10	21.2	13.7	12.1	6.0	22.4	12.1	11.0	4.8
11	36.1	20.4	15.5	6.9	37.4	18.0	14.0	4.9
12	42.9	24.4	14.9	6.5	45.2	22.5	15.5	6.3
13	15.0	12.5	10.6	4.6	15.9	10.6	10.6	3.8
14	23.5	11.3	11.6	6.7	24.6	10.0	11.1	5.5
15	31.4	21.4	13.3	5.7	30.5	15.6	13.3	5.1
16	18.3	13.3	10.5	4.7	19.0	11.4	10.5	3.9
17	25.8	13.5	9.4	4.6	26.4	11.2	9.1	42
18	18.8	14.9	12.9	6.5	20.4	13.0	13.3	53
19	28.4	22.6	16.1	6.3	30.2	18.0	15.4	5.4
20	26.9	27.4	21.7	7.8	28.5	22.6	20.8	6.4
Mean	26.2	18.7	13.5	5.8	27.4	15.7	13.1	C S

Confidential

F PEnnovations

Shear wall deformation of 4-storey building in N-S direction (with GWB), (mm) Table D.5.2

	r	1	r	<u> </u>	1			I	<u> </u>	1	<u> </u>	1			-	1	T	I	г	r	r—	1	
		st4	6.6	6.2	6.9	9.7	0.6	8.0	6.4	7.0	5.8	6.3	5.9	9.2	5.0	7.8	6.4	5.7	3.9	7.6	8.3	8.7	7.2
	25	st3	22.2	16.0	15.8	20.4	18.4	16.5	18.2	17.4	16.2	14.2	16.1	1.61	10.2	11.5	15.5	12.4	9.3	11.1	19.6	20.4	16.0
	Wall	st2	20.3	19.0	17.3	16.4	17.3	17.6	22.7	12.0	18.5	17.2	20.8	25.3	11.3	13.8	16.4	12.4	9.8	13.7	13.7	18.6	16.7
-3D		st1	26.0	23.4	21.0	24.4	26.4	28.6	25.9	12.0	25.9	26.7	28.4	38.5	21.6	26.3	23.4	19.9	18.0	23.5	13.9	25.0	23.9
Drain		st4	8.2	5.0	5.5	8.4	7.8	6.8	4.3	5.5	4.6	5.4	4.0	6.7	4.5	6.9	5.1	4.6	3.3	6.7	7.5	7.9	6.0
	19	st3	20.6	14.5	14.5	18.9	17.0	15.2	15.9	15.9	14.8	12.6	13.7	17.7	9.2	10.5	14.0	11.1	8.3	10.0	18.2	18.5	14.6
	Wall	st2	19.1	17.9	16.2	15.4	16.1	16.5	20.9	10.9	17.4	16.0	18.6	24.2	10.4	13.0	15.2	11.5	9.0	12.8	12.8	16.8	15.5
		st1	24.8	22.7	20.3	24.0	25.7	28.0	24.0	11.5	25.2	25.9	27.0	37.7	21.1	25.8	22.6	19.4	17.5	22.9	13.4	24.0	23.2
	No.		1	2	3	4	5	6	7	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Confidential

Appendix D-14

Shear wall deformation of 6-storey building in E-W direction (with GWB), (mm) Table D.5.3

	T	1	1	Т	Т		1	T	T	<u> </u>	Т		T	Т	1	T	Т	1	1	Γ	Т	1	Г
		st6	5.0	54	52	22	4.0	4.7	4.3	5,6	4.8	3.5	4.6	4.6	3.6	4.5	4.5	4.3	3.3	5.1	6.4	5.3	4.7
		st5	14.9	12.1	11.9	15.8	9.2	11.7	10.6	16.2	12.5	8.9	11.7	11.0	8.5	6.6	11.5	11.5	7.8	11.7	16.0	13,9	11.9
	l[4	st4	18.1	13.2	12.0	18.3	11.3	11.7	13.3	14.8	15.5	11.0	13.9	13.3	6.7	10.2	12.1	13.4	8.9	11	11.5	16.7	13.1
	Wa	st3	29.9	19.8	21.7	29.3	19.4	17.6	24.8	17.1	28.3	17.6	25.6	25.0	14.3	16.7	18.9	22.4	11.9	18.6	12.1	25.2	20.8
		st2	14.6	13.3	14.3	16.0	14.4	14.6	15.1	11.8	16.4	13.9	18.3	17.1	11.9	14.7	13.4	13.2	11.9	13.9	11.4	14.7	14.2
1-3D		stl	17.0	16.0	16.1	18.9	20.6	20.6	15.7	11.6	19.0	18.5	22.5	19.9	13.3	22.4	15.2	14.8	14.8	17.1	10.9	14.7	17.0
Draii		st6	6.9	6.7	7.3	6.7	5.0	5.9	6.6	8.0	5.2	5.2	6.3	7.2	4.6	5.8	6.7	5.9	4.4	6.9	7.9	7.5	6.3
4		st5	17.6	14.3	15.0	17.7	10.7	12.7	15.2	19.2	12.2	10.8	13.7	14.6	9.3	10.0	14,1	12.4	9.1	13.7	17.3	16.5	13.8
	11 8	st4	20.6	17.0	14.4	20.8	14.0	14.8	19.0	19.3	17.2	14.3	18.9	15.6	12.2	11.7	16.0	16.0	11.2	15.3	13.6	20.5	16.1
	Wa	st3	23.1	18.8	16.8	23.6	17.4	17.4	22.7	17.2	22.3	17.0	23.7	20.8	14.8	15.8	17.5	18.6	13.3	16.2	11.6	22.6	18.6
		st2	19.1	14.9	16.3	19.3	18.8	20.1	17.9	12.7	20.2	16.5	21.6	20.5	13.8	16.4	17.2	15.7	13.8	15.3	11.6	17.0	16.9
		stl	19.5	15.6	17.0	19.5	20.3	22.3	16.6	11.7	19.6	17.2	20.8	19.8	15.4	23.5	18.2	15.6	16.0	17.1	10.8	14.8	17.6
	No.		-	7	б	4	5	9	~	~	6	10	Ξ	12	13	14	15	16	17	18	19	50	Mean

Confidential

FPInnovations

Shear wall deformation of 6-storey building in N-S direction (with GWB), (mm) Table D.5.4

Drain-3D	Wall 25	st5 st6 st1 st2 st3 st4 st5 st6	12.4 3.5 20.8 14.3 10.8 12.5 13.6 4.8	22.6 8.5 14.0 10.4 9.1 11.0 24.2 10.2	23.1 7.5 24.2 13.0 11.5 17.9 24.7 9.0	18.2 6.1 16.2 12.7 10.9 13.9 19.8 7.6	15.4 4.0 17.6 14.2 16.4 21.8 19.6 6.4	10.3 3.3 22.2 16.4 15.9 16.0 11.9 4.4	12.4 3.5 17.8 11.2 10.2 12.4 14.0 4.6	20.4 6.1 30.6 15.7 12.3 17.9 21.9 7.3	12.2 3.9 25.7 18.2 18.5 20.2 14.3 5.8	22.9 8.5 15.9 13.0 16.9 19.6 25.4 11.1	14.8 5.9 16.7 11.3 13.1 15.3 16.8 7.4	10.7 7.3 13.9 10.5 9.9 10.4 11.4 8.1	10.0 2.9 25.1 18.8 18.2 18.9 12.0 4.2	14.4 5.6 23.8 15.6 13.9 19.3 16.2 7.2	18.8 7.5 18.9 14.4 15.3 22.4 20.9 9.5	18.5 5.9 19.4 14.1 15.5 21.0 22.9 8.8	20.1 7.5 22.6 13.6 17.1 23.3 23.2 10.2	11.3 4.6 16.0 12.6 12.1 15.4 13.4 5.5	13.4 7.4 12.1 9.8 6.2 7.5 14.5 8.3	36.7 17.1 27.2 13.8 9.5 16.8 39.0 19.6	
	•	st4 st5	1.2 12.4	9.8 22.6	6.4 23.1	2.5 18.2	7.4 15.4	3.9 10.3	1.2 12.4	6.5 20.4	8.0 12.2	7.3 22.9	3.7 14.8	9.7 10.7	5.5 10.0	7.5 14.4	0.3 18.8	7.7 18.5	0.7 20.1	3.7 11.3	6.9 13.4	5.2 36.7 1	
	Wall 19	2 st3 s	.4 9.7 1	.0 8.5 5	.4 10.5 1	.8 9.8 1	.2 12.7 1	.9 13.9 1	.6 9.4 1	.8 11.0 1	.8 16.6 1	.4 14.7 1	.4 11.7 1	.3 9.3 5	0 14.9 1	7 12.4 1	.4 13.5 2	.2 12.7 1	.7 14.1 2	7 10.7 1	7 5.9 (.5 8.8 1	
 -		stl st	20.2 13	13.7 10	23.7 12	15.7 11	17.1 13	21.4 14	17.2 10	30.0 14	25.1 16	15.5 12	16.2 10	13.8 10	24.2 17	23.3 14	18.4 13	18.9 13	22.1 12	15.6 11	12.0 9.	26.8 13	
	No.		-	7	ε	4	S	9	٢	∞	6	10	=	12	13	14	15	16	17	18	6I	20	

Confidential

Confidential

Maximum uplift forces of 4-storey building in E-W direction (with GWB), (kN) Table D.6.1

		st4	75	5.8	1.6	11.0	6.4	7.4	3.4	9.5	6.8	63	12.8	13.1	4.8	8.7	10.3	6.1	8.1	9.6	13.9	9.6	8.5
	nethod B	st3	16.4	17.2	22.2	23.8	14.5	16.6	6.3	21.7	14.2	13.6	22.1	21.8	11.1	16.9	20.9	13.6	14.9	20.0	25.7	23.5	17.9
	Wall 4 - n	st2	20.0	32.2	38.5	36.7	23.2	24.4	18.0	34.5	24.4	24.3	33.4	33.7	21.5	27.8	33.2	21.9	24.9	23.4	36.1	33.9	28.3
Vood		st1	20.2	38.8	34.3	33.5	21.9	24.8	20.9	32.9	22.7	22.0	33.0	33.0	23.6	37.8	33.1	22.7	28.5	25.8	32.3	36.0	28.9
SAPV		st4	8.3	9.4	11.7	13.5	15.3	8.3	8.8	14.7	7.2	12.1	11.1	13.4	7.8	10.4	11.1	11.7	11.6	10.7	13.9	14.1	11.3
	nethod A	st3	16.9	16.0	27.7	27.8	22.7	22.1	18.0	23.5	14.1	18.1	21.2	24.2	18.2	21.4	22.3	24.4	25.5	21.1	30.0	26.4	22.1
	Wall 4 - r	st2	34.2	34.1	49.5	46.5	33.8	36.0	24.8	46.1	31.1	33.5	42.9	43.7	35.3	34.9	45.8	40.1	37.3	30.2	58.5	38.1	38.8
		stl	47.3	54.0	64.6	63.0	42.4	51.9	32.1	57.5	47.6	53.2	65.0	68.5	45.1	53.6	62.4	50.3	49.7	42.6	69.4	43.0	53.2
		st4	0	0.3	1.1	3.0	0.4	0	0	2.4	0	0	0.1	1.9	0	1.5	0	44.0	0	1.1	1.3	3.8	5.1
-	l] 4	st3	9.4	11.3	8.3	13.5	8.7	0	6.4	14.6	4.0	9.6	11.4	12.2	5.9	10.7	7.9	20.2	3.2	11.4	12.0	17.9	10.4
T Vice	Wa	st2	30.8	32.9	14.0	27.3	16.6	17.0	32.2	39.2	22.2	23.2	32.7	31.9	24.0	8.5	25.8	44.0	21.1	31.2	33.0	42.1	27.5
1-3D		stl	59.8	63.2	36.3	36.8	32.9	36.7	66.4	62.7	43.5	37.0	62.2	58.1	45.2	25.5	49.4	20.2	48.3	52.6	61.7	70.6	48.4
Draii		st4	0.0	0.2	1.1	2.2	0.3	0.0	0.0	1.9	0.0	0.0	0.1	1.6	0.0	1.1	0.0	33.9	0.0	0.8	0.9	2.6	2.3
	11 8	st3	8.2	8.0	7.3	12.1	7.1	0.0	4.7	10.5	3.3	7.3	8.1	10.8	4.7	9.2	7.1	18.3	2.8	8.0	8.3	12.1	7.9
	Wa	st2	20.8	22.3	11.6	22.4	15.8	12.4	20.9	26.5	16.5	18.5	28.1	25.0	17.2	8.7	18.6	36.6	15.1	21.1	21.8	27.8	20.4
		st1	39.0	49.3	29.4	30.6	32.3	27.9	42.9	50.7	37.3	36.2	51.3	46.0	32.1	23.2	36.5	15.1	33.1	36.5	40.8	46.0	36.8
	No.		-	17	ς	4	S	6	2	~	6	9	=	12	13	14	15	16	17	18	19	20	Mean

Appendix D ~ 17

F Phinovations

	6-Storey Wood-Frame Buildings	
Final BSPB Report	Seismic Performance of	Project No. 6482

Confidential

Table D.6.2Maximum uplift forces of 4-storey building in N-S direction (with GWB), (kN)

	-	c†4	13.0	20	16.2	14.5	6 11	14.5	4.9	13.0	7.5	10.8	14.6	175	12.0	15.0	12.8	12.7	12.5	13.6	14.9	14.6	12.9
	method B	et3	26.5	240	28.5	27.5	23.2	25.3	12.1	25.5	20.8	23.4	27.5	27.8	24.2	23.6	27.8	23.1	24.3	25.6	26.7	26.4	24.7
	Vall 25 - 1	st5	376	36.3	39.2	37.7	34.1	33.5	15.2	36.9	31.6	33.1	36.9	36.5	34.3	34.0	38.2	31.7	37.2	33.7	34.3	37.7	34.5
Vood		stl	34.8	40.3	39.6	38.6	33.3	32.0	21.1	33.8	36.0	32.9	38.8	38.2	33.5	40.3	41.4	30.7	34.3	32.6	31.8	38.1	35.1
SAPV		st4	2.5	5.2	5.4	5.8	6.3	5.6	4.1	8.5	3.4	5.1	4.6	6.9	33	63	52	4.6	4.6	4.9	7.8	8.9	5.5
	method A	st3	5.2	7.9	7.8	9.0	8.8	7.7	6.6	15.0	6.0	7.2	8.6	1.6	6.3	9.1	11.0	6.2	8.1	7.6	10.9	12.8	8.5
	Vall 25 - 1	st2	7.2	11.3	11.2	9.2	12.1	11.6	7.3	17.8	11.0	11.3	15.7	11.5	11.5	12.5	15.5	10.7	11.7	11.9	16.5	16.7	12.2
		stI	8.0	15.4	14.3	12.9	14.7	14.3	8.8	19.3	15.3	14.7	22.6	16.8	14.9	13.7	21.0	15.0	16.2	14.3	19.6	19.1	15.5
		st4	13.0	13.0	14.7	13.0	10.0	12.5	13.7	15.2	8.3	12.8	12.6	17.3	7.9	16.6	9.3	7.5	5.5	16,4	16.8	17.9	12.7
	1 25	st3	33.1	32.2	34.2	32.8	29.9	34.1	34.5	37.9	26.9	34.0	33.7	40.0	25.2	25.6	30.7	18.8	23.4	30.3	40.3	39.4	31.8
	Wal	tî	64.2	63.3	57.8	54.7	56.2	65.6	67.7	66.8	57.6	60.8	67.1	64.7	44.5	42.2	62.3	40.9	51.5	54.8	64.1	70.0	58.8
-3D	1111	st1	100.1	93.9	79.7	78.1	88.9	98.2	104.1	87.7	91.4	94.9	103.6	94.2	73.8	63.7	95.7	71.8	83.7	80.9	82.8	101.7	88.4
Drair		st4	11.5	12.8	14.6	13.0	9.8	11.1	11.0	14.5	6.0	11.6	9.9	16.7	7.2	18.3	7.1	6.7	4.8	17.9	16.8	17.0	11.9
	I 19	st3	36.4	35.7	38.9	37.3	33.7	37.8	35.9	42.6	28.2	38.0	35.3	44.6	26.9	27.1	33.6	19.3	23.8	34.0	45.9	43.6	34.9
	Wal	st2	73.8	73.8	64.7	63.7	65.0	76.6	76.2	76.3	66.3	70.9	75.6	75.1	48.6	46.3	72.4	44.6	55.9	60.2	72.3	80.8	67.0
		stl	115.1	111.3	91.1	92.8	105.1	115.1	115.1	101.3	108.4	112.4	115.1	111.0	84.8	73.9	113.8	83.2	96.1	92.9	94.8	115.1	102.4
	No			7	ę	4	ŝ	6	2	8	6	10	=	12	13	14	15	16	17	18	19	20	Mean

FPInnovations FORINTER

Appendix D-18

Confidential

(mm)
GWB),
(with
direction
×.
щ с
.ជ
ldir
bui
rey
-stc
of 4
on
nati
forr
t de
plifi
я В
inui
laxi
Σ
ŝ
0.6
le I
Tab

		st4	0.52	0.40	0.63	0.76	0.45	0.51	0.24	0.66	0.47	0.44	0.89	16.0	0.33	0.61	0.72	0.43	0.56	0.67	0.96	0.67	0.59
	ethod B	st3	1.14	1.19	1.54	1.65	1.00	1.15	0.43	1.51	66.0	0.94	1.53	1.51	0.77	1.17	1.45	0.95	1.04	1.39	1.78	1.63	1.24
	Val] 4 - m	st2	0.71	1.14	1.36	1.30	0.82	0.86	0.64	1.22	0.86	0.86	1.18	1.19	0.76	86.0	1.17	0.78	0.88	0.83	1.28	1.20	1.00
/ood		stI	0.72	1.37	1.21	1.18	0.78	0.88	0.74	1.16	0.80	0.78	1.17	1.17	0.83	1.34	1.17	0.80	1.01	0.91	1.14	1.27	1.02
SAPV		st4	0.58	0.65	0.81	0.93	1.06	0.57	0.61	1.02	0.50	0.84	0.77	0.93	0.54	0.72	0.77	0.81	0.81	0.74	0.96	0.98	0.78
	nethod A	st3	1.17	1.11	1.92	1.93	1.57	1.53	1.25	1.63	0.98	1.26	1.47	1.68	1.26	1.49	1.55	1.69	1.76	1.46	2.08	1.83	1.53
	Wall 4 - n	cts	1.21	1.21	1.75	1.64	1.20	1.27	0.88	1.63	1.10	1.19	1.52	1.55	1.25	1.24	1.62	1.42	1.32	1.07	2.07	1.35	1.37
		stl	1.67	1.91	2.28	2.23	1.50	1.83	1.13	2.03	1.68	1.88	2.30	2.42	1.60	1.89	2.21	1.78	1.76	1.51	2.46	1.52	1.88
	:	st4	0	0.02	0.08	0.21	0.03	0	0	0.17	0	0	0.01	0.13	0	0.10	0	0	0	0.07	60.0	0.27	0.11
	II 4	st3	0.65	0.78	0.58	0.94	0.61	0	0.44	1.02	0.28	0.66	0.79	0.85	0.41	0.74	0.55	0.19	0.22	0.79	0.83	1.24	0.66
	Wa	st2	1.09	1.16	0.50	0.97	0.59	0.60	1.14	1.39	0.79	0.82	1.16	1.13	0.85	0.30	0.91	0.65	0.75	1.10	1.17	1.49	0.93
1-3D		stl	2.12	2.24	1.29	1.31	1.17	1.30	2.36	2.22	1.54	1.31	2.21	2.06	1.60	0.06	1.75	1.35	1.71	1.86	2.19	2.50	1.71
Drair		st4	0.00	0.02	0.08	0.15	0.02	0.00	0.00	0.13	0.00	0.00	0.01	0.11	0.00	0.08	0.00	0.00	0.00	0.05	0.06	0.18	0.04
1	11.8	st3	0.57	0.55	0.51	0.84	0.50	0.00	0.32	0.73	0.23	0.51	0.57	0.75	0.33	0.64	0.49	0.17	0.19	0.56	0.58	0.84	0.49
	Wa	st2	0.74	0.79	0.41	0.80	0.56	0.44	0.74	0.94	0.58	0.66	1.00	0.89	0.61	0.31	0.66	0.54	0.54	0.75	0.77	0.99	0.69
		stl	1.38	1.75	1.04	1.09	1.15	0.99	1.52	1.80	1.32	1.28	1.82	1.63	1.14	0.06	1.29	1.01	1.18	1.29	1.45	1.63	1.29
	No.		1	5	с) 	4	5	9	~	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean

FPUnnovations FORINTER

Appendix D – 19

Maximum uplift deformation of 4-storey building in N-S direction (with GWB), (mm) Table D.6.4

Confidential

- m-	-	1	-	1	<u> </u>	1	T		÷			_	_	_	-	-		-	_	_	1	-	
		st4	0.97	0.66	1.12	1.01	0.82	1.01	0.34	06.0	0.52	0.75	101	1.21	0.89	105	0.89	0.88	0.87	0.95	1 03	1 02	0.89
	nethod B	st3	1.84	1.67	1.98	1.91	1.61	1.75	0.84	1.76	1.44	1.62	161	1.93	1.68	1.64	1.92	1.60	1.68	1_78	1.85	1 83	1.71
:	/all 25 - 1	St2	1.33	1.28	1.39	1.33	1.21	1.19	0.54	1.31	1.12	1.17	131	1.29	1.21	1.20	135	1.12	1.32	1.19	1.21	133	1.22
/and	M	st1	1.23	1.43	1.40	1.36	1.18	1.13	0.75	1.20	1.27	1.16	1.37	1.35	1.19	1.43	1,46	1,09	1.21	1.15	1.12	1.35	1.24
NDVD		st4	0.17	0.36	0.37	0.40	0.44	0.39	0.29	0.59	0.24	0.35	0.32	0,48	0.23	0.44	0.36	0.32	0.32	0.34	0.54	0.62	0.38
	nethod A	st3	0.36	0.55	0.54	0.63	0.61	0.54	0.46	1.04	0.42	0.50	0.60	0.63	0.44	0.63	0.76	0.43	0.56	0.53	0.76	0.88	0.59
	/all 25 - n	st2	0.25	0.40	0.40	0.33	0.43	0.41	0.26	0.63	0.39	0.40	0.56	0.41	0.41	0.44	0.55	0.38	0.41	0.42	0.58	0.59	0.43
	M	stl	0.28	0.54	0.51	0.45	0.52	0.51	0.31	0.68	0.54	0.52	0.80	0.59	0.53	0.48	0.74	0.53	0.57	0.50	0.69	0.68	0.55
		st4	06.0	0.90	1.02	16.0	0.70	0.87	0.96	1.05	0.57	0.89	0.87	1.20	0.55	1.15	0.65	0.52	0.38	1.14	1.17	1.24	0.88
	25	st3	2.30	2.24	2.38	2.28	2.08	2.37	2.40	2.63	1.87	2.36	2.34	2.78	1.75	1.78	2.14	1.30	1.62	2.11	2.80	2.74	2.21
	Wall	st2	2.28	2.24	2.05	1.94	1.99	2.33	2.40	2.37	2.04	2.15	2.38	2.29	1.58	1.50	2.21	1.45	1.82	1.94	2.27	2.48	2.09
-3D		stl	3.55	3.33	2.82	2.77	3.15	3.48	3.69	3.11	3.24	3.36	3.67	3.34	2.61	2.26	3.39	2.54	2.97	2.87	2.94	3.61	3.14
Drain		st4	0.80	0.89	1.02	0.00	0.68	0.77	0.76	1.01	0.42	0.81	0.69	1.16	0.50	1.27	0.49	0.47	0.33	1.24	1.17	1.18	0.83
	19	st3	2.53	2.48	2.70	2.59	2.34	2.63	2.49	2.96	1.96	2.64	2.45	3.10	1.87	1.88	2.34	1.34	1.66	2.36	3.19	3.03	2.43
	Wall	st2	2.62	2.61	2.29	2.26	2.30	2.72	2.70	2.71	2.35	2.51	2.68	2.66	1.72	1.64	2.57	1.58	1.98	2.13	2.56	2.87	2.37
		st1	4.67	3.94	3.23	3.29	3.73	4.25	5.54	3.59	3.84	3.99	5.32	3.94	3.01	2.62	4.04	2.95	3.41	3.29	3.36	4.68	3.83
	No.		-	7	m.	4	S	9	2	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Appendix D – 20

© 2009 FPInnovations - Forintek Division. All rights reserved.

FPunnovations FORINTER
Final BSPB Report
Seismic Performance of 6-Storey Wood-Frame Buildings
Project No. 6482

Table D.6.5Maximum uplift forces of 6-storey building in E-W direction (with GWB), (kN)

Confidential

Г			5	15	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			. 4	L	4	5	6	w.			-	9	0	4	~		2 10	
					1 4			j ∞ 	(m)		2	~	5	00 00	50	-	20 80	0	6	2		6	
	dB	et y	3		217	17	4	<u>1</u> 6.	8	16	12.	9.4	÷	10	17	16	21.	12.	Ξ	19	20	21	i ¥
	metho	ct A	3	31.3	340	318	22.1	22.6	15.7	29.7	22.3	173	25.2	30.6	22.3	23.4	26.3	20.0	21.6	24.9	7.62	28.8	25.6
	all 4 -	c+3	34.4	37.3	35.4	34.0	27.4	27.7	22.3	26.7	27.6	21.8	29.9	33.2	25.9	33.9	34.5	26.5	24.6	28.8	33.6	34.2	30.0
	ß	et)	20 2	471	41.1	45.6	34.8	34.2	31.6	34.5	35.8	29.2	37.8	44.0	32.0	44.7	46.3	31.3	31.3	31.2	35.1	39.7	37.4
/ood		4	373	45.7	44 8	38.4	33.4	34.1	31.2	32.1	37.4	32.9	40.0	43.0	34.0	52.5	44.6	30.7	31.9	29.0	29.8	37.9	37.0
SAPW		st6	15.5	7.8	5.6	14.0	7.8	9.8	8.5	15.4	9.8	8.6	11.4	15.0	10.1	13.6	15.2	10.7	10.4	9.0	16.8	13.4	11.6
		st5	35.7	16.3	26.7	30.0	17.5	24.1	13.4	36.9	25.1	17.9	23.8	33.7	22.4	24.3	28.8	20.1	21.8	18.1	25.8	24.2	24.3
	thod A	st4	33.1	12	32.7	31.8	23.5	28.3	13.5	34.6	29.6	20.9	25.6	32.3	27.7	31.8	30.3	21.0	24.7	21.3	24.8	23.1	26.4
	4 - mé	st3	25	33	8.5	7.8	8.8	3.9	9.7.6	8.6	4.4	1.8	7.8	7.8	. 9.7	6.6	7.3	2.0	8.7	0.7	2.7	2.2	9.99
	Wall	ti Li	9 61	8.0	5.0	7.8 6	8.8	0.9 6	4.2 2	2.0 5	7.7 6	2.6 4	8.4 5	1.5	6.0	0.1	2.1 6	4.2 4	9.5 5.9	8.9 4	0.8	4.0	6.5 5
			2.8 6	4	3.6	5.8	5 4	6.4 7	.6 2	.4 5	0.3 6	.4 5	17 5	6.8 6	4.2 7	2.2 7	7.7 6	5.5 4	5 6.	7.1 3	.7 5	5.7 4	17 5
		ST C	0	2	14	4 95	81	11	4	35	12	95	5 97	4 96	12	11. 11.	4 10'	84	6	9 67	4 79	52	7 94
		st	-	5	4	0 9	0	9.0	8	6 3.	0	0	8 0.0	2 0.	0	0	5 0.	2 2	0	1	l S	4	- - -
		ST5	Ξ	4	4	11,11	4.8	0.10.	3 10.	17.	8.4	3.6.8	12.	5 12.	1 5.5	1 8.5	\$ 12.	7 10.	1.5	7]4.	20.	3 14	5 11.
	all 4	st4	29.2	34.5	31.2	30.4	16.2	31.9	33.8	41.1	30.1	28.3	36.1	28.6	21.4	14.4	34.8	26.7	16.1	26.7	39.8	39.8	29.6
	W	сts С	57.3	62.8	49.0	50.5	37.7	57,4	64.8	68.4	56.9	53.6	67.6	48.5	40.3	35.1	61.5	47.7	33.5	51.3	58.4	71.2	53.7
		st2	94.0	87.1	67.2	69.4	71.4	0.16	102.1	92.6	92.5	86.5	101.0	64.5	60.6	57.5	97.1	74.1	54.8	80.6	67.0	100.8	80.6
-3D		st1	133.7	114.1	84.2	104.7	108.1	126.3	140.4	113.3	125.9	121.5	137.1	80.0	88.3	86.1	134.3	101.1	90.0	108.7	87.1	132.8	110.9
Drain		st6	:	51	1.5	0.4	0.0	0:0	0.0	27	9.0	0.0	0,4	0.3	0.0	0.3	0.3	0.0	0.0	1.5	3.6	1.4	0.7
		ŝĊ	8.5	9.8	9.9	9.4	4.3	8.8	7.2	10.9	6.5	4.9	8.7	8.8	44	7.5	2	8.3	1.6	12.4	13.0	7.8	8.0
	~	st4	21.9	21.8	25.0	24.2	13.3	22.1	21.8	0.9	23.7	21.1	22.8	22.9	17.8	12.3	21.8	21.2	12.4	20.4	26.0	24,4	1.12
	Wall	st3	6.1	2.5	0.8	1.1	1.9	40	4.2	6.8	5.4	6.0	5.2	0.6	5.3	6.6	2.5	6.0	7.1	0.8	9.6	6.9	0.8 2
		й Ц	4.2 4	9.1 4	8.9 4	7.2 4	9.8	6.4 4	2.5 4	2.0 4	2.4	6.8 3	3.3 4	2.7 3	15	6.5 2	5.3	6.5 4	0.5 2	3.5 4	4.2 4	7.1 4	8.0 4
	-	tl s	5.7 5	3.4 5	5.5	55	5.0 5	.1 5	026	33	9.4	6.4 6	2.3 7	.7 5	11 2	8	5	4.	-9 -4	5.3 6.	.0 5	0	7 5
	ć	SI	76	10	12	22	96	<u>8</u>	Ē	20	Î	ð	12	69	8	E	8	8	52	66	75	6	an 87
	ž		-	5	ŝ	4	S	9		∞	م ا	비	=	12	9	4	2	믭	1	18	19	ដ	З Х

© 2009 FPInnovations - Forintek Division. All rights reserved.

Appendix D-21

	orey Wood-Frame Buildings	
Final BSPB Report	Seismic Performance of 6-Str	Project No. 6482

Maximum uplift forces of 6-storey building in N-S direction (with GWB), (kN) Table D.6.6

Confidential

		νtζ		000	0.7	1.0	t. +		10	0	1 -		<u>, , , , , , , , , , , , , , , , , , , </u>	0.0			<u>, , , , , , , , , , , , , , , , , , , </u>	0	4.	4.4		20.0	
		4				11	2 2			30		- 0	0.0			+ +		1 7.7	1 1 1	040		- - - -	
	thod E	44		7 0	20	2 2 0		0		10	10	4 - 2 -		1 e	2 2	70	2 0	1	4 C	70		7 ¢	3 C
	5 - me) 0 0 2 0 4	+ +	• •	ה פי ז ר		5 č			5 G.	2 C	1 6 1 6	- 4			ο Γ	5 F	0 0 1 0	5 0 7 0	3 k 9 -	5 F	
	Wall 2	0	1 -	+ ÷ - -		4 4	5 C	14 14	8	000	0		2 4		0. C	2 5 - - ? 4) (1 2 2 2		5 ¢	v < 4 v	<u>)</u>	7 9 7 ₹	
P		5		F 🔽		2 C 2 C	2 46	946	4 33	0	0	11	30	- 4 - 4	2 6		2 2			0 2 2 2	0 0 0 1 2	우 [고 이 ~	
VPW00		st 2	35	11- 315	∜ख 	22	9 40	50	0 37	8	9 54	44	10		ς Γ		3			10 0			
S		Ē	i v		ř r	i 4	2		- - - -	2	6	er N	2			i v		5 -		5 C			
	A bo	st	~			6	66	6	4	10	7 7.0	-	=							1 0	- 0		-
	- meth	st4	130	14	15	14	12.(12.	9.2	19,	T	12.5	-	10	1		1				1 1	19	5
	/all 25	st3	13.9	212	164	4	15.4	13.5	11.0	20.6	12.9	14.2	202	146	18.0	17	2	12		10.1	12 6	16.8	15.9
	×	st2	18.8	347	27.8	23.9	25.8	24.9	17.9	31.6	21.9	22.3	33.5	30.1	20.0	196	28.0	201	31	26.5	18.7	27.9	25.7
		stl	18.7	37.0	32.0	29.1	26.6	28.3	18.1	29.7	27.1	24.8	37.1	201	33.3	376	28.5	25.5	1440		204	25.7	27.8
		st6	7.0	12.3	82	18.2	15.5	6.4	9.6	11.9	2.7	18.9	12.4	13 5	8.5	17.0	4	219	103	2 1 1 1 1	18.9	23.8	13.1
		ŝţ	25.6	33.6	31.7	41.4	41.3	27.3	26.3	36.1	17.1	42.3	37.3	315	30.6	C 1 5	19.6	48.7	42.0	345	41.2	49.5	34.8
	125	st4	49.1	63.9	56.6	74.7	79.8	60.3	48.3	66.8	41.2	72.1	70.8	46.6	67.5	573	44.2	86.9	7.57	66.4	56.1	79.3	63.2
	Wal	St3	73.1	79.8	71.0	100.5	115.1	105.0	72.4	80.6	7.77	108.5	98.7	57.2	115.1	76.4	75.4	115.1	1151	105.8	61.8	92.2	89.8
		st3	18.8	94.5	82.0	21.0	75.7	60.3	119	04.4	34.5	42.7	23.5	66.0	75.1	12.6	14.4	71.4	58.5	47.4	57.9	95.5	24.0
	,	stl	78.6 1	10.0	08.6	63.3 1	20.1 1	18.8 1	77.4	42.7	97.2 1	82.9 1	56.7 1	7.8	32.3 1	48.2	64.3 1	14.0	02.6 1	89.3 1	4.6	6.0	62.0 1
Drain-3	-	st6	5.3 1	1.8 1	5.3	7.9 1	7.3 2	2.1 2	8.3 1	0.8	0.3 1	6.9 1	9.5 1	5.0	0.3	6.0 1	1	4.5 2	4.7 2	0.4 1	9.1	8.2	0.8
	-	t5 :	5.3	6.8 1	4.7	7.2 1	7.7	3.8	6.2	0.1	5.8	5.3	9.9	4.6 1	4.2	0.6 1	9.3	6.1 1	3.2 1	6.2	6.6 1	8.7 2	6.1 1
	-	t4 S	0.8	9.9 3	1.1 3	1.6 4	2.8	3.9 2	9.4	2.2 4	0.5 1	0.0 4	0.3 3	9.8 3	5.3 2	1.3 4	1 9.4	0.8 4	4.4 4	4.6 3	2.2 4	5.1 5	8.0 3
	Vall 19	ς α	0.5	1 6	9 6	8.3 8	5.2 8	5.1 6.	-9 4	3	1	5.1 8(8.0 8	6 4	5.1 6	8.6	4	5.2 9	5.1 8.	5.8	3	2.1 9	.5 6
3		St St	.1] 76	08 0.	8 75	4 108	2 11	9 H	.1 74	38	0. 0	5 11:	5 10	4 61	3 11	.2 82	38	-11 6	11 6.	5	3 67	.3 100	94
		St.2	1 128	5 103	9 87.	7 130	5 190	4 182	3 126	1 115	5 148	4 156	5 134	1 72.	3 190	5 121	9 12:	3 180	4 169	0 159	62.	9 103	0 134
		stI	201.	120.(125.(183.	246	252.4	190.	162.	224:	203.4	174.	111.	268	164.	185.(236.	224.4	212.(49.9	104.5	182.(
14	ò.	,	-	2	ŝ	4	S	اھ	2	~	6	2	11	12	13	14	15	16	17	18	19	20	Mean

© 2009 FPInnovations - Forintek Division. All rights reserved.

Appendix D – 22

FPinnovations

Confidential

Maximum uplift deformation of 6-storey building in E-W direction (with GWB), (mm) Table D.6.7

_	1	-	- -			1	_	-		1		ĩ	1	1	7	7	1	,	_	Т	1-	<u> </u>	<u> </u>
		st6	0.64	0.40	0.61	0.60	0.47	0.59	0.26	0.51	0.38	0.41	0.38	0.55	0.63	0.53	0.60	0.47	0.44	0.47	0.51	0.66	0.51
		st5	1 29	61 1	1.48	1 22	1.04	1.12	0.59	1.14	0.85	0.65	0.94	136	1.21		1.49	0.83	0.82	1.12	1.45	1.50	1.12
	ethod	st4	2.22	2.16	2.35	220	1.53	1.56	1.09	2.06	1.55	1.20	1.75	2.12	1.55	1.62	1.83	1.39	1.50	1.73	2.06	2.00	1.77
	li 4 - m	st3	1.22	1 32	1.25	1.20	0.97	0.98	0.79	0.94	0.98	0.77	1.06	1.18	0.92	1.20	1.22	0.94	0.87	1.02	1.19	1.21	1.06
	Wa	st2	4	1.66	1.45	1.61	1.23	1.21	1.12	1.22	1.26	1.03	1.34	1.56	1.13	1.58	1.64	1.11	1.11	1.10	1.24	1.40	1.32
poo		stI	080	.98	96.0	0.82	12.0	0.73	0.67	0.69	0.80	0.70	0.85	0.92	0.73	1.12	0.95	0.66	0.68	0.62	0.64	0.81	0.79
SAPW.	╞	st6	07	54	.67 (.97 (54	.68 (.59 (-07 (.68 (.59 (79 (04	02.0	.94	.05 (.74 (.72 (0.62	117	.93 (.81
		Ŭ.	47 1	.13 0	.85 0	08	51	.67 0	.93 0	.56 1	74 0	24 (.65	34	.55	69.	66	.39 (.51 (25	61.	.68	69.
	thod A	14	29 2	.18 1	27 1	20 2	63	96	.94 0	40 2	05 1	45 1	78 1	24 2	92 1	20 1	.10 1	.45 1	.71 1	48 1	72 1	.60	.83 1
	4 - mei	t3 S	21 2	53 1	78 2	40 2	73 1	26 1	98 0	11 2	28 2	70 1	04 1	05 2	39 1	47 2	38 2	49 1	08 1	44	86 1	85 1	100
	Wall	2 S	19 2.	70 1.	00 2	2 7	72 1.	51 2.	86 0.	84 2	40 2	86 1.	06 2.	18 2.	51 2.	48 2	20	56 1.	10	38 1.	79 1.	56 1.	00 2
		I si	20 2.	55 1.	07 3.	05 2.	74 1.	49 2.	91 0.	83 1.	57 2.	04 1.	09 2.	07 2.	66 2.	40 2.	30 2.	68 1.	09 2.	44 1.	71 1.	62 1.	03 2.
		15	0	0	4 3.(3.10	÷	0 2.4	0	3 1.	5	2	4 2.(3 5	<u>ب</u> ب	33	3 2.	1.	2.	3 1.	 8		1 2.0
		ste	7 0.1	2 0.2	0.1	0.0	0	5 0.0	0	2 0.2	3 0	0 1	0.0	0.0	0	0.0	7 0.0	3 0	3	8 0.1	9 0.3	0.1	8 0.1
		st5	0.7	1.0	1.0(0.8	0.3	0.7(0.7	1.2	0.5	0.4	0.8	0.8	0.3	0.5	. 0.8	0.7	0.13	ie 0.9	1.30	1.00	0.7
	all 4	st4	2.03	2.43	2.17	2.11	1.12	2.21	2.35	2.86	2.09	1.96	2.51	1.99	1.49	1.00	2.42	1.85	1.12	1.85	2.77	2.76	2.05
	W	st3	2.03	2.23	1.74	1.79	1.34	2.03	2.30	2.42	2.02	1.90	2.40	1.72	1.43	1.24	2.18	1.69	1.19	1.82	2.07	2.52	1.90
		st2	3.33	3.09	2.38	2.46	2.53	3.23	3.62	3.28	3.28	3.07	3.58	2.29	2.15	2.04	3.44	2.63	1.94	2.86	2.37	3.57	2.86
n-3D		stl	2.87	2.45	1.81	2.25	2.32	2.71	3.01	2.43	2.70	2.60	2.94	1.72	1.89	1.85	2.88	2.17	1.93	2.33	1.87	2.85	2.38
Drai		st6	0.08	0.15	0.10	0.03	0.00	0.00	0.00	0.15	0.0	0.00	0.03	0.02	0.00	0.02	0.02	0.00	0.00	0.10	0.25	0.10	0.05
		st5	0.59	0.68	0.69	0.65	0.30	0.61	0.50	0.76	0.45	0.34	0.60	0.61	0.31	0.52	0.56	0.58	0.11	0.86	0.90	0.54	0.56
	18	st4	1.52	1.52	1.74	1.68	0.93	1.54	1.52	1.80	1.64	1.47	1.59	1.59	1.24	0.85	1.52	1.47	0.86	1.42	1.81	1.69	1.47
	Wa	st3	1.64	1.51	1.45	1.46	1.13	1.56	1.57	1.66	1.61	1.29	1.60	1.38	1.25	1.06	1.51	1.45	0.96	1.45	1.76	1.66	1.45
		st2	1.92	2.10	1.73	2.03	2.12	2.00	2.22	2.20	2.57	2.37	2.60	1.87	1.83	1.65	1.96	2.00	1 44	2.25	1.92	2.38	2.06
		stl	1.65	2.22	1.56	1.68	2.06	1.89	2.79	1.08	2.35	2.28	2.62	1.50	1.72	1.58	I.94	1.87	1.71	1.42	1.61	2.08	1.88
	° N		-	7	m	4	s	و	-	∞	6	10	11	12	13	14	15	16	17	18	19	50	Mean
			1		E												1	<u>i</u>					

© 2009 FPInnovations - Forintek Division. All rights reserved.

Appendix D – 23

Page 183 HOU-2011-00026, Part One

Confidential

Maximum uplift deformation of 6-storey building in N-S direction (with GWB), mm Table D.6.8

	[st6	0.61	0.67	1.25	1.00	0.80	1.12	0.33	0.85	0.91	0.55	0.94	1.16	1.16	0.92	1.02	0.98	1.03	0.81	1.10	1.20	0.92
	В	st5	1.79	1.74	2.16	1.92	1.64	1.81	0.92	1.81	1.78	1.17	1.81	1.83	1.90	1.67	2.02	1.70	1.70	1.67	1.89	1.95	1.74
	nethod	st4	1.47	1.43	1.41	1.36	1.09	1.27	0.70	1.23	1.19	0.89	1.18	1.27	1.28	1.34	1.42	1.32	1.28	1.02	1.33	1.47	1.25
	11 25 - 1	st3	1.72	1.80	1.74	1.68	1.40	1.49	96.0	1.40	1.46	1.25	1.46	1.59	1.62	1.69	1.79	1.60	1.56	1.30	1.49	1.72	1.54
	Wa	st2	0.88	1.16	1.20	1.10	0.99	66.0	0.72	96.0	1.15	0.89	1.02	1.13	1.13	1.19	1.10	66.0	1.09	0.81	1.03	1.11	1.03
Vood		stl	0.75	1.11	1.32	1.12	0.86	1.09	0.80	1.03	1.18	0.95	1.05	1.15	1.12	1.41	1.21	1.03	1.10	0.79	1.08	1.28	1.07
SAPV		st6	0.36	0.28	0.21	0.32	0.20	0.24	0.21	0.37	0.27	0.26	0.33	0.35	0.19	0.35	0.44	0.28	0.28	0.27	0.45	0.33	0.30
	A	st5	0.58	0.51	0.49	0.66	0.46	0.45	0.30	0.71	0.48	0.53	0.78	0.69	0.42	0.45	0.62	0.63	0.48	0.50	0.65	0.55	0.55
	method	st4	0.49	0.60	0.54	0.51	0.45	0.43	0.32	0.68	0.42	0.45	0.75	0.68	0.54	0.61	0.61	0.53	0.53	0.50	0.44	0.57	0.53
	ll 25 - 1	st3	0.49	0.75	0.58	0.50	0.55	0.48	0.39	0.73	0.46	0.50	0.73	0.52	0.64	0.62	0.64	0.47	0.65	0.56	0.44	0.59	0.56
	Wa	st2	0.40	0.74	0.59	0.51	0.55	0.53	0.38	0.68	0.47	0.48	0.72	0.43	0.64	0.56	0.60	0.47	0.69	0.57	0.40	0.60	0.55
		stl	0.40	0.79	0.68	0.62	0.57	0.61	0.39	0.64	0.58	0.53	0.79	0.43	0.71	0.59	0.61	0.54	0.76	0.65	0.44	0.55	0.59
		st6	0,49	0.86	0.57	1.27	1.08	0.44	0.66	0.83	0.19	1.31	0.86	0.94	0.59	1.18	0.28	1.52	1.34	0.78	1.31	1.44	0.90
		st5	1.78	2.33	2.20	2.87	2.87	1.90	1.83	2.51	1.19	2.94	2.59	2.19	2.13	2.58	1.36	3.39	2.98	2.40	2.86	3.12	2.40
	25	st4	1.74	2.27	2.00	2.65	2.83	2.14	3.35	2.37	1.46	2.56	2.51	1.65	2.39	2.03	1.57	3.08	2.68	2.36	1.99	2.77	2.32
	Wall	st3	2.59	2.83	2.52	3.56	7.27	3.72	2.57	2.86	2.76	3.84	3.50	2.03	4.35	2.71	2.67	9.17	5.19	3.75	2.19	0.00	3.50
		st2	2.55	2.03	1.76	2.60	3.77	3.44	2.55	2.24	2.88	3.06	2.65	1.42	3.76	2.42	2.45	3.68	3.40	3.16	1.24	2.05	2.65
-3D		st1	3.83	2.36	2.33	3.50	4.72	4.69	3.80	3.06	4.23	3.93	3.36	2.10	4.98	3.18	3.53	4.59	4.35	4.06	0.96	1.83	3.47
Drain		st6	0.37	0.82	0.44	1.24	0.50	0.15	0.58	0.75	0.02	1.17	0.66	1.04	0.02	1.11	0.14	1.01	1.02	0.72	1.33	1.53	0.73
		st5	1.76	2.56	2.41	3.28	2.62	1.65	1.82	2.78	1.10	3.15	2.77	2.41	1.69	2.82	1.34	3.20	3.00	2.52	3.24	3.43	2.48
-	19	st4	1.80	2.48	2.16	2.89	2.93	2.27	3.44	2.56	1,44	2.84	2.85	1.77	2.32	2.17	1.58	3.22	2.99	2.64	2.21	3.17	2.49
	Wall	ŝ	2.70	3.05	2.69	3.84	11.00	4.11	2.66	3.02	2.80	4.48	3.83	2.18	6.40	2.93	2.78	13.35	7.29	4.03	2.38	3.62	4.46
		5 <u>5</u>	2.75	2.21	1.88	2.80	4.27	3.92	2.70	2.47	3.17	3.36	2.88	1.55	4.66	2.60	2.64	3.88	3.64	3.42	1.34	2.21	2.92
		stl	4.31	2.59	2.68	3.94	5.29	5.42	4.70	3.48	4.82	4.36	3.74	2.38	5.76	3.53	3.97	5.07	4.82	4.55	1.07	1.97	3.92
ـــــ ¦	ÖZ		1	5	3	4	5	و	-	∞	6	10	11	12	13	14	15	16	17	81	19	20	Mean

© 2009 FPInnovations – Forintek Division. All rights reserved.

Appendix D – 24

FPInnovations FORINTER

Appendix E

Results of NEESWood Capstone Wood-Frame Building Designed in Accordance with 2010 NBCC

E.1 Fundamental period of the Building

ding (s)	N-S	0.94	
6-storey buil	E-W	0.87	1.04
ulding (s)	N-S	0.78	6
4-storey bu	E-W	0.59	9.0
		Drain-3D	SAPWood

E.2 Maximum base shear

			_		,										3			1	1	.	T	τ	1
	Vood	S-Z	213.0	179.4	223.2	227.1	298.8	236.0	176.2	215.7	222.0	134.9	173.1	260.2	288.0	400.8	256.7	225.4	210.8	266.2	325.7	299.4	241.6
ilding (kN)	SAP	E-W	284.8	203.6	380.8	311.6	331.4	270.7	358.6	289.9	265.0	255.7	195.0	319.7	241.5	366.6	256.0	283.6	271.3	310.8	354.2	357.3	295.4
6-storey bui	-3D	N-S	488.0	421.0	492.0	497.0	511.0	493.0	444.0	532.0	528.0	516.0	372.0	428.0	428.0	559.0	536.0	509.0	518.0	441.0	408.0	474.0	479.8
	Drain	E-W	487.0	393.0	438.0	442.0	481.0	493.0	390.0	531.0	502.0	492.0	395.0	395.0	494.0	510.0	497.0	495.0	488.0	446.0	365.0	463.0	459.9
	/ood	N-S	242.6	237.6	282.0	254.7	206.7	217.2	142.9	210.2	161.6	207.6	187.1	247.2	219.7	323.9	263.9	169.0	226.7	237.5	287.3	265.8	229.6
lding (kN)	SAPW	E-W	313.6	381.7	247.5	272.1	165.7	179.1	226.5	181.6	151.3	156.6	202.0	299.8	138.4	312.7	266.6	106.9	130.8	237.0	295.9	323.6	229.5
4-storey bui	-3D	S-Z	265.0	262.0	275.0	296.0	266.0	271.0	283.0	257.0	270.0	268.0	282.0	269.0	271.0	297.0	270.0	306.0	265.0	281.0	270.0	293.0	275.9
	Drain	E-W	446.0	421.0	435.0	386.0	395.0	361.0	483.0	354.0	411.0	435.0	478.0	465.0	318.0	513.0	387.0	366.0	431.0	369.0	547.0	521.0	426.1
	No.		1	7	33	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Appendix E-2

E.3 Maximum displacement and acceleration at each storey

Confidential

Maximum displacements of 4-storey building in E-W direction (without GWB), (mm) Table E.3.1

																		- -			-	_	
	m	st4	86.3	110.9	86.6	81.6	49.4	513	111.5	74.1	72.6	51.5	81.1	86.2	50.8	54.6	72.5	49.4	50.9	58.8	67.2	87.5	717
ood	rey diaphras	st3	61.3	65.0	55.7	53.8	37.2	36.8	72.5	45.0	45.9	38.4	59.0	64.6	36.6	44.8	47.7	33.7	36.3	37.8	40.8	55.3	48.4
SAPW	ter of the sto	st2	43.3	44.0	37.3	35.7	23.7	26.9	45.2	27.2	27.7	27.7	40.0	45.5	25.3	33.1	31.8	22.0	23.1	23.4	28.8	37.4	32.4
	Cent	stl	23.2	25.1	19.0	18.6	14.3	15.4	22.4	13.4	14.2	16.1	19.9	25.1	13.9	19.7	18.0	12.0	13.6	13.2	14.7	20.7	17.6
		st4	110.0	126.3	103.0	90.1	97.9	73.2	137.6	101.9	85.7	98.6	129.9	127.7	63.9	94.6	104.3	89.5	105.0	79.0	105.4	94.2	100.9
	15	st3	60.5	53.9	48.3	47.2	47.8	42.8	72.2	44.6	48.1	53.3	65.4	57.4	34.7	47.2	49.1	47.5	56.7	41.7	44.9	55.7	51.0
	Wa	512 2	30.5	27.0	24.7	23.8	25.0	23.7	36.8	25.0	25.9	28.1	32.3	26.5	18.3	27.3	25.9	24.3	29.5	21.6	27.1	32.4	26.8
-3D		stI	13.9	12.6	12.3	10.7	11.5	11.0	17.3	11.5	12.0	12.9	15.2	12.4	8.4	13.6	11.8	10.9	13.7	10.1	18.6	16.7	12.9
Drain		st4	110.0	126.9	104.1	87.5	96.6	74.9	136.0	104.0	84.5	99.4	126.6	126.2	63.2	94.1	103.9	86.9	101.6	79.0	105.2	95.0	100.3
	11	st3	60.2	54.2	48.5	45.8	48.6	43.7	71.4	45.8	47.2	54.9	66.6	57.4	35.0	46.1	49.8	46.4	56.1	40.3	46.2	50.4	50.7
	Wal	55 2	30.5	27.3	24.9	23.1	25.4	23.9	36.7	25.8	25.4	28.6	33.4	26.9	18.7	26.9	25.8	24.0	29.7	20.9	27.2	30.7	26.8
		st1	14.0	12.8	12.4	10.5	11.7	11.0	17.4	11.9	11.8	13.1	15.7	13.2	8.4	13.3	11.7	10.7	13.8	10.0	14.6	15.9	12.7
k , ,	 o Z		1	7	ŝ	4	ŝ	9	~	~	6	10		12	13	14	15	16	17	18	19	50	Mean

© 2009 FPInnovations -- Forintek Division. All rights reserved.

F Pennovations

Confidential

(without GWB), (mm)
orey building in N-S direction
n displacements of 4-sto
Table E.3.2 Maximun

_												·····				. .							
	m	st4	76.5	78.8	91.9	80.9	49.4	63.0	92.5	63.4	66.0	53.3	78.7	85.8	56.1	57.6	75.2	48.7	54.8	56.3	53.7	79.9	68.1
/ood	rey diaphrag	st3	60.2	63.9	62.5	57.2	41.7	45.4	78.3	49.4	51.8	44.6	57.2	63.8	38.8	48.2	59.8	36.7	43.7	44.8	42.4	6.09	52.6
SAPW	ter of the sto	st2	45.5	48.1	46.2	41.9	29.9	32.1	59.7	31.9	39.4	35.8	45.5	45.5	27.4	38.8	42.6	26.1	33.0	30.1	32.7	42.2	38.7
	Cent	stl	25.4	28.1	24.4	22.5	16.4	18.2	35.5	15.8	22.5	21.4	26.5	25.5	14.3	25.9	22.7	15.0	17.5	15.8	17.7	22.7	21.7
		st4	101.2	96.1	96.7	84.7	96.9	89.4	98.2	82.4	100.5	91.7	106.0	97.7	75.1	83.2	91.5	83.2	62.1	76.0	66.6	106.2	89.3
	18	st3	85.6	82.5	84.9	74.1	80.7	75.3	85.6	67.8	85.3	78.3	89.3	82.3	63.8	71.4	79.0	72.9	53.0	62.1	56.2	92.0	76.1
	Wal	st2	32.9	37.3	35.7	49.8	32.8	35.2	42.4	25.5	38.8	43.2	43.2	44.7	37.0	47.4	41.2	52.6	32.2	37.7	22.7	42.3	38.7
-3D		st1	19.9	20.2	22.9	35.5	20.9	23.2	28.4	13.2	23.1	23.2	28.3	20.2	24.0	33.7	24.4	37.8	20.6	25.0	16.4	32.0	24.6
Drain		st4	101.2	96.1	96.7	84.7	96.9	89.4	98.2	82.4	100.5	91.7	106.0	97.7	75.1	83.2	91.5	83.2	62.1	76.0	66.6	106.2	89.3
	6	st3	85.6	82.4	84.9	74.1	80.7	75.3	85.6	67.8	85.3	78.3	89.3	82.3	63.8	71.4	79.0	72.9	53.0	62.1	56.2	92.0	76.1
	Wall	st2	32.9	37.3	35.7	49.8	32.8	35.2	42.4	25.5	38.8	43.2	43.2	44.7	37.0	47.4	41.2	52.6	32.2	37.7	22.7	42.3	38.7
		st1	19.9	20.2	22.9	35.5	20.9	23.2	28.4	13.2	23.1	23.2	28.3	20.2	24.0	33.7	24.4	37.8	20.6	25.0	16.4	32.0	24.6
	No.		1	2	3	4	5	6	7	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Appendix E – 4

FPlanovations soriavtek

Maximum displacements of 6-storey building in E-W direction (without GWB), (mm) Table E.3.3

Confidential

_																							
	:	et6	00 6	000	116.9	013	68.8	77.4	116.1	76.8	96.7	65.7	100.5	651	80.3	84.5	100.6	V.V.V	85.2	541	55.8	92.6	84.7
	hraem	ts t	80.8	71.3	79.1	70.2	55.5	61.8	88.8	61.4	77.0	54.6	81.4	54.4	70.5	717	783	50.0	68.8	44.8	414	69.8	66.6
Vood	orev diar	st4	63.3	51.4	58.9	58.1	44.8	49.7	66.3	48.8	62.6	45.9	63.2	46.8	549	50.0	62.1	41.8	55.7	367	345	52.0	52.9
SAPV	of the st	st3	45.5	38.5	43.8	45.1	32.1	38.9	44,4	36.1	48.3	35.1	42.5	35.1	38.5	45.1	46.1	32.4	39.7	26.2	243	37.8	38.8
	Center	st2	29.4	28.3	28.7	30.8	20.9	26.7	26.2	27.6	32.0	23.9	24.6	23.8	25.7	31.8	31.4	224	23.8	18.2	16.3	25.5	25.9
	-	st1	16.0	16.5	15.3	16.5	11.2	14.2	11.7	17.9	17.5	12.8	11.5	12.1	13.9	19.7	17.7	12.2	12.9	101	10.9	15.1	14.3
		st6	137.0	194.3	130.2	142.3	131.7	195.0	163.0	206.2	127.5	175.0	150.9	184.7	152.9	74.9	177.5	132.3	157.3	109.5	192.6	151.5	154.3
		st5	107.3	148.7	9.06	104.9	98.8	155.7	128.1	160.9	100.8	135.4	110.7	143.7	117.8	42.5	140.4	90.4	118.9	77.5	152.5	120.1	117.3
	ll 5	st4	84.9	110.4	65.0	72.5	74.6	120.6	99.1	120.6	6.77	102.7	83.7	109.1	88.9	32.4	110.1	67.8	84.9	56.0	115.8	90.1	88.3
	Wa	st3	60.6	74.5	42.4	45,4	51.0	83.8	68.9	81.8	54.0	70.7	59.2	74.3	59.6	23.9	78.9	46.8	54.5	37.3	78.9	60.8	60.4
		st2	38.5	43.9	25.4	27.2	31.1	50.6	41.7	49.0	32.7	42.7	43.6	44.6	35.3	17.3	49.8	29.7	31.3	22.8	46.7	37.6	37.1
3D		st1	18.4	20.1	11.2	12.7	13.7	23.3	21.5	22.8	14.5	19.6	27.2	22.6	15.0	8.7	22.8	14.9	13.0	10,4	21.7	18.3	17.6
Drain-		st6	141.7	202.1	132.0	149.6	126.1	193.6	174.0	194.3	126.6	166.0	148.1	187.5	158.8	78.6	178.9	134.1	159.6	117.4	198.9	156.1	156.2
		st5	109.5	155.5	93.1	110.8	95.4	154.7	137.6	151.7	100.0	130.0	109.1	146.1	122.3	45.6	143.6	92.2	120.8	82.3	156.8	124.0	119.1
	1	st4	84.2	116.6	67.1	76.8	72.1	119.9	106.5	115.8	77.4	99.1	82.8	111.3	92.2	34.6	112.3	68.8	86.3	60.0	118.4	94.1	89.8
	Wa	st3	59.2	79.6	44.1	48.6	49.6	83.7	74.2	78.9	53.8	68.5	58.5	76.5	61.9	25.4	80.3	47.0	55.5	40.1	80.1	64.4	61.5
		st2	37.2	47.9	26.5	28.9	30.1	51.2	44.9	47.2	32.6	41.2	43.0	46.1	36.6	18.3	50.6	29.7	31.9	24.6	46.5	39.0	37.7
	ŀ	st1	17.8	22.9	11.7	13.3	13.7	23.9	19.7	20.7	14.5	17.7	27.1	24.1	15.6	9.3	23.4	14.8	13.2	10.9	21.2	18.8	17.7
	No.			7	m	4	S	9	~	~	6	10	=	12	13	14	15	16	17	18	19	50	Mean
		- 1	- 1		- 1	1								- 1									

© 2009 FPInnovations - Forintek Division. All rights reserved.

F Pannovations

	ne Buildings	
	rey Wood-Frai	
ort	ance of 6-Stor	- 1
Final BSPB Rep(Seismic Perform	Project No. 6482

Maximum displacements of 6-storey building in N-S direction (without GWB), (mm) Table E.3.4

	1	-	1	1	-	1	1	<u> </u>	-	<u> </u>	1	<u> </u>	-	1	F	<u> </u>		<u> </u>	1	-	<u> </u>	1	
	1	st6	102.1	83.9	141.2	107.7	71.5	78.0	93.6	71.8	0.66	66.4	95.7	79.4	100.8	82.7	105.2	69.4	72.0	57.8	55.9	86.3	86.0
	hragm	st5	84.2	73.3	109.3	87.8	65.4	70.8	80.4	63.2	90.1	59.2	82.2	67.4	86.0	75.7	94.0	65.1	67.5	45.8	43.7	67.2	73.9
/ood	rey diap	st4	66.3	62.0	85.6	70.0	55.4	57.8	71.3	60.2	80.5	49.1	65.9	55.6	73.2	67.7	78.7	55.4	60.4	38.9	37.0	55.0	62.3
SAPW	of the sto	st3	52.2	44.4	0.69	55.9	45.7	46.3	57.6	50.5	66.7	36.2	50.4	46.4	58.5	56.3	62.0	44,8	47.2	30.3	33.3	50,4	50.2
	Center c	st2	36.7	27.2	44.4	38.6	32.5	33.7	36.2	34.8	42.0	23.6	34.6	32.2	39.3	38.3	44.2	33.4	32.4	22.6	25.1	42.7	34.7
		stl	23.0	15.3	25.3	22.7	18.8	17.7	19.4	18.1	26.6	12.9	18.7	16.9	22.5	23.0	23.5	17.3	18.2	12.1	15.5	25.7	19.7
		st6	141.0	190.0	122.1	140.3	129.9	192.7	131.3	150.9	140.7	139.3	133.7	162.3	164.9	73.8	166.5	116.0	157.8	107.0	173.5	133.6	143.4
		sť	106.7	154.1	84.5	104.3	101.8	156.7	105.8	122.1	103.2	114.7	108.2	132.8	109.0	63.0	132.5	97.5	120.6	72.5	142.3	109.0	112.1
	8	st4	85.0	121.9	59.6	74.8	77.8	120.1	83.6	94.2	73.5	91.9	82.4	106.7	80.6	43.7	98.4	74.7	84.3	55.4	113.0	84.7	85.3
	Wal	st3	63.6	92.9	40.5	51.9	55.5	88.7	62.2	68.3	50.4	69.2	60.2	81.2	56.3	29.2	72.7	51.8	56.2	39.5	84.2	62.2	61.8
		st2	31.3	42.3	21.0	27.7	28.3	40.6	30.8	32.6	26.6	33.6	36.3	39.8	27.8	17.2	34.8	27.2	24.8	21.7	40.1	35.0	31.0
1-3D		stl	15.5	24.0	10.2	13.7	13.3	20.1	15.5	16.3	12.1	18.0	21.5	22.1	12.6	8.4	18.6	12.8	10.8	10.3	21.3	20.2	15.9
Drair		st6	141.0	190.0	122.1	140.3	129.9	192.7	131.3	150.9	140.7	139.3	133.7	162.3	164.9	73.8	166.5	116.0	157.8	107.0	173.5	133.6	143.4
		st5	106.7	154.0	84.5	104.3	101.8	156.7	105.8	122.1	103.2	114.7	108.2	132.8	109.0	63.0	132.5	97.5	120.6	72.5	142.3	109.0	112.1
	16	st4	85.0	121.9	59.6	74.8	77.8	120.1	83.6	94.2	73.5	91.9	82.4	106.7	80.6	43.7	98.4	74.7	84.3	55.4	113.0	84.7	85.3
	Wal	st3	63.6	92.9	40.5	51.9	55.5	88.7	62.2	68.3	50.4	69.2	60.2	81.2	56.3	29.2	72.7	51.8	56.2	39.5	84.2	62.2	61.8
		st2	31.3	42.3	21.0	27.7	28.3	40,6	30.8	32.6	26.6	33.6	36.3	39.8	27.8	17.2	34.8	27.2	24.8	21.7	40.1	35.0	31.0
	ľ	stl	15.5	24.0	10.2	13.7	13.3	20.1	15.5	16.2	12.1	18.0	21.5	22.1	12.6	8.4	18.6	12.8	10.8	10.3	21.3	20.2	15.9
	No.			2	3	4	5	9	2	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Appendix E – 6

F Planovations

Maximum accelerations of 4-storey building (without GWB), (g) Table E.3.5

Confidential

		ct.d	0 467	0 428	0.528	0.479	0.370	0.401	0.409	0.432	0370	0.323	0.487	0.455	0.420	0 330	0.463	0.307	0.317	0.387	0.30/	0.467	0.10/
	S	st3	0.409	0.380	0.431	0.369	0.312	0.353	0.389	0.349	0.296	0.328	0.479	0.425	0.333	0.368	0.411	0.288	0.277	0 330	0.420	0.418	0 368
	Ż	\$12	0.462	0.298	0.377	0.385	0.345	0.386	0.296	0.317	0.218	0.288	0.269	0.335	0.341	0.330	0.444	0.283	0.311	0.340	0.473	0.367	0 343
/ood		st1	0.348	0.319	0.323	0.362	0.310	0.324	0.255	0.320	0.270	0.336	0.276	0.370	0.329	0.340	0.458	0.269	0.321	0.300	0.401	0.522	0.338
SAPW		st4	0.560	0.643	0.619	0.601	0.385	0.436	0.598	0.584	0.506	0.412	0.544	0.488	0.339	0.441	0.498	0.377	0.403	0.472	0.567	0.650	0.506
	N	st3	0.501	0.386	0.356	0.505	0.290	0.354	0.465	0.296	0.358	0.310	0.410	0.491	0.274	0.390	0.407	0.240	0.252	0.338	0.310	0.493	0.371
	E-1	st2	0.352	0.295	0.359	0.381	0.269	0.271	0.333	0.233	0.285	0.284	0.245	0.347	0.228	0.340	0.417	0.206	0.202	0.258	0.328	0.421	0.303
		st1	0.516	0.378	0.440	0.319	0.224	0.310	0.309	0.273	0.287	0.261	0.311	0.327	0.282	0.439	0.415	0.167	0.208	0.262	0.436	0.402	0.328
1	No.		1	2	ß	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean

The acceleration is the moving average acceleration over 0.1 sec relative to stationary reference coordinates. The reason the moving average is used is that sudden spikes in acceleration over a very short time will not have significant impact on the contents or residents in the building, while the moving average value is felt to be more correlated with content damage and human comfort.

© 2009 FPInnovations – Forintek Division. All rights reserved.

Maximum accelerations of 6-storey building (without GWB), (g) Table E.3.6

Confidential

	****	st6	0.442	0.389	0.558	0.407	0.338	0.337	0.391	0.364	0.387	0.258	0.379	0.374	0.434	0.347	0.488	0.298	0.368	0.340	0.402	0.456	0.388	
		st5	0.360	0.356	0.519	0.341	0.320	0.365	0.369	0.313	0.339	0.266	0.311	0.345	0.334	0.334	0.431	0.284	0.330	0.354	0.403	0.279	0.348	
t.		st4	0.233	0.272	0.386	0.315	0.339	0.313	0.263	0.336	0.403	0.226	0.296	0.242	0.378	0.279	0.428	0.285	0.357	0.192	0.307	0.477	0.316	
	ž	st3	0.276	0.278	0.331	0.344	0.340	0.224	0.303	0.366	0.261	0.195	0.279	0.341	0.295	0.334	0.381	0.242	0.335	0.229	0.358	0.429	0.307	
		st2	0.270	0.269	0.356	0.401	0.205	0.295	0.216	0.328	0.314	0.165	0.225	0.300	0.360	0.392	0.284	0.220	0.200	0.246	0.377	0.521	0.297	
poo		st1	0.238	0.286	0.380	0.421	0.290	0.284	0.248	0.326	0.371	0.190	0.213	0.290	0.293	0.409	0.339	0.239	0.225	0.281	0.405	0.504	0.311	
SAPW		st6	0.555	0.588	0.727	0.452	0.358	0.442	0.444	0.491	0.506	0.348	0.389	0.386	0.470	0.447	0.535	0.337	0.478	0.374	0.453	0.621	0.470	-
		st5	0.425	0.314	0.413	0.300	0.276	0.314	0.435	0.308	0.359	0.253	0.378	0.302	0.456	0.353	0.390	0.235	0.321	0.240	0.196	0.556	0.341	
		st4	0.314	0.245	0.352	0.276	0.272	0.309	0.292	0.300	0.320	0.243	0.281	0.284	0.366	0.377	0.367	0.275	0.366	0.237	0.190	0.365	0.302	
	E-W	st3	0.249	0.299	0.414	0.363	0.277	0.378	0.220	0.400	0.320	0.219	0.266	0.287	0.342	0.485	0.360	0.353	0.295	0.288	0.310	0.511	0.332	
		st2	0.237	0.276	0.403	0.413	0.277	0.349	0.314	0.429	0.336	0.231	0.354	0.332	0.306	0.435	0.343	0.335	0.248	0.286	0.355	0.556	0.341	
		stl	0.247	0.302	0.322	0.442	0.290	0.274	0.310	0.433	0.258	0.272	0.277	0.381	0.250	0.460	0.284	0.255	0.208	0.262	0.423	0.548	0.325	
	No.		1	5	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean	Note:

The acceleration is the moving average acceleration over 0.1 sec relative to stationary reference coordinates. The reason the moving average is used is that sudden spikes in acceleration over a very short time will not have significant impact on the contents or residents in the building, while the moving average value is felt to be more correlated with content damage and human comfort.

© 2009 FPInnovations – Forintek Division. All rights reserved.

E.4 Maximum inter-storey drift

Table E.4.1Inter-storey drift of 4-storey building in E-W direction (without GWB), (%)

Confidential

	E	st4	1.132	1.886	1305	1.816	0.649	0.810	1 755	1 294	1 184	0.840	1.151	1 324	0.608	0.003	C0C-0	0.688	0.640	0.898	1 559	1.923	1.179	
boo7	rey diaphrag	st3	0.911	0.866	0.834	106.0	0.607	0 488	1 205	0.907	0.756	0.521	0.778	0.788	0.490	0.618	0.758	0.488	0.545	0.625	0.683	0.864	0.732	
SAPW	ter of the sto	st2	1.067	0.821	0.848	0.741	0.502	0.580	0.938	0.601	0.551	0.528	0.887	0.969	0 504	0.651	0.734	0.439	0.462	0.500	0.642	0.792	0.688	
-	Cent	st1	0.846	0.915	0.691	0.679	0.523	0.560	0.817	0.487	0.518	0.585	0.724	0.916	0 508	0.717	0.658	0.438	0.495	0.482	0.538	0.755	0.642	
		st4	2.605	2.849	2.107	2.170	2.005	1.110	2.763	2.894	1.627	2.260	3.044	2.959	1.121	2.279	2.823	1.579	1.790	1.970	3.368	2.761	2.304	
-	15	st3	1.158	1.003	0.928	0.853	0.895	0.709	1.385	0.772	0.807	0.933	1.236	1.240	0.598	0.985	0.943	0.858	1.022	0.752	0.879	1.007	0.948	-
	Wal	st2	0.603	0.535	0.508	0.483	0.496	0.463	0.712	0.501	0.506	0.552	0.623	0.555	0.374	0.561	0.516	0.493	0.575	0.445	0.532	0.591	0.531	
h-3D		stl	0.505	0.458	0.447	0.389	0.420	0.399	0.630	0.416	0.437	0.471	0.552	0.450	0.307	0.495	0.428	0.396	0.498	0.368	0.676	0.608	0.467	
Drair		st4	2.563	2.842	2.128	2.143	1.937	1.141	2.741	2.998	1.640	2.458	2.855	2.765	1.108	2.211	2.699	1.529	1.710	1.720	2.951	2.722	2.243	
	11	st3	1.145	1.013	0.940	0.826	0.896	0.728	1.348	0.780	0.793	0.975	1.244	1.221	0.598	666.0	0.956	0.827	0.981	0.730	0.862	0.963	0.941	
-	Wal	st2	0.602	0.538	0.510	0.472	0.506	0.471	0.702	0.514	0.497	0.565	0.644	0.558	0.384	0.550	0.519	0.485	0.578	0.430	0.547	0.556	0.531	
	 	stl	0.508	0.466	0.452	0.383	0.425	0.402	0.632	0.434	0.428	0.475	0.571	0.481	0.306	0.484	0.424	0.390	0.504	0.363	0.532	0.579	0.462	
	No.	,	-	7	ω	4	S	6	2	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean	Note:

Storey height = 2750 mm

© 2009 FPInnovations - Forintek Division. All rights reserved.

Table E.4.2Inter-storey drift of 4-storey building in N-S direction (without GWB), (%)

Confidential

	_	T -	1	1	1	T -	1	1	1	T -	1	T -	T -	1	1	T -	T -	1	1	1	1	1	T	٦
	ma	st4	1.034	0.664	1.459	1.211	0.703	0.835	0.622	0.808	0.582	0.673	1.046	0.981	0.738	0.705	0.947	0.666	0.569	0.688	0.786	1.244	0.848	> > > >
/vvd	rey diaphra	st3	0.881	0.726	0.708	0.866	0.639	0.734	0.783	0.942	0.550	0.662	0.853	0.987	0.553	0.662	0.811	0.571	0.518	0.667	1.050	0.978	0.757	
NdVS	ter of the sto	st2	0.862	1.046	0.943	0.951	0.650	0.693	0.993	0.689	0.736	0.737	0.847	0.972	0.600	0.692	0.948	0.572	0.862	0.684	0.812	0.930	0.811	
	Cent	st1	0.925	1.023	0.889	0.822	0.598	0.663	1.294	0.578	0.821	0.781	0.967	0.928	0.522	0.945	0.826	0.547	0.638	0.575	0.646	0.829	0.791	
		st4	0.579	0.573	0.462	0.451	0.594	0.590	0.463	0.537	0.617	0.550	0.660	0.609	0.449	0.456	0.623	0.500	0.403	0.549	0.556	0.586	0.540	
	8	st3	2.340	1.972	1.792	1.634	1.895	1.746	1.781	1.920	1.779	1.323	1.977	1.497	1.003	1.014	1.618	1.187	0.820	1.103	1.782	2.205	1.619	-
	Wall	st2	0.669	0.626	0.496	0.582	0.482	0.480	0.812	0.531	0.643	0.727	0.800	0.901	0.504	0.543	0.625	0.559	0.462	0.467	0.435	0.634	0.599	
3D		st1	0.723	0.734	0.833	1.290	0.761	0.843	1.032	0.479	0.839	0.844	1.029	0.734	0.873	1.227	0.886	1.376	0.751	606.0	0.596	1.163	0.896	
Drain-		st4	0.579	0.573	0.462	0.451	0.594	0.590	0.464	0.537	0.617	0.550	0.660	0.609	0.449	0.456	0.623	0.500	0.403	0.549	0.556	0.586	0.540	
2	6	st3	2.340	1.972	1.792	1.634	1.895	1.746	1.781	1.920	1.779	1.323	1.977	1.497	1.003	1.013	1.618	1.187	0.820	1.103	1.782	2.205	1.611	
	Wall	st2	0.669	0.626	0.496	0.582	0.482	0.480	0.812	0.531	0.643	0.727	0.800	0.901	0.504	0.543	0.625	0.559	0.462	0.467	0.435	0.634	0.599	
		st1	0.723	0.734	0.833	1.290	0.761	0.843	1.032	0.479	0.839	0.844	1.029	0.734	0.873	1.227	0.886	1.376	0.751	0.909	0.596	1.163	0.896	
	No.		1	2	ω	4	S	6	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	Mean	

Note: Storey height = 2750 mm © 2009 FPInnovations - Forintek Division. All rights reserved.

Appendix E – 10

FPtimovations FORMATER

BSPB Report	iic Performance of 6-Storey Wood-Frame Buildings	tt No. 6482
Final BSPB	Seismic Pe	Project No.

Table E.4.3Inter-storey drift of 6-storey building in E-W direction (without GWB), (%)

	İ		Ξ	0	<u>s</u>	Ŀ	10		: 5	21	14		5	5	17	2		2	l ∝	14	X	2 Z			
	-	st6	0.79	1.03	1.54	0 78	0.71	0.81	1.05	001	0.91	0.60	0.8%	0.75	0.88	0.80	0.95	0.63	0.80	0.65	0.70) 7		5	
	hragm	st5	0.718	0.912	0.840	0.682	0.568	0.640	0.959	0.710	0.735	0.474	0.749	0.534	0.744	0.633	0.725	0.446	0.665	0.447	0.607	1 090	0.604	1000	
/ood	rey diap	st4	0.912	0.845	0.754	0.721	0.551	0.570	1.021	0.646	0.792	0.504	0.847	0.583	0.748	0.822	0.743	0.495	0.684	0.506	0.567	0.793	0 705		
SAPW	f the sto	st3	0.763	0.645	0.650	0.675	0.538	0.555	0.771	0.550	0.687	0.520	0.753	0.554	0.634	0.707	0.605	0.540	0.669	0.451	0.450	0.666	0.619		
	Center o	st2).587	0.485	0.601	0.638	0.518	0.544	0.609).528	0.638	0.479	0.602	0.540	0.567	0.663	0.645	0.511	0.537	0.402	0.378	0.605	0.554	-	
		stl	.583 (.601 (.557 (01 (0	.407 (1517 (.426 (.651 (.638 (.468 (.418 (.442 (507 (718 (.644 (.443 (470 (367 (398 (549	520		
		st6	.303 0	658 0	600 0	360 0	221 0	434 0	.269 0	.653 0	.161 0	476 0	617 0	497 0	350 0	.651 0	.513 0	459 0	.408 0	460 0	487 0	679 0	513 0		
		st5	.941 1	.417 1	022 1	.181 1	.931 1	280 1	.066 1	473 1	889 1	223 1	.113 1	.266 1	063]	563 1	216 1	.067 2	243 1	806 1	355 1	184 1	115 1		
		st4	957 0	356 1	942 1	032 1	921 0	343 1	1 660	423 1	872 0	185 1	042 1	265 1	071 1	557 0	197 1	962 1	129 1	803 0	343 1	207 1	085 1		
	Wall 5		3 0.	l9 1.	<u>6</u> 0.	1. 1.	.0 61	5 1.	1.	<u>1</u> .	.0 0.			1.	8	0	6 1.	2 0.	<u>50 1.</u>	<u>2</u> 0.	5 1.	5 1.	5.		
		st3	0.81	1.14	0.66	0.74	0.74	1.21	0.95	1.23	0.77	1.03	0.78	1.11	0.88	0.36	1.07	0.71	0.86	0.56	1.20	0.97	0.85		
		st2	0.747	0.886	0.529	0.573	0.635	1.003	0.867	0.981	0.670	0.879	0.646	0.901	0.742	0.332	0.983	0.572	0.678	0.480	779.0	0.753	0.742	-	
3D		st1	0.670	0.729	0.407	0.461	0.500	0.846	0.780	0.828	0.527	0.713	0.989	0.822	0.544	0.315	0.829	0.543	0.474	0.377	0.790	0.667	0.641		
Drain		st6	1.353	1.698	1.601	1.414	1.175	1.414	1.325	1.549	1.148	1.387	1.547	1.512	1.402	1.614	1.511	2.402	1.422	1.490	1.548	1.696	1.510		
		st5	.982	.436	.031	.240	.886	.266	.137	.336	.879	.153	.080	.275	.104	.540	.208	.092	.253	.862	.412	.155	.123	-	
		st4	.983 (.399	.952	.082	.879 (.317	.172	.348]	.862 (.127	.020	.268]	.104 1	.533 (.178	.986	.142]	.836 (.391 1	213 1	060-		
	Wall	st3	.835 0	200 1	.687 0	789 1	721 0	189 1	.066 1	.164 1	773 0	998 1	776 1	119 1	919 1	366 0	099 1	728 0	870 1	607 0	233 1	994 1	907 1		
			0	 	0 0	ن و	6 0.	 	8 	6 1.	0 8	0	0 80	-i 0	8	0		5.0	0 8	0 -	7 1.	0 0.	3 0.		
		£	0.75	0.92	0.54	0.59	0.61	- 0	0.91	0.96	0.66	0.85	0.6	0.92	0.76	0.35	0.99	0.57	0.68	0.51	0.96	0.78	0.75		
		stl	0.649	0.831	0.424	0.484	0.499	0.869	0.716	0.753	0.527	0.644	0.986	0.876	0.565	0.338	0.850	0.537	0.480	0.396	0.770	0.684	0.644		
ŀ	ġ		_	7	ω	4	S	9	~	~	6	10	11	12	13	14	15	16	17	18	19	20	Vean	Note:	

© 2009 FPInnovations – Forintek Division. All rights reserved.

Final BSPB Report
Seismic Performance of 6-Storey Wood-Frame Buildings
Project No. 6482

Table E.4.4Inter-storey drift of 6-storey building in N-S direction (without GWB), (%)

		st6	0.708	0.636	1.615	0.973	0.621	0.639	0.605	0.785	0.656	0.390	0.547	0.838	0.762	0.661	1.052	0.496	0.661	0.552	0.842	0.909	0.747
	hragm	st5	0.747	0.574	1.003	0.832	0.593	0.603	0.606	0.743	0.729	0.480	0.684	0.656	0.662	0.631	0.908	0.559	0.641	0.534	0.856	0.858	0.695
Vood	orey diar	st4	0.730	0.826	0.830	0.889	0.627	0.521	0.784	0.774	0.609	0.580	0.742	0.798	0.645	0.757	0.773	0.594	0.632	0.442	0.597	0.855	0.700
SAP	of the st	st3	0.952	1.035	1.046	0.909	0.597	0.755	0.998	0.656	1.031	0.579	0.811	0.742	0.841	0.983	0.797	0.620	0.662	0.515	0.617	0.937	0.804
	Center	st2	0.774	0.522	0.825	0.696	0.697	0.830	0.690	0.769	0.973	0.546	0.795	0.663	0.941	0.770	0.862	0.713	0.731	0.524	0.512	0.873	0.735
		st1	0.840	0.558	0.923	0.829	0.684	0.646	0.708	0.660	0.970	0.469	0.683	0.618	0.820	0.839	0.856	0.632	0.662	0.441	0.564	0.936	0.717
		st6	1.617	1.323	1.891	1.677	1.970	1.361	1.083	1.067	1.363	0.947	1.934	1.090	2.043	0.804	1.249	1.039	1.391	1.561	1.150	1.224	1.389
		st5	1.047	1.184	1.075	1.236	0.940	1.332	0.938	1.112	1.192	0.911	1.155	0.962	1.062	0.858	1.259	0.954	1.362	0.932	1.322	1.187	1.101
	18	st4	0.843	1.099	0.816	0.945	0.857	1.160	0.852	0.959	0.850	0.858	0.896	0.939	0.904	0.596	1.018	0.913	1.029	0.657	1.051	0.921	0.902
	Wa	st3	1.236	1.979	0.737	1.009	1.079	1.817	1.195	1.336	0.881	1.321	0.962	1.639	1.096	0.587	1.434	1.178	1.184	0.739	1.662	1.272	1.216
		st2	0.589	0.683	0.417	0.513	0.547	0.766	0.563	0.616	0.531	0.588	0.557	0.652	0.555	0.324	0.664	0.536	0.520	0.430	0.701	0.588	0.567
n-3D		stl	0.562	0.874	0.370	0.499	0.485	0.732	0.564	0.591	0.440	0.654	0.780	0.805	0.460	0.306	0.676	0.465	0.392	0.376	0.775	0.736	0.577
Drai		st6	1.617	1.323	1.891	1.677	1.970	1.361	1.083	1.067	1.363	0.947	1.934	1.090	2.044	0.804	1.249	1.039	1.391	1.561	1.150	1.224	1.389
		st5	1.047	1.184	1.075	1.236	0.940	1.332	0.938	1.112	1.192	0.911	1.155	0.962	1.062	0.858	1.259	0.954	1.362	0.932	1.321	1.187	1.101
	116	st4	0.843	1.099	0.816	0.945	0.857	1.160	0.852	0.959	0.850	0.858	0.896	0.939	0.904	0.596	1.018	0.913	1.029	0.657	1.051	0.921	0.908
	Wa	st3	1.236	1.979	0.737	1.009	1.079	1.817	1.195	1.336	0.880	1.321	0.962	1.638	1.096	0.587	1.434	1.178	1.184	0.739	1.662	1.271	1.217
		St3	0.589	0.683	0.417	0.513	0.547	0.766	0.563	0.617	0.531	0.588	0.557	0.652	0.555	0.324	0.664	0.536	0.520	0.430	0.701	0.588	0.567
		st1	0.562	0.874	0.370	0.499	0.485	0.732	0.564	0.591	0,440	0.654	0.780	0.805	0.460	0.306	0.676	0.465	0.392	0.376	0.775	0.736	0.577
	No.			2	ω	4	S	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean

© 2009 FPInnovations - Forintek Division. All rights reserved.

E.5 Maximum shear wall deformation at each storey

Shear wall deformation of 4-storey building in E-W direction (without GWB), (mm) Table E.5.1

				Drair	1-3D		74	
No.		Wa	111			Wa	ul 5	5
	stl	st2	st3	st4	st1	st2	st3	St4
I	7.6	5.5	12.2	49.0	7.4	5.4	11.9	49.1
2	6.7	5.4	10.9	62.3	6.6	5.3	10.7	62.0
3	8.2	5.2	9.2	38.0	8.0	5.0	1.6	37.8
4	6.8	5.1	9.6	44.5	6.8	4.9	9.8	45.6
S	6.5	4.5	8.9	36.8	6.5	4.5	8.8	40.8
9	5.9	3.9	6.7	15.5	5.9	3.9	6.5	14.9
7	10.0	6.4	12.6	47.1	9.8	6.3	12.2	46.1
∞	6.4	4.4	9.1	70.6	6.2	4.3	8.5	66.7
6	7.1	5.2	8.1	31.9	6.7	4.9	6.2	32.0
10	6.9	4.9	10.2	51.3	7.0	4.8	9.8	44.2
11	8.6	5.8	11.8	56.0	8.3	5.8	11.7	60.6
12	7.8	5.3	14.8	53.0	7.8	5.2	14.5	59.4
13	5.5	3.8	6.2	17.3	5.5	3.7	6.3	17.4
14	9.1	6.6	17.7	45.1	9.2	6.6	18.0	47.3
15	6.3	4.7	9.4	62.3	6.2	4.7	9.2	65.6
16	6.0	4.1	8.6	25.5	5.9	4.0	8.7	25.7
17	7.6	5.1	9.6	29.1	7.4	4.8	9.8	32.0
18	6.1	5.1	8.6	32.9	6.1	5.0	8.8	41.9
19	12.8	6.4	13.2	71.9	16.2	7.0	12.8	85.3
20	11.1	9.1	14.7	69.8	11.7	9.6	16.9	71.0
Mean	7.6	5.3	10.6	45.5	7.8	53	10.6	473

,

Confidential

FPInnovations FORINTEK

Shear wall deformation of 4-storey building in N-S direction (without GWB), (mm) Table E.5.2

-																	_					-	
-		st4	10.7	10.8	82	7.5	10.5	10.9	8.4	11.0	10.7	9.1	10.9	10.1	7.1	7.7	10.5	83	6.7	10.0	11.6	0.6	9.5
	18	st3	60.0	49.7	43.9	40.5	46.5	44.7	43.4	48.3	43.8	30.9	49.2	36.4	22.9	24.3	38.6	28.6	17.6	25.2	46.6	56.5	39.9
	Wal	st2	13.7	12.3	9.5	11.9	9.4	9.4	17.8	10.3	13.5	15.3	17	20.0	10.1	12.4	12.9	11.7	8.8	6.6	8.3	12.4	12.1
-3D	-	st1	18.3	17.3	21.3	33.1	18.7	20.9	25.9	12.7	20.2	20.4	25.8	17.4	21.6	31.1	21.7	35.4	18.4	22.9	16.2	30.3	22.5
Drain		st4	10.6	10.7	7.9	7.4	10.4	10.8	7.7	10.9	10.6	0.6	6.6	10.0	6.5	7.3	9.8	7.6	6.2	9.4	11.5	8.5	9.1
	9	st3	60.0	48.9	43.9	40.5	46.5	44.7	42.7	47.6	43.8	30.2	48.2	36.4	22.9	24.3	38.0	27.9	17.0	24.5	46.0	55.4	39.5
	Wall	st2	13.3	11.8	9.6	12.0	9.4	9.5	17.3	9.8	13.6	14.8	16.4	20.1	10.2	11.9	13.0	11.8	8.7	9.6	7.8	11.7	12.1
		st1	18.3	17.0	21.3	32.8	18.4	20.7	25.9	12.8	19.9	20.0	25.8	17.5	21.6	31.2	21.8	35.4	18.2	23.0	16.3	30.3	22.4
	No.		1	2	3	4	S	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean

Confidential

Appendix E – 14

F Pinnovations

Shear wall deformation of 6-storey building in E-W direction (without GWB), (mm) Table E.5.3

	,		· · · · ·	· .						1						·····	·	1		·		•	_
		st6	13.4	12.8	21.9	15.1	11.8	10.7	12.8	11.1	10.3	10.8	27.0	9.7	11.2	33.2	13.1	50.6	11.5	21.6	9.6	20.5	16.9
		st5	4.7	7.7	7.0	8.9	5.2	5.2	5.2	7.4	4.9	6.1	9.1	6.0	5.2	5.3	7.1	9.8	8.5	7.7	9.3	9.7	7.0
	15	st4	7.3	8.7	7.1	6.7	6.9	0.6	7.4	4.3	6.7	8.2	8.2	9.1	8.0	6.1	8.3	8.2	8.6	8.5	7.2	12.6	7.9
	Wal	st3	6.7	7.9	5.0	5.2	6.3	9.4	7.7	9.2	6.4	8.3	6.4	8.3	7.0	5.6	9.2	6.1	5.6	4.9	9.1	9.5	7.2
		st2	8.3	83	6.3	6.5	7.0	11.0	8.9	9.3	6.9	9.1	8.2	8.8	7.2	6.2	11.7	6.9	6.4	6.0	8.8	8.2	8.0
-3D		stl	11.2	11.6	7.1	8.6	8.1	13.8	14.3	10.5	8.0	11.6	21.6	14.8	8.4	7.8	14.1	10.3	7.1	8.3	10.3	11.9	11.0
Drain		st6	13.7	13.0	22.3	15.8	11.4	10.9	12.4	10.0	10.5	10.1	25.4	9.8	12.3	33.1	13.8	48.6	11.8	21.7	9.5	20.4	16.8
		st5	5.2	7.4	7.4	9.2	5.2	5.7	5.5	6.8	5.1	5.8	8.7	6.1	6.1	5.5	7.5	6.6	8.8	7.4	7.1	9.7	7.0
	11	st4	7.3	8.9	7.5	8.1	6.9	9:2	7.9	9.0	6.9	8.2	7.9	9.0	8.5	6.2	8.6	8.4	9.0	8.7	9.0	12.7	8.4
3	Wal	st3	6.8	8.0	5.3	5.7	6.3	9.5	8.4	9.2	6.6	8.4	6.3	8.1	7.2	5.6	9.0	6.2	5.6	5.3	8.8	9.8	7.3
		st2	8.2	8.8	6.5	6,4	7.0	11.3	9.3	11.1	7.1	9.0	8.2	9.1	7.5	6.3	11.7	6.8	6.4	5.9	10.7	8.5	8.3
		stl	10.9	13.8	7.5	8.8	8.2	14.5	12.6	13.9	8.1	9.7	21.8	16.4	8.0	7.6	14.6	10.0	7.1	7.9	12.9	12.2	11.3
1	No		-	2	m M	4	5	و	7	~	6	10	1	12	13	14	15	16	17	18	19	20	Mean

Confidential

FPtnnovations Forunter

Shear wall deformation of 6-storey building in N-S direction (without GWB), (mm) Table E.5.4

Confidential

Final BSPB Report
Seismic Performance of 6-Storey Wood-Frame Buildings
Project No. 6482

E.6 Maximum uplift forces and deformations

Maximum uplift forces of 4-storey building in E-W direction (without GWB), (kN) Table E.6.1

		ct4	33.4	33.6	34.0	37.6	24.5	27.7	33.0	31.1	27.4	28.1	32.0	36.0	24.1	26.6	33.1	25.2	25.9	0.60	35.8	40.0	30.9
	nethod R	\$13	29.9	39.2	37.6	42.7	29.6	22.2	34.7	42.9	2.62	23.6	37.1	36.2	22.6	34.5	39.3	24.0	18.9	24.3	37.8	45.4	32.6
-	Wall 5 - n	st2	37.6	48.8	42.7	35.7	22.0	25.3	20.6	32.5	30.3	23.4	47.8	55.6	25.5	42.6	38.2	21.3	25.9	20.1	40.3	42.6	33.9
Vood	n000	stl	46.1	49.3	37.2	39.8	21.1	28.4	26.4	24.1	29.1	28.9	39.5	58.2	21.8	45.6	35.3	16.4	19.8	19.8	26.2	47.1	33.0
CADI		st4	18.7	31.1	23.0	17.5	17.8	14.0	16.7	27.0	19.3	14.8	23.9	21.6	15.0	21.8	20.2	12.0	16.0	17.0	32.6	28.7	20.4
	nethod A	st3	47.9	62.8	57.7	45.2	38.7	35.0	43.6	49.3	40.7	34.2	56.5	53.3	37.6	49.0	44.8	29.6	34.1	34.5	57.6	57.3	45.5
	Wall 5 - n	st2	84.7	108.8	109.4	86.4	59.1	54.8	77.8	83.4	65.1	59.7	95.4	86.4	66.4	84.2	92.1	53.7	61.2	61.7	96.5	109.7	79.8
-		stl	124.7	192.4	135.6	102.9	74.5	75.4	91.4	112.6	109.3	85.9	170.9	135.3	75.6	96.9	111.0	69.1	81.3	83.6	115.0	141.7	109.3
		st4	49.3	50.5	45.5	48.3	45.8	37.6	48.4	50.8	42.9	47.7	50.3	50.2	38.3	48.4	49.3	41.3	43.5	46.5	50.5	50.8	46.8
	15	st3	115.2	115.2	115.1	115.1	115.1	105.5	115.2	115.1	115.1	115.1	115.2	115.2	96.5	115.1	115.1	115.1	115.1	114.8	115.1	115.1	113.7
	Wa	St2	184.6	172.8	165.2	157.5	161.7	141.7	190.3	155.8	155.1	166.2	190.2	184.4	119.3	139.9	165.6	158.0	174.6	146.5	153.2	170.8	162.7
3D		st1	252.0	233.0	210.6	203.8	210.3	195.7	289.9	207.2	216.0	231.8	268.0	224.3	159.1	199.7	216	207.7	243.9	187.0	198.4	224.2	219.1
Drait		st4	49.3	50.5	45.6	47.9	44.6	37.8	48.8	50.9	42.8	49.6	50.1	50.0	38.3	47.7	49.4	41.3	42.5	43.6	50.5	50.7	46.6
	11	st3	115.2	115.2	115.1	115.1	115.1	106.8	115.2	115.1	115.1	115.1	115.2	115.2	93.6	115.1	115.1	115.1	115.1	112.5	115.1	115.1	113.5
	Wa	st2	180.4	173.4	165.2	153.5	161.8	143.5	190.3	156.8	148.9	169.3	190.2	180.1	114.0	138.0	166.7	151.1	169.3	142.3	157.0	161.0	160.6
		st1	245.7	233.7	210.4	197.8	211.9	197.2	283.6	211.7	206.0	234.7	272.5	228.3	152.0	189.7	214.7	198.1	238.0	180	205.2	209.1	217.9
	No.		-	2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean

© 2009 FPInnovations - Forintek Division. All rights reserved.

F Phinovations FORMATER

Page 201 HOU-2011-00026, Part One

Final BSPB Report
Seismic Performance of b-Storey Wood-Prame Buildings
Project No. 6482

Maximum uplift forces of 4-storey building in N-S direction (without GWB), (kN) Table E.6.2

g
1 terms
تسب
e)
σ
<u> </u>
0
15

_	-	-					_		_	_	_												
		ct4	14.2	10.8	12.2	121	11.8	17 3	3.6	113	2 2	11.6	13.8	14.7	12.3	11.9	14.4	11.8	101	10.8	12.5	15.2	121
2	nethod B	st3	787	24.4	25.5	28.2	22.0	25.0	46	20.6	169	23.4	24.3	28.8	20.8	24.1	26.9	18.0	20.0	20.9	30.2	29.4	23.6
2	Wall 8 - n	st2	26.2	28.7	315	315	20.6	19.5	46	0.61	203	23.7	23.7	31.5	17.1	24.0	29.9	14.1	29.0	20.5	26.3	28.0	23.5
Vood		stl	18.6	30.7	28.9	24.2	15.2	15.5	2.2	12.9	18.5	16.8	273	29.2	13.0	30.4	24.9	6.6	20.5	6.6	0.71	25.3	19.6
SAPV		st4	15.4	27.2	18.9	143	13.7	12.1	15.1	22.1	15.4	12.6	17.6	16.9	13.3	17.4	16.3	9.7	13.1	14.1	26.2	21.5	16.7
	nethod A	st3	15.8	24.4	19.7	15.7	14.9	11.4	15.4	18.2	14.2	12.7	18.8	18.4	14.1	16.7	I4.3	10.3	12.4	13.3	21.7	20.0	16.1
	Wall 8 - n	st2	33.5	47.1	42.9	32.6	24.1	21.2	33.4	32.4	24.0	23.1	34.6	36.4	24.9	30.1	32.3	19.9	26.0	25.6	38.7	43.0	31.3
	-	st1	49.8	60.4	54.9	42.1	30.3	29.5	38.7	44.0	30.8	33.4	45.2	54.8	29.4	36.8	44.5	27.5	34.2	34.1	47.5	55.0	41.2
		st4	6.8	7.1	53	3.2	8.2	8.3	5.4	6.8	7.2	5.3	9.2	1.7	2.8	4.3	8.9	5.6	2.0	8.3	8.8	7.5	6.4
	118	st3	33.1	32.4	26.0	25.6	31.4	31.6	28.5	34.3	33.0	26.9	35.7	32.2	22.9	25.1	33.8	27.5	21.2	29.7	29.3	33.7	29.7
	Wa	st2	64.3	67.6	54.7	55.4	60.7	55.1	63.0	64.2	63.4	62.9	71.7	65.1	49.9	54.4	62.0	52.6	46.7	53.6	52.2	69.0	59.4
I-3D		st1	97.9	103.1	85.9	8.16	86.2	89.3	97.1	85.8	100.1	100.7	103.9	9.99	83.4	92.8	96.0	87.9	82.5	84.9	73.3	106.9	92.5
Drair		st4	10.1	6.6	5.8	4.9	9.8	9.8	5.8	10.0	10.0	8.2	10.8	9.6	3.4	4.7	10.5	6.0	2.7	9.7	10.5	7.5	8.0
-	116	st3	35.8	37.6	31.6	28.2	34.1	37.6	34.0	39.9	38.5	32.3	42.4	37.8	28.3	30.6	40.4	33.0	26.8	36.2	36.0	38.5	35.0
	Wa	с <u>г</u>	74.8	77.8	57.7	65.6	62.9	64.8	73.6	74.7	73.9	73.4	83.0	67.2	58.8	64.8	72.3	63.3	56.0	64.9	62.1	78.6	68.5
	,	stl	113.6	115.1	95.6	107.4	100.4	104.2	112.6	100.8	115.1	115.1	115.1	101.3	97.5	94.1	111.5	103.3	96.9	99.4	87.8	115.1	105.1
 י	No.		-	2	3	4	S	6	7	×	6	10	11	12	13	14	15	16	17	18	19	20	Mean

© 2009 FPInnovations - Forintek Division. All rights reserved.

F Pinnovations

Appendix E – 18

intek Division. All rights reserved.

Final BSPB Report
Seismic Performance of 6-Storey Wood-Frame Buildings
Project No. 6482

Maximum uplift deformation of 4-storey building in E-W direction (without GWB), (mm) Table E.6.3

Confidential

_									_	-	-				-	-		· · · · · · · ·			-	-	*
	-	st4	2.32	2.33	2.36	2.61	1.70	1.92	2.29	2.16	1.90	1.95	2.22	2.49	1.67	1.84	2.29	1.75	1.79	2.01	2.48	2.77	2.14
	nethod B	st3	0.94	1.23	1.18	1 34	0.93	0.70	1.09	1.35	0.92	0.74	1.17	1.14	0.71	1.08	1.23	0.75	0.60	0.76	1.19	1.43	1.02
	Wall 5 - n	st2	1_18	1.54	1.34	1.12	0.69	0.80	0.65	1.02	0.95	0.74	1 50	1.75	0.80	1.34	1.20	0.67	0.81	0.63	1.27	1.34	1.07
Vood	1	st1	0.99	1.06	0.80	0.85	0.45	0.61	0.56	0.52	0.62	0.62	0.84	1.24	0.47	0.98	0.76	0.35	0.42	0.42	0.56	1.01	0.71
SAPV		st4	1.29	2.15	1.59	1.21	1.23	0.97	1.16	1.87	1.34	1.03	1.66	1.50	1.04	1.51	1.40	0.83	1.11	1.18	2.26	1.99	1.42
	nethod A	st3	1.51	1.97	1.81	1.42	1.22	1.10	1.37	1.55	1.28	1.08	1.78	1.68	1.18	1.54	1.41	0.93	1.07	1.08	1.81	1.80	1.43
	Vall 5 - n	st2	1.61	2.07	2.08	1.64	1.12	1.04	1.48	1.59	1.24	1.14	1.81	1.64	1.26	1.60	1.75	1.02	1.16	1.17	1.83	2.09	1.52
		stl	2.67	4.11	2.90	2.20	1.59	1.61	1.96	2.41	2.34	1.84	3.66	2.89	1.62	2.07	2.38	1.48	1.74	1.79	2.46	3.03	2.34
		st4	3.4	3.5	3.2	3.4	3.2	2.6	3.4	3.5	3.0	3.3	3.5	3.5	2.7	3.4	3.4	2.9	3.0	1.3	3.5	3.5	3.2
	15	st3	12.0	12.6	82	5.4	7.5	3.7	17.6	5.3	4.7	6.5	14.9	13.6	3.4	4.9	9.4	5.5	8.9	3.1	6.1	8.6	8.1
	Wa	st2	4.0	3.7	3.5	3.4	3.5	3.0	5.9	3.3	3.3	3.6	4.1	4.0	2.6	e	3.6	3.4	3.7	1.4	3.3	3.7	3.5
1-3D		stl	5.4	5.0	4.5	4.4	4.5	4.2	6.2	4.4	4.6	5.0	5.7	4.8	3.4	4.3	4.6	4.5	5.2	4.0	4.3	4.8	4.7
Drair		st4	3.4	3.5	3.2	3.3	3.1	2.6	3.4	3.5	3.0	3.4	3.5	3.5	2.7	3.3	3.4	2.9	3.0	3.0	3.5	3.5	3.2
	11 1	st3	11.0	12.7	8.4	4.8	7.1	3.8	16.5	5.2	4.2	7.2	14.7	11.6	3.3	5.0	9.3	4.5	7.3	4.0	6.8	7.3	7.7
	Wa	st2	3.9	3.7	3.5	3.3	3.5	3.1	5.2	3.4	3.2	3.6	4.2	3.9	2.4	3.0	3.6	3.2	3.6	3.1	3.4	3.5	3.5
		stI	5.3	5.0	4.5	4.2	4.5	4.2	6.1	4.5	4.4	5.0	5.8	4.9	3.3	4.1	4.6	4.2	5.1	3.9	4.4	4.5	4.6
	No.		-	2	3	4	5	و	-	8	6	10	11	12	13	14	15	16	17	18	19	20	Mean

© 2009 FPInnovations – Forintek Division. All rights reserved.

Appendix E - 19

FPInnovations FORINTER

Final BSPB Report
Seismic Performance of 6-Storey Wood-Frame Buildings
Project No. 6482

Maximum uplift deformation of 4-storey building in N-S direction (without GWB), (mm) Table E.6.4

			-		-	_	.	·····		_	_	_	~	_								_	
		ct d	0.08	0.75	1.06	1.05	0.82	0.85	0.25	0 78	0.58	0.80	0.05	1 03	70.1	0.00	001	0.87	020	0.75	0.86	1 06	0.84
	lethod R	et3	1 77	1.50	1.57	1.74	1.36	1.54	0.28	1.82	1.04	1.44	1 50	1 77	1 20	1 49	1.45	1.11	1.23	1 29	1 86	181	1.45
	Vall 8 - n	512	1.61	1.74	1.94	1.94	1.27	1.20	0.29	1.17	1.25	1.46	146	1 04	1 06	1 48	1 84	0.87	1.78	1 26	163	1 72	1.44
poo,	200	st]	0.66	1.08	1.02	0.86	0.54	0.55	0.08	0.46	0.65	0.60	0.96	1 03	0.46	1 07	0.88	0.35	0.73	0.35	0.60	0.89	0.69
SAPW		st4	1.07	1.89	1.31	66.0	0.95	0.84	1.05	1.53	1.07	0.87	1.22	117	1 03	1.20	113	0.67	16.0	0.98	1.82	1 49	1.15
	ethod A	st3	0.97	1.50	1.22	0.97	0.92	0.70	0.95	1.12	0.88	0.78	1.16	113	0.87	103	0.88	0.63	0.76	0.82	1.34	1.23	0.99
	/all 8 - m	st2	1.05	1.48	1.35	1.02	0.76	0.67	1.05	1.02	0.75	0.73	1.09	1.14	0.78	0.95	1.01	0.63	0.82	0.81	1.22	1.35	86.0
	B	st1	1.76	2.14	1.94	1.49	1.07	1.04	1.37	1.56	1.09	1.18	1.60	1.94	1.04	1.30	1.57	0.97	1.21	1.21	1.68	1.95	1.46
		st4	0.5	0.5	0.4	0.2	0.6	0.6	0.4	0.5	0.5	0.4	0.6	0.5	0.2	0.3	0.6	0.4	0.1	0.6	0.6	0.5	0.4
	8	st3	2.3	2.2	1.8	1.8	2.2	2.2	2.0	2.4	2.3	1.9	2.5	2.2	1.6	1.7	2.3	1.9	1.5	2.1	2.0	2.3	2.1
i.	Wall	st2	2.3	2.4	1.9	2.0	2.2	2.0	2.2	2.3	2.2	2.2	2.5	2.3	1.8	1.9	2.2	1.9	1.7	1.9	1.9	2.4	2.1
3D		stl	3.5	3.7	3.0	3.3	3.1	3.2	3.4	3.0	3.5	3.6	3.7	3.5	3.0	3.3	3.4	3.1	2.9	3.0	2.6	3.8	3.3
Drain-		st4	0.7	0.7	0.4	0.3	0.7	0.7	0.4	0.7	0.7	0.6	0.7	0.7	0.2	0.3	0.7	0.4	0.2	0.7	0.7	0.5	0.6
	6	st3	2.5	2.6	2.2	2.0	2.4	2.6	2.4	2.8	2.7	2.2	2.9	2.6	2.0	2.1	2.8	2.3	1.9	2.5	2.5	2.7	2.4
	Wall	st2	2.7	2.8	2.0	2.3	2.2	2.3	2.6	2.6	2.6	2.6	2.9	2.4	2.1	2.3	2.6	2.2	2.0	2.3	2.2	2.8	2.4
	-	st1	4.0	4.4	3.4	3.8	3.6	3.7	4.0	3.6	4.2	4.2	4,6	3.6	3.5	3.3	4.0	3.7	3.4	3.5	3.1	4.9	3.8
	No.		-	5	ε M	4	5	9	~	~	6	10	11	12	13	14	15	16	17	18	19	20	Mean

© 2009 FPInnovations - Forintek Division. All rights reserved.

F Pinnovations FORINTER

Appendix E – 20

Confidential

|--|

Maximum uplift forces of 6-storey building in E-W direction (without GWB), (kN) Table E.6.5

No. Mail 1 Drain-3D Mail 5 </th <th></th> <th>· •</th> <th>η—</th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th>_</th> <th>-</th> <th>-</th> <th>······</th> <th></th> <th>_</th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th>-</th> <th>-</th> <th>-</th>		· •	η—	_						_	_	-	-	······		_			-			-	-	-
No. Drain-3D Drain-3D Mail 5 SAPWood 1 2952 315 316 sti st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5	poo		st6	36.0	37.4	50.2	39.9	27.0	34.4	18.2	41.1	37.4	22.3	28.2	363	39.1	40.1	38.8	31.1	36.7	32.2	40.0	51.2	35.0
No. Drain-DD Number D Number D SAPWood Number D 1 2952 st5 st6 st1 st2 st5 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st6 st1 st2 st3 st4 st5 st6 <td>B</td> <td>ts t</td> <td>35.6</td> <td>646</td> <td>39.5</td> <td>41.2</td> <td>26.7</td> <td>27.5</td> <td>24.4</td> <td>32.5</td> <td>31.5</td> <td>20.5</td> <td>27.3</td> <td>27.8</td> <td>35.1</td> <td>36.6</td> <td>30.0</td> <td>16.4</td> <td>25.5</td> <td>16.1</td> <td>30.3</td> <td>45.5</td> <td>99.0</td>		B	ts t	35.6	646	39.5	41.2	26.7	27.5	24.4	32.5	31.5	20.5	27.3	27.8	35.1	36.6	30.0	16.4	25.5	16.1	30.3	45.5	99.0
No. Drain-5D Null 5 - molto SAPWood 1 2952 187 170.1 155.3 86 81 87.5 86 81.1 82.2 83.4 85.5 86.5 86.7 87.4 41.5 41.9 2 223.2 198.9 176.1 155.0 113.8 88.7 255.6 201.8 175.7 4 41.5 41.9 2 223.2 190.2 156.3 110.3 88.4 155.5 154.9 158.7 75.4 41.5 41.5 41.0 3 260.2 279.8 190.2 190.3 142.0 97.7 79.6 81.3 73.6 44.1 41.3 41.5 4 252.4 190.2 190.3 142.0 96.7 77.4 44.5 35.5 35.6 44.6 35.4 25.7 41.0 37.5 27.4 45.3 35.5 35.4 35.7 44.5 35.7 45.3 35.5 35.5 35.6 <		lethod	st4	53.8	31.8	39.2	47.4	38.4	37.4	28.1	33.0	37.6	27.0	38.0	36.0	42.4	43.1	36.4	19.9	33.4	21.2	29.5	41.1	35.7
No. Drain-3D Drain-3D Addits SAPWood 1 2952 181 std		115 - m	st3	419	28.1	41.0	44.6	38.8	35.4	27.4	26.1	33.8	29.5	37.5	35.7	34.3	42.6	34.7	27.2	27.5	33.0	27.5	33.2	34.0
No. Mail 1 Mail 5 <td>Wa</td> <td>cts</td> <td>415</td> <td>32.9</td> <td>48.2</td> <td>54.8</td> <td>45.4</td> <td>46.3</td> <td>34.4</td> <td>40.0</td> <td>49.9</td> <td>35.5</td> <td>49.3</td> <td>45.1</td> <td>45.1</td> <td>53.0</td> <td>44.9</td> <td>46.2</td> <td>39.9</td> <td>30.0</td> <td>27.4</td> <td>42.5</td> <td>47.6</td>		Wa	cts	415	32.9	48.2	54.8	45.4	46.3	34.4	40.0	49.9	35.5	49.3	45.1	45.1	53.0	44.9	46.2	39.9	30.0	27.4	42.5	47.6
No. Train-3D Nall 5 Wall 5 std st5 std st7 st7 st8 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st6 st4 st5 st6 st1 st2 st3 st4 st5 st6 st4 st5 st6 st4 st5 st6 st4 st5 st6 st4 st5 st6 st4 st5 st6 st6 st4 st5 st6			st1	37.4	39.7	38.9	39.5	26.8	42.4	38.6	52.0	52.9	34.3	35.6	33.5	41.8	58.8	48.1	37.7	33.8	28.2	31.4	49.6	40.0
No. Wall I Wall S S	SAPW		st6	50.7	48.3	42.9	55.1	35.3	38.9	43.3	47.2	40.1	32.4	31.8	53.4	41.1	44.5	36.3	35.1	32.8	42.1	44.6	60.2	42.8
No.	•-		ŝť	80.9	78.4	78.7	70.0	51.6	57.3	52.7	77.8	71.8	54.7	54.8	73.4	60.1	89.5	73.8	59.6	62.5	69.7	72.8	95.1	69.3
No. Wall 1 Drain-3D No. st1 st2 st3 st2 st3 st5		ethod A	st4	86.7	0.70	86.7	70.9	52.4	76.8	43.6	86.1	87.7	68.1	68.8	9.06	62.5	102.7	89.1	63.6	65.6	64.1	75.4	121.4	78.5
No. Wall 1 Drain-3D 1 295.2 18.7 5.1 st5 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st4 st5 st6 st1 st2 st3 st2 st3 st4 st5 st6 st6 st6 st6 st6 st1 st5 st6 st6 st6 st6 st6 st6 st6 st6 st6 st6 st6 st6 st6 st6 st7 st6 st6 st6 st6 st6 st7 st6		<u>15 - me</u>	st3	38.5	45.5	88.0	75.6	53.6	70.4	14.7	83.3	90.5	54.2	76.8	59.8	71.1	9.66	92.6	57.2	6.7.9	53.2	72.5	13.7	79.4
No. Wall I Drain-3D 1 295.2 st1 st2 st3 st4 st5 st6 st1 2 st1 st2 st3 st4 st5 st6 st1 st7 st4 st5 st6 st1 st7 st1 st2 st3 st4 st5 st6 st1 st7 st6 st1 st7 st5 st6 st7 st5 st6 st7 st5 st6 st7 st5 st6 st6 st6 st7 </td <td rowspan="2"></td> <td>Wal</td> <td>st2</td> <td>25.1</td> <td>95.3 1</td> <td>15.9</td> <td>91.8</td> <td>73.0</td> <td>31.5 '</td> <td>17.8</td> <td>02.8</td> <td>39.1</td> <td>32.0</td> <td>36.8</td> <td>6.97</td> <td>. 6.16</td> <td>I5.3</td> <td>14.6</td> <td>59.4</td> <td>92.9</td> <td>55.8</td> <td>33.3 '</td> <td>31.4 1</td> <td>03.3</td>		Wal	st2	25.1	95.3 1	15.9	91.8	73.0	31.5 '	17.8	02.8	39.1	32.0	36.8	6.97	. 6.16	I5.3	14.6	59.4	92.9	55.8	33.3 '	31.4 1	03.3
No. Wall I Drain-3D 1 295.2 std <dtd>std std std<dtd>std std std std std std std<<td>std<dtd>std std<dtd>std<dtd>std std std<dtd>std<dtd>std<dtd>std std<dtd>std<dtd>std<dtd>std<dtd>std<dtd>std<dtd>std<dtd>std<dtd>std<dtd>std std std<dtdtd<ttd<tdtd<tdt<td< td=""><td></td><td>stl</td><td>47.5 1</td><td>30.8 1</td><td>47.8 1</td><td>20.2</td><td>31.3</td><td>12.6</td><td>72.6</td><td>01.1 1</td><td>50.8 1</td><td>01.9</td><td>29.4 1</td><td>8.7</td><td>14.3</td><td>33.5 1</td><td>39.5 1</td><td>30.6</td><td>16.0 9</td><td>71.5 (</td><td>96.1 8</td><td>30.5 1</td><td>13.8 1</td></dtdtd<ttd<tdtd<tdt<td<></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></td></dtd></dtd>		std <dtd>std std<dtd>std<dtd>std std std<dtd>std<dtd>std<dtd>std std<dtd>std<dtd>std<dtd>std<dtd>std<dtd>std<dtd>std<dtd>std<dtd>std<dtd>std std std<dtdtd<ttd<tdtd<tdt<td< td=""><td></td><td>stl</td><td>47.5 1</td><td>30.8 1</td><td>47.8 1</td><td>20.2</td><td>31.3</td><td>12.6</td><td>72.6</td><td>01.1 1</td><td>50.8 1</td><td>01.9</td><td>29.4 1</td><td>8.7</td><td>14.3</td><td>33.5 1</td><td>39.5 1</td><td>30.6</td><td>16.0 9</td><td>71.5 (</td><td>96.1 8</td><td>30.5 1</td><td>13.8 1</td></dtdtd<ttd<tdtd<tdt<td<></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd></dtd>		stl	47.5 1	30.8 1	47.8 1	20.2	31.3	12.6	72.6	01.1 1	50.8 1	01.9	29.4 1	8.7	14.3	33.5 1	39.5 1	30.6	16.0 9	71.5 (96.1 8	30.5 1
No. Wall I Drain-3D Wall I Wall I 1 295.2 st3 st4 st5 st6 st1 st2 st4 st5 st5 st4 st5 st5 st5 st4 st5 st5 st4 st5 st5 st4 st5 st4 st5 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st4 st5 st5 st5 st5 st5 st5 st5 st5 st5 st5 st5 st5			tt6	2.0	8.4 1	3.4 1	0.7 1	9.6	1.5 1	6.8	1.8	7.0 1	1.7 1	0.4 1	9.3	6.5 1	7.7 1	1.5 1	0.0	9.7 1	9.7	7.7	0.3 1	4.4
No. Wall 1 Drain-3D at1 st1 st2 st3 st4 s 1 295.2 218.7 170.1 135.3 98.3 82.2 299.8 214.9 166.1 132.3 8 2 223.9 198.9 176.1 155.0 113.8 88.7 252.5 201.8 179.9 158.3 11 2 223.9 198.9 176.1 155.0 113.8 88.7 252.5 201.8 179.9 158.3 11 253.2 299.1 91.9 958.3 11 20.5 142.0 97.3 80.1 266.5 158.6 126.9 91.6 126.6 126.5 130.2 142.0 92.5 142.0 93.5 142.0 93.5 142.0 93.5 142.0 93.5 142.0 93.5 142.0 93.5 142.0 93.5 157.8 103.5 142.0 93.5 142.0 93.5 157.8 103.5 164.6 103.5 16			ť	1.0	5.6 8	1.3 8	7.3 8	7.5 7	0.2 8	5.5 7	9.8.6	7 6.0	9.2 8	8.1.8	2.8 8	2.9 7	3.6 8	1.1 8	4.0 8	2.6 7	5.9 7	2.4 9	9.2 11	7.6 8
No.			4 5	2.3 8	8.3 11	4.0 10	5.9 9	2.0 9'	5.0 9(0.6 9.0	8.1 10	9.8 9	7.8 10	54 10	3.4 9.	6.8 8.	9.4 10	1.0 8	0.1 10	1.4 8.	2.8 9:	2.2 10	7.1 10	8.3 9'
No. Train-3D 1 st2 st3 st4 st5 st6 st1 st2 st3 1 295.2 218.7 170.1 135.3 98.3 82.2 299.8 214.9 166 2 223.9 198.9 176.1 155.0 113.8 88.7 225.6 201.8 179.1 3 32.2 299.3 146.2 96.3 88.7 225.6 201.8 199 5 382.2 290.3 140.2 96.0 79.8 391.9 298.7 190 6 370.2 279.1 190.3 140.2 96.0 79.3 391.9 298.7 190 7 266.6 156.6 126.1 17.5 307.3 290.8 190 9 374.5 190.3 164.6 119.1 90.5 272.1 204.5 190 10 375.5 293.1 164.6 119.1 77.5 370.5 296.1		Vall 5	st St	1 13	151 6.	16	5 13	3 14	6 12	.0 13	.3 16	.3 14	.3 15	.3 10	2 12	.3 15	3 16	.3 16	.3 16	.3 15	9 14	5 11	2 17	0 14
No. Train-3D 1 st2 st3 st4 st5 st6 st1 st2 1 st2 st3 st4 st5 st6 st1 st2 2 st2 st3 st4 st5 st6 st1 st2 2 223.9 198.9 176.1 155.0 113.8 88.7 225.6 201. 5 382.2 291.7 190.3 140.2 96.0 79.8 391.9 298. 265. 201. 6 378.2 291.7 190.3 140.2 96.0 79.8 391.9 298. 272.4 227. 7 266.6 156.6 156.6 126.3 94.8 81.2 370.3 279. 9 374.0 227.3 140.2 96.0 79.5 277.4 227. 266. 10 372.5 190.3 154.5 190.3 154.5 107.5 81.2 277.2 245.			<u></u> Я	9 166	8 179	061 6	5 166	2 190	0 181	5 155	6 190	8 190	5 190	3 190	3 143	0 190	6 190	4 190	2 190	6 190	1 184	8 119	9 190	6 179
No. Wall I Drain-3D 1 st1 st2 st3 st4 st5 st6 st1 2 st1 st2 st3 st4 st5 st6 st1 2 st2 st3 st4 st5 st6 st1 2 223.9 198.9 176.1 155.0 113.8 88.7 225.6 5 382.2 299.1.7 190.3 140.2 96.0 79.8 391.6 6 372.0 279.1 190.3 140.2 96.0 79.8 371.2 255.6 7 256.6 156.6 126.3 94.8 81.2 357.2 370.2 8 266.9 221.8 190.3 164.6 119.1 90.5 277.2 370.2 9 374.0 225.5 130.3 164.6 119.1 90.5 277.2 370.3 10 375.5 130.3 164.6 119.1 90.5 277.2 <td></td> <td></td> <td>St2</td> <td>3 214.</td> <td>5 201.</td> <td>5 221.</td> <td>5 210.</td> <td>298.</td> <td>265.</td> <td>204.</td> <td>t 227.</td> <td>\$ 290.</td> <td>\$ 279.</td> <td>5 245.</td> <td>3 164.</td> <td>\$ 295.</td> <td>3 237.</td> <td>1 294.</td> <td>307.</td> <td>280.</td> <td>3 244.</td> <td>107.</td> <td>200.</td> <td>) 239.</td>			St2	3 214.	5 201.	5 221.	5 210.	298.	265.	204.	t 227.	\$ 290.	\$ 279.	5 245.	3 164.	\$ 295.	3 237.	1 294.	307.	280.	3 244.	107.	200.) 239.
No. Vall 1 St.1	n3D		stl	299.8	225.0	250.	264.0	391.0	352	272.	272.4	370.	370.	291.5	193.	384.8	295.	371.	389.(358.	311.	119.0	227	297.9
No. stl st2 381 1 295.2 218.7 170.1 135.3 98.3 2 295.2 218.7 170.1 135.3 98.3 2 223.9 198.9 176.1 155.0 113.8 2 223.9 198.9 176.1 155.0 113.8 5 382.2 291.7 190.3 160.2 95.0 6 332.2 291.7 190.3 140.2 95.0 6 374.0 221.8 190.2 164.6 119.1 8 266.9 221.8 190.2 164.6 119.1 9 374.0 221.3 190.3 161.9 106.9 11 290.2 243.7 190.3 161.9 106.9 12 203.2 175.1 51.9 161.9 106.9 12 203.2 175.1 51.9 161.9 106.9 13 38.0 227.5 190.3 161.9 106.9 13 38.0 297.7 190.3 161.9 106.9 13 38.0 297.7 190.3 161.9 106.9 13 38.0 297.7 190.3 161.9 106.9 11 290.2 267.3 190.3 159.6 103.4 16 380.0 296.4 190.3 159.6 101.4 16 380.0 296.4 190.3 159.6 101.4 16 380.0 296.4 190.3 159.6 101.4 16 380.0 296.4 190.3 159.6 103.4 16 380.0 296.4 190.3 159.6 104.9 18 314.4 245.4 185.0 141.5 95.0 19 126.1 100.8 110.6 106.0 99.2 20 227.9 204.0 190.2 177.4 145.3 50.0 19 126.1 100.8 110.6 106.0 99.2 20 227.9 204.0 190.2 177.4 145.3 50.0	Drai		st6	82.2	88.7	83.9	80.1	79.8	81.2	79.2	90.5	77.5	82.3	80.6	88.6	75.6	87.5	81.6	78.3	78.5	80.8	97.6	108.9	84.2
No. <u>Mall scl std std std std std std std std std std</u>			ŝţ\$	98.3	113.8	116.4	93.5	96.0	94.8	95.1	119.1	98.1	107.9	106.9	98.9	102.4	114.5	105.4	98.7	99.1	95.0	99.2	145.3	104.9
No. stl st2 38,1 70,1 12,25,2 218,7 170,1 12,25,2 218,7 170,1 12,2 223,9 198,9 176,1 170,1 12,2 223,9 198,9 176,1 12,2 223,2 198,2 176,1 12,2 223,2 198,2 190,2 23,2 291,7 190,2 23,2 291,7 190,2 292,2 190,2 292,2 190,2 292,2 190,2 292,2 190,2 292,2 190,2 292,4 190,2 296,4 190,2 204,0 190,2 204,		=	st4	135.3	155.0	167.3	128.0	140.2	129.8	126.3	164.6	149.4	154.5	161.9	130.4	158.0	166.8	159.6	153.8	145.5	141.5	106.0	177.4	147.6
No. stl st2 2 253.9 198.9 2 223.9 198.9 2 223.0 198.9 2 223.0 198.9 2 223.2 198.9 2 223.2 291.7 2 223.2 291.7 2 220.2 291.8 2 250.2 291.8 2 250.2 291.8 1 290.2 243.7 1 200.2		Wal	st3	170.1	176.1	190.3	154.9	190.3	190.2	156.6	190.2	190.3	190.3	190.3	152.5	190.3	190.3	190.3	190.3	190.3	185.0	110.6	190.2	179.0
No. sti 1 295.2 2 223.9 2 223.9 2 223.9 2 223.9 2 223.9 2 252.4 2 252.4 2 252.4 2 252.4 2 252.4 2 252.4 2 252.6 2 2 2 202.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ļ	st2	218.7	198.9	230.2	195.5	291.7	279.8	196.6	221.8	292.5	279.8	243.7	175.2	297.7	237.5	300.5	296.4	267.3	245.4	100.8	204.0	238.7
No. <td></td> <td>stl</td> <td>95.2</td> <td>23.9</td> <td>60.2</td> <td>52.4</td> <td>82.2</td> <td>370.2</td> <td>262.6</td> <td>100.0</td> <td>374.0</td> <td>172.5</td> <td>:90.2</td> <td>03.2</td> <td>388.0</td> <td>01.0</td> <td>82.5</td> <td>380.0</td> <td>346.6</td> <td>314.4</td> <td>26.1</td> <td>27.9</td> <td>01.0</td>			stl	95.2	23.9	60.2	52.4	82.2	370.2	262.6	100.0	374.0	172.5	:90.2	03.2	388.0	01.0	82.5	380.0	346.6	314.4	26.1	27.9	01.0
	 No.			1 2	5	ŝ	4	5 E	9	2	8	6	10	11 2	12 2	13	14	15	16	17 3	18	19 1	20	dean 3

Final BSPB Report
Seismic Performance of 6-Storey Wood-Frame Buildings
Project No. 6482

Maximum uplift forces of 6-storey building in N-S direction (without GWB), (kN) Table E.6.6

Confidential

		ct 6	17.1		77 4	19.6	15.3	16.4	1.2	18.5	15.2	11 3	141	3 2 1	10.01	16.0	202	13.0	16.5	14.4	17.0	10	24
	В	5	3	1.10	1-07 26.4	33.6	251	24.3	1.6	25.9	25.6	18 5	24.4	100	+.0.7 0.7.0	27.0	29.6	247	24.8	18.6	73.4	10.05	
	nethod	ct4	11.7	33.7	14.0	351	27.2	20.8	18.6	28.5	253	24.9	316	30 6	0.40	200	32.2	25.9	592	14.9	24.2	916	
	all 8 - r	¢13	30.7	314	3.05	29.62	15.4	24.4	16.0	19.4	27.1	16.5	285	010	24.6 26.6	1 22	32.7	18.2	21.8	11.3	20.2	30.0	210
	M	cts	0.00	24.4	34.3	30.0	22.0	33.6	7.5	24.7	33.5	21.0	0.66	004	37.8	36.5	29.3	23.8	23.1	10.5	\$ 2	30.8	2.75
Nood		st]	66	18.0		25.5	12.8	15.0	1.8	12.6	31.4	6.7	20.3	80	30.5	38.5	32.7	11.5	18.4	0.0	<u>5</u> 1	26.3	17.0
SAPV		st6	10.0	12.4	6	12.6	8.2	8.7	10.8	11.0	8.8 8.8	7.5	7.6	y 11	6	0	8	22	8.5	9.6	10.7	141	00
	A	\$t5	17.2	18.2	17.2	15.4	11.4	12.9	11.3	16.5	15.3	12.5	12.1	16.0	13.0	18.9	15.1	13.8	13.3	15.0	16.5	20.4	151
	nethod	st4	38.2	39.0	35.6	31.4	21.8	25.9	19.7	34.6	35.7	32.0	28.9	375	26.7	42.2	36.4	27.9	27.2	26.2	32.8	48.8	37 4
	all 8 - 1	St3	66.2	62.3	56.3	53.I	35.6	45.8	29.0	54.9	59.9	48.0	50.4	49.0	48.1	64.5	60.8	42.6	45.3	35.3	51.6	7.77	518
	W	st2	85.1	72.2	75.3	64.2	44.9	58.2	36.7	68.5	77.3	61.6	66.3	55.6	60.7	75.4	75.4	50.9	56.0	38.7	60.5	85.7	63.5
		stl	98.3	82.9	98.4	81.9	54.1	76.4	45.6	67.3	100.6	72.2	84.7	67.2	75.7	86.0	91.5	59.0	78.9	47.0	69.7	89.4	763
		st6	10.1	13.3	10.1	12.0	8.7	7.9	10.0	14.2	7.8	8.2	10.0	11.8	7.7	9.3	7.6	7.8	6.2	13.3	13	15.5	101
		st5	42.8	45.8	44.8	42.0	43.0	36.6	46.3	45.1	37.4	42.0	48.1	40.6	41.3	41.5	41.3	42.3	37.6	48.3	30.6	49.2	42.3
	all 8	st4	83.2	5 90.1	93.0	7 87.4	92.8	1 78.7	91.9	92.3	5 83.1	88.6	1 99.2	67.4	88.2	91.7	92.2	88.6	7 81.0	\$ 93.3	56.9	9.06 (86.5
	M	st3	126.3	128.6	144.8	138.7	155.0	130.4	132.2	142.5	142.6	146.6	155.4	94.5	149.0	147.2	155.5	143.3	132.7	145.8	80.4	131.0	136.2
		t;	190.2	152.6	181.7	185.0	190.3	180.1	186.0	182.8	190.3	190.3	190.3	125.2	190.3	184.4	190.3	190.3	189.3	190.3	103.5	163.5	177.3
<u>n-3</u> D		stl	266.4	184.9	225.9	246.9	305.1	250.0	246.9	237.5	280.0	285.4	248.9	162.5	299.5	247.1	297.8	279.8	263.3	261	118.0	211.5	245.1
Drai		st6	11.5	13.6	11.9	13.4	7.9	8.3	8.9	12.5	8.1	9:2	7.4	11.4	7.8	9.7	9.1	6.3	7.8	10.8	13.5	15.0	10.2
		ŝtŝ	44.5	48.3	46.5	43.9	44.3	37.6	48.8	47.5	39.1	42.9	7 50.3	42.3	41.8	43.3	43.0	4.0	39.4	50.4	31.8	51.7	44.1
	all 6	st4	7 84.8	95.7	5 94.1	1 91.5	97.2	4 80.3	3 97.5	8 93.6	5 84.7	90.4	8 105.	69.0	4 89.8	9 92.9	4 93.3	4 90.6	9 82.7	8 96.3	62.7	6 96.2	5 89.5
	Ň	st3	3 134.7	3 137.9	7 145.2	3 147.1	164.(2 131.4	3 141	5 143.8	3 143.0	3 153.(3 166.8	3 95.6	3 155.2	2 147.9	3 156.4	3 149.	3 133.9	3 153.8	9 90.1	7 139.0	8 141.
		st2	5 190.2	3 164.8	7 182.7	7 190.	190.4	190.	3 190.	3 183.(190	190	190.	5 126.	7 190.	1 185.2	5 190.	190.	190.	5 190.	8 115.5	4 164.	8 179.8
		stl	280.6	200.8	226.7	262.7	314.0	267	261.3	237.5	292.5	293.4	263.5	163.5	309.7	247.4	297.6	292.1	279.2	274.5	131.8	212.4	1 254.8
No.			-	~	ŝ	4	'n	9	-	∞	5	의	=	12	13	14	15	2	11	8	19	8	Mean

© 2009 FPInnovations - Forintek Division. All rights reserved.

F Pannovations

Final BSPB Report
Seismic Performance of 6-Storey Wood-Frame Buildings
Project No. 6482

Maximum uplift deformation of 6-storey building in E-W direction (without GWB), (mm) Table E.6.7

_		-	_			- T					T		· · · · ·	_	-	_	T	1	-	_	-	—	T
		st6	0.70	0.80	1.07	0.85	0.58	0.73	0.39	0.88	0.80	0.48	0.60	0.78	0.84	0.86	0.83	0.66	0.78	0.69	0.86	1.09	0.77
APWood	8	st5	0.68	0.52	0.75	0.78	0.51	0.52	0.46	0.62	0.60	0.39	0.52	0.53	0.67	0.70	0.57	0.31	0.49	0.31	0.58	0.87	0.57
	tethod]	st4	1.00	0.61	0.75	06.0	0.73	0.71	0.53	0.63	0.72	0.51	0.72	0.68	0.81	0.82	0.69	0.38	0.63	0.40	0.56	0.78	0.68
	11 5 - m	st3	0.80	0.53	0.78	0.85	0.74	0.67	0.52	0.50	0.64	0.56	0.71	0.68	0.65	0.81	0.66	0.52	0.52	0.63	0.52	0.63	0.65
	Wa	st2	0.79	0.62	0.92	1.04	0.86	0.88	0.65	0.76	0.95	0.67	0.94	0.86	0.86	1.01	0.85	0.88	0.76	0.57	0.52	0.81	0.81
		st1	0.80	0.85	0.83	0.85	0.57	16.0	0.82	111	1.13	0.73	0.76	0.72	0.00	1.26	1.03	0.81	0.72	0.60	0.67	1.06	0.86
		st6	1.08	1.03	0.92 (1.18 (0.76 (0.83	0.93 (1.01	0.86	0.69	0.68	1.14	0.88	0.95	0.78	0.75	0.70	0.00	0.95	1.29	0.92
S		st5	1.54	1.49	1.50	1.33	0.98	1.09	1.00	1.48	1.36	1.04	1.04	1.40	1.14	1.70	1,40	1.13	1.19	1.33	1.38	1.81	1.32
	thod A	st4	.65	63	.65	.35	00.	.46	.83	49.	.67	-29	31	.72	.19	.95	69.	.21	.25	.22	.43	2.31	.49
	5 - me	t3	87		.67	4	.02	.34	.85 (.58	.72	.22	46	.33	.35	68.	.76	60-	.29	10.	.38	.16	.51
	Wall	- 2	38 1	71 2	20 1	75 1	39 1	.55 1	48 0	.95 I	64 1	56 1	.60	52 1	.75 1	19 1	.18 1	.32 1	1 17.	.25 1	.58 1	50 2	.96 I
		tl s	15 2	80 3	16 2	57 1	74 1	41 1	55 1	16 1	23 2	18 1	77 2	11	45 1	86 2	98 2	73 1	48 1	53 1	06 1	79 2	44 1
		6 S	8 ()	9	8	7 2.	7 I.	7 2.	7 I.	0 2.	7 3.	8	1	6 6	6 2	9 2	7 2	7 1.	7 2	7 1.	1	4	8 2
		5 st		5 1.	3	1	1 1.	1 1.	1 1.	4 2.	2 1.	3 1.	.i.	 0	3 1.	3 1.	3.1.	-	1 Î,	1 1,	5 7	3.	2 1.
		4 st	2 8	4	5 2.	9 2.	הי 0	5	8 8	5 2.	2 2.	4 2.	5	5 15	4 2.	5 2.	2	4	2 2.	1 2.	4 2.	8 2.	5
	Vall 5	st	<u>ci</u>	3.	3.	5 2.6	<u></u>	~	2	ц.	3.	3.	3.	2	с.	3.	3	еў сл	m	3.	2	3.	ŝ
	N	St3	3.6	3.5	4.2	3.6	∞	3.9	 	4.4	6.9	5.0	5.0	3.1	8.1	4.7	9.3	0	5. J	4.0	2.6	4.1	5.2
		st2	4.6	4.3	4.8	4.5	6.4	5.7	4.4	4.9	6.2	6.0	5.3	3.5	6.3	5.1	6.3	9.9	<u>.</u>	5.2	2.3	4.3	5.1
in-3D		stI	6.4	4.8	5.4	5.7	8.4	7.5	5.8	5.8	7.9	6.7	6.3	4.2	8.3	6.3	8.0	8.3	7.7	6.7	2.6	4.9	6.4
БЦ		st6	1.8	1.9	1.8	1.7		2	1.7	1.9	1.7	1.8	1.7	1.9	1.6	1:9	1.8	1.7	1.7	1.7	2.1	23	1:8
randa arranda a		st5	2.1	2.4	2.5	2.0	5.1	0. 7	2.0	2.6	2.1	2.3	2.3	2.1	2.2	2.5	2.3	2.1	2.1	5.0 5	2.1	3.1	2.3
	all 1	st4	2.9	3.3	3.6	2.7	<u>.</u>	2.8	2:7	3.5	3.2	3.3	3.5	2.8	3.4	3.6	3.4	3.3		3.0	2.3	3.8	3.2
	ß	st3	3.6	3.8	4.6	3.3	6.9	4	3,4	4.1	6.8	4.6	4.7	3.3 5	9.2	4.4	6.6	7.6	4.4	40	24	4.2	5.0
		st2	4.7	4.3	4.9	4.2	63	6.0	4.2	4.8	6.3	6.0	5.2	3.8	6.4	5.1	6.4	6.4	5.7	5.3	2.2	4,4	5.1
		st1	6.3	4.8	5.6	5.4	8.2	2.9	5.6	5.7	8.0	8.0	6.2	4.4	8.3	6.5	8.2	8.1	4.7	6.7	2.7	4.9	6.5
No.			-	2	m	4	'n	اھ	-	∞	6	2	=	2	11	4	15	1e	17	8	£[ମ୍ଚ	Mean

© 2009 FPInnovations – Forintek Division. All rights reserved.

FPInnovations FORINTER

	food-Frame Buildings	
I BSPB Report	mic Performance of 6-Storey Wo	ect No. 6482

Maximum uplift deformation of 6-storey building in N-S direction (with GWB), mm Table E.6.8

_																									
		7400	200	0.0	0.0			30		3 2		0.00	0.00	0.00	0.00	0.00	0.00	000	000			0.0	0.00	0.00	0.00
		14		77.1	1.13	+ 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	124	1 40	0.56	1 60	00.1	8 <u>0.1</u>	1.14	1.51	1.75	1.72	1 72	1.82	1.52	1 53	114	1.14	00.7	1.9/	1.63
	ethod	1	100	201	1 01		0.85	0.65	0.50	000	0000	0.0	0.78	0.99	1.03	16.0	001	101	0.81	68.0	17	100	0/0	0.99	0.88
	11.8 - m	643	020	0.50	300	70.0	0.00	046	0.30	0.37	120	70.0	1.1	47.0	0.46	0.50	0.64	0.62	0.35	041	22	y 0 0 0	00.0	/0.0	0.47
-	Wa	ct o	22	0.46	0.65	0.57	0.42	0.64	0.14	147	121		0.40	2	0.39	0.72	0.69	0.56	0.45	144	000	717	01.0	20.0	J.48
put		c+1	15	01.0	29	5	7.27	130	100	1 27	111			.43	0.21).65	0.82	0,70	0.25 (39 (8	3	172		2.28
APW		et c	24	0.86	0.60	1220	0.57	0.60	0.75	177	190	100	20.0	20.0	0.81	0.64 (0.66 (0.58 (0.53 (0.59 (0 67 1		+ 00	0/10	0.08
		t,	1 VX	3 -	1 06	260	0.70	0.79	0.70	1.02	70.0		1	1.4	0.99	0.80	1.17	0.93	0.85	0.82	00	7.01	10.1	0,01	1.5.0
	thod A		20	23	1	6	60	18	.62	60	12	10	3		-18	.84	.33	.14	.88	.85	8	3 2	312	5 2	70-
	8 - me		26	2	20	0	68 (87 0	55 0	04	14			2	.93 1	.91 C	23 1	.16 1	81 0	.86 0	67 0	00	187	e e	1 77
	Wall	- - -	100	37 1	43	22	85 0	11	70 0	30 1	47 1	17		07	0 90	.15 0	43 1	43 I	97 0	06 0	74 0	<u>۲</u>			0 17
		tl s	10	1	10	75 1	16 0	63 1.	98 0	44 1	15 1	22	- 		4 	62 1.	84 1.	96 1.	26 0.	69 1.	01 0	40			
		6 s	7 2	6	7 2	8 I	6 1.	<u>s</u> 1.	0.0	0	5					5 1.	6 1.	5 1.	5 1.	4 1.	9 1.	-		-	
		5 st	0	0	1	9.0	0	5 0.	0.	1	6 0.	0			⇒ ∧	9 0.	9 0.	9 0.	9 0.	6 0.	4 0.		4		-
		4 st	0 13	m m	0. 0.	1.2	3 3	8 2.	3.3.	3.3.	9	1 2	i a		4 +		2 2.	2 2 2	1 2.	9	3 3	0 0			1
	Wall 8	3 st	7.3.	00 00	1 3.	0.3	33	8	8	1.3.	1 2.					3. 10 10	2 3.	 	1 3.	8	1 3.	7 2.			5
	-	2 St	1	6	3.3	3.	3	9 2.	0 2.	Э		33			4	μ. Π	с М	 	ς. Γ	1 2.1	e. S	1	5	~	i
		l sť	4.	 	3.0	3 4.0	5 13.	1 3.9	3 4.6	ω.	5.6	8	v	i è	i i	9 •	4	ة 	0.0	5 4.	S.S	5 2.5	3	2	
ain-3D		st	5.5	4	\$. 4	5.5	5 6.5	5.2	5 5.5	9 5.1	5 6.0	<u>و</u> .	v	5 0		<u>6</u>	5.5	ور م	1 6.(5.6	5.6	2 -	4.4	5	
Ğ			0.8	00	0.0	0.0	0.6	5 0.6	t 0.6	3 0.5	0.6	0.6	Ċ	č	5	õ	6	ð -	0.4	7 0.5	5	0.0		0	,
		l st	3.]	3.4	5	2.1	1 3.1	2.6	3.6	3.3	2.7	2.0	3	2		5	3.0		3.	2	3.5	2.2	9.6 1	3.	
	/all 6	st4	3.0	3.4	3.3	3.2	3.4	5.2	3.5	3.5	3.(3.2	3	ć	1	m	3.0		m	5.0	3.4	2.2	3,4		
	X	st3	2.5	3.0	3.1	3.2	5.5	5	с. С	сі	 	0 3.3	3.6	·	10	8	- C.		3.7	2.5	3.5	1.6	3.0	3.0	
		st2	5.0	3.5	3.9	4.5	15.(4.1	4.6	3.9	6.9	11.(7.5	0	j;		4	6.7	5.8	4.6	6.7	2.5	3.5	6.2	
	st]			4. Ú	4.9	5.6	6.7	5.7	5.6	5.1	6.3	6.3	5.7	er er		0.0	5.3	6.4	0	6.0	5.9	2.8	4.6	5.5	
No.			-	c1	m	4	ŝ	9	-	∞	6	10		17	; ;	- -	4 ;	<u>۲</u>	<u></u>	-	18	19	20	Mear	

© 2009 FPInnovations - Forintek Division. All rights reserved.

FPInnovalions

Appendix F

Selected time history responses and hysteresis loops of selected shear walls

Figures F.1 and F.2 show some examples of displacement time history responses (relative to the ground) resulting from the analyses with SAPWood:

Figure F.1. Displacement time history for the roof level and first storey of the four-storey structure

Six-story building, 2010 Code, Earthquake ID 10, Y direction

Figure F.2. Displacement time history for the roof level and first storey of the six-storey structure

