

Photo 4: Till placement on the Perimeter Embankment at Ch. 46+00 m.

Till was placed for 5 days during this reporting period with rain at the end of the week. Till is now placed to elevation 954 m around the entire TSF except for a 100 m long section at West End of the Perimeter. There is approximately 1 day of till placement remaining.

Weekly Report for September 29 to October 5, 2008

Photo 5: Zone F and T placement to elevation 954 on 2:1 slope.

Zone F placement on the South and Perimeter Embankment is approximately 50% complete. Zone T has not been placed on the South but has been placed on approximately 50% of the Perimeter and Main Embankments. Filter runs have been scheduled for the last 2 weekends and filter supply is good.

5.0 CONSTRUCTION CONTRACTING

Lake Excavating currently has two hoes (320 and 330), two packers, three articulated trucks and a D8 dozer on site. Lake excavating will be leaving site soon due to the till program being completed.

6.0 ENGINEERING ISSUES

No issues have been encountered.

Knight Piésold

Weekly Report for September 29 to October 5, 2008

7.0 CONSTRUCTION QUALITY ASSURANCE AND QUALITY CONTROL ACTIVITIES - KP

The following KP activities were performed during this reporting period:

- Monitoring of construction material placement along the Perimeter, Main, and South Embankments.
- The following TSF construction material sample results were collected:
 - R-S6-ZF-41 to 43
 - C-S6-ZF-11

KP is assisting the MPMC bucking room to with the soil testing.

 Monitoring of TSF piezometers and inclinometers. The piezometer readings have been entered into the data base for analysis and no extreme readings were detected. The pond elevation on October 5 was 949.96 m.

The inclinometer readings were taken on September 30 and several attempts were made to download the data from the data logger. It appears that the data was erased by the recorder and that the data logger is not functional. Duram Instrumentations will be notified about the problem this week to try and resolve the issue. The data logger was recently repaired in August and was functioning properly initially.

- Assisting with surveying the alignment and grade staking for till
- Construction planning and scheduling.
- Preparation of weekly reports.

Submitted by,

Knight Plésold Ltd.

Jim McDonald Staff Engineer

Weekly Report for September 29 to October 5, 2008

Page 8 of 8

Page 1000 of 1157 INVESTIGATION KP 1-9 3 of 500

File No.:VA101-1/21-A.01 Cont. No.:VA08-02305 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 Fax: 604.685.0147 www.knightpiesold.com

January 13, 2009

Mr. Ron Martel Environmental Superintendent Mount Polley Mining Corporation P.O. Box 12 Likely, BC VOL 1N0

Dear Ron,

Re: Drainage Ditch below Polley Lake Haul Road (Wight Pit RDS Diversion Ditch)

Knight Piésold Ltd (KPL) has been retained to asses a drainage ditch, detention pond and conveyance pipe that will collect runoff below the Wight Pit and Polley Lake haul roads, and discharge it into the perimeter embankment seepage collection pond. The objective of this assessment is to:

- identify the flow capacity of the installed pipeline;
- calculate the maximum storage capacity of the pond and ditch;
- · determine the return period event that can be passed by the system; and
- · identify the location and size of the spillway along the ditch alignment.

Site description

The drainage ditch starts approximately 200 metres north of the intersection of the Wight Pit Haul Road and the Polley Lake Haul Road. It runs parallel to the Polley Lake Haul Road at 0.3-0.5% for approximately 4 km where it empties into a small detention pond. Runoff is conveyed from the detention pond in a 22" HDPE pipe adjacent to the haul road and crosses Bootjack Creek on the existing bridge. The pipe discharges the runoff into a second ditch, which then flows into the perimeter embankment seepage collection pond (PESCP). Figure 1 shows the alignment of the ditch, location of the detention pond and drainage pipe alignment. This letter considers a catchment area equivalent to 1.44 km² above the Polley Lake Haul Road.

Average monthly flow

Average monthly precipitation values were provided in the KP report 'On-Going Construction Requirements' (Ref. no. 10162/9-3, 1997). The KP letter 'Mount Polley Water Balance' (VA-0816, 2004) reviews these numbers with no significant changes and also provides runoff coefficients for all areas of the mine site. Table 1 summarizes this information and presents the predicted total runoff as well as the average monthly flows in the ditch. Determining monthly runoff requires use of runoff coefficients. The catchment has been divided into two arbitrary sub-catchments: 50% of the area is evaluated as disturbed and assigned a freshet coefficient of 1.0 and a general coefficient of 0.6, while the remaining 50% is undisturbed and is assigned a coefficient of 0.24 for all seasons. Any increase in disturbed area over the life of the mine will result in a corresponding increase in runoff. The maximum monthly flow occurs in April and is a result of snowmelt and precipitation. The April flow of 0.042 m³/s is well below the calculated maximum flow of 0.5 m³/s that the pipe is capable of carrying.

Page: 1

Number: 1	Author: rmartel	Subject: Sticky Note	Date: 1/19/2009 10:56:23 AM	
Discharges		and a second		
Number: 2	Author: rmartel	Subject: Sticky Note	Date: 1/19/2009 10:58:13 AM	
then	A CONTRACTOR OF THE OWNER			
Number: 3	Author: rmartel	Subject: Sticky Note	Date: 1/19/2009 10:58:54 AM	

Storm Events

The calculation of average monthly flows assumes that the runoff occurs at a constant rate across the entire month. Runoff will be much higher during storm events due to the short term nature of intense precipitation. KPL has analysed the predicted runoff during 24 hour storm events with return periods ranging from 2 to 100 years. The 24 hour intensities were calculated based on the Intensity-Frequency-Duration curve from the 'Report on ongoing Construction Requirements' which is included as Appendix A. The results are summarized in Table 2.

The return period of the storm is a statistical function and means that if a storm has a return period of 2 years it is expected, on average, that a storm of this magnitude or greater will occur once every other year. Stated another way, every year there is a 50% chance that a storm will meet or exceed the precipitation magnitude of the 2 year storm. KPL has used the Soil Conservation Service (SCS) Curve Number approach to assess the runoff resulting from the above storm events. This approach requires selection of a Hydrologic Soil Group, where Group A soils are the most permeable and Group D are the least permeable. Group D soils were chosen for the disturbed proportion of the catchment and Group C soils for the undisturbed portion of the catchment. The lower permeability Group C reflects the high till content of the soils found onsite.

Land use and treatment are also factors in selecting the Curve Number. The disturbed area has been assigned the land use "Newly graded... no vegetation" with a corresponding Group D Curve Number 94 (Ponce p.161). The undisturbed half has been assigned the land use "Woods Fair: Woods are grazed but not burned, and some forest litter covers the soil.", with a corresponding Group C Curve Number 73 (Ponce p.163). The average Curve Number for the catchment as a whole is then calculated as 84. The SCS runoff model is highly sensitive to the curve number selection and ideally the model would be calibrated against site specific data.

Conveyance Pipe over Bootjack Creek

The pipe that will convey water across Bootjack Creek is a 22" HDPE DR 15.5 pipe with a nominal internal diameter of 480 mm. The HydroCAD simulation for the site indicated that the peak flows in the ditch during all of the 2 to 100 year storm events will exceed the capacity of the pipe. Increasing flow through the existing pipe is not a possibility as there is limited head available between the detention pond and the outlet ditch. Three alternatives remain:

- Attenuate the peak flow with a detention pond;
- Provide a spillway and allow the excess to spill into the environment; and/or
- Add to or enlarge the pipeline.

KPL recommends a combination of these three options. Specifically, provide a pond to attenuate the flows up to and including the 10 year event, construct a spillway to allow larger events to dissipate into the environment and, upon closure, add a second pipe parallel to the existing pipe, unless the closure water management plan negates the need to divert any water to the TSF. As can be seen in Table 2, the 10 year storm requires 1700 m³ of storage. Storms of higher intensity are shown as spilling over the spillway. These results are discussed further in the following section.

This letter has not considered the results of adding further catchment to the system post closure when MPMC may want to minimize diversions and return the catchments to as close to their natural drainage as possible. Care should be given to the potential expansion of this system post closure. Should MPMC

VA08-02305 January 13, 2009

want to continue conveying this water to the PESCP, it could be conceivable to move some of the tailings pipes from their current position to run parallel to this existing pipeline.

Detention Pond

The newly constructed detention pond, shown in Photos 1 and 2, serves three functions,

- detain the peak flows and allow them to drain slowly;
- create a head water to drive the flow in the pipe; and
- facilitate construction of an inflow structure for the pipe.

Base flows predicted in Table 1 range from nearly zero in winter to 42 L/s during spring snowmelt, which are well below the 500 L/s capacity of the outflow pipe. As a result it is expected that the pond will remain mostly empty under normal operating conditions. The outline and plan of the existing pond are shown on Figures 2 and 3. The dimensions used in these figures are based on visual estimations by KPL staff after construction of the pond, and wherever possible actual survey data has been used to locate points. Modelling shows that storm events will result in flows that exceed the outflow capacity. Whenever inflow exceeds outflow there will be storage of water. The hydrographs for the storage are shown on Figures 4 to 11. It can be seen in the hydrographs that inflows exceed outflows for approximately 1 to 3 hours depending on the storm event. The maximum storage that is shown on the hydrographs is summarized in Table 2. When inflow is less than outflow storage begins to decrease.

KPL has used a design pond that approximates the existing pond. The design pond is a square with 15 metres per side and walls that slope at 1V:1H. There is additional volume in the ditch which has been modelled as a rectangular prism with dimensions: 150 metres (length), 0.95 metres (width at base) and 1V:1H side slopes. The spill way for the modelled pond is a 5 metre long broad crested weir that is 2.2 metres above the invert of the outlet pipe. The approximate location of the spillway is shown in Photo 3. The top of the embankment is 3.3 metres above the invert and is shown in Photo 4. The volume available to store water below natural ground level is estimated at 930 m³. This estimate is based on visual inspection soon after construction and should be updated when actual survey data becomes available. It includes the pond and ditch below elevation 943.8 metres.

There is enough volume to attenuate the 2 year storm below natural ground level within the pone and ditch. At 900 m³ of required storage, the 5 year storm is within the error margin of the volume mate and will likely still be stored entirely below natural ground level. The 10 year storm will require 770 m³ of storage above natural ground level. Distributed evenly over the pond and ditch, this is approximately 0.74 metres above ground level. The top of the berm has been surveyed at 945.4 meters, which is approximately one metre above the 10 year storm event. However the top of the berm is not consistently at or above this elevation.

Detention Pond Outlet

The pond outlet should be funnel shaped to direct water into the pipe and may be constructed from any combination of concrete sand bags or rock. Construction of the outflow should also give consideration to expansion at closure when a second pipe may be required to accommodate larger flows. A grate should also be provided to prevent larger debris from entering and blocking pipe flow. The pond outlet will require regular maintenance to ensure ongoing functionality.

VA08-02305 January 13, 2009

Page:	3
-------	---

Number: 1 1700m3? Author: rmartel

Subject: Sticky Note

Date: 1/19/2009 11:31:01 AM

Conclusions

The Wight Pit RDS Diversion Ditch, along with the associated storage pond and conveyance pipeline will be able to convey the 10 Year storm event based on the present catchment area and runoff coefficient assumptions. The 15 Year and greater storm events will be partially conveyed with this system, with excess flows exiting the spillway of the diversion ditch located 150 metres upstream of the storage pond. The excess flow will report to the ditch adjacent to the Polley Lake Pump Road and report to Polley Lake.

Should you have any questions regarding this letter, please contact us at your convenience.

Yours truly, KNIGHT PIESOLD LTD.

Signed: Mark Smith, EIT Staff Engineer

Reviewed: Greg Smyth Senior Scientist

Approved: Ken Brouwer, P.Eng. Managing Director

References:

Ponce V. M. 1989. Engineering Hydrology Principles and Practices, Prentice Hall, New Jersey.

HydroCAD 8.50 Sampler Build 1 HydroCAD Software Solutions LLC

Knight Piésold, 1997, Report on Ongoing Construction Requirements Ref. No. 10162/9-3

Knight Piésold, 2004, Mount Polley Water Balance V4-0816

Attachments:	
Table 1 Rev 0	Predicted Average Monthly Conditions
Table 2 Rev 0	Predicted Flows, Storage Volumes and Pond Elevations Resulting from Storm Events with ARI of 2 – 100 Years
Figure 1 Rev 0	Polley Lake Haul Road Detention Pond General Arrangement
Figure 2 Rev 0	Polley Lake Haul Road Detention Pond Plan View
Figure 3 Rev 0	Polley Lake Haul Road Detention Pond Cross Sections

VA08-02305 January 13, 2009

Page 1006 of 1157 INVESTIGATION KP 1-9 9 of 500

Figure 4 Rev 0	Detention Pond Hydrograph 2 Year Storm Event
Figure 5 Rev 0	Detention Pond Hydrograph 5 Year Storm Event
Figure 6 Rev 0	Detention Pond Hydrograph 10 Year Storm Event
Figure 7 Rev 0	Detention Pond Hydrograph 15 Year Storm Event
Figure 8 Rev 0	Detention Pond Hydrograph 20 Year Storm Event
Figure 9 Rev 0	Detention Pond Hydrograph 25 Year Storm Event
Figure 10 Rev 0	Detention Pond Hydrograph 50 Year Storm Event
Figure 11 Rev 0	Detention Pond Hydrograph 100 Year Storm Event
Photo 1	Detention Pond, Ditch and Outflow Pipe
Photo 2	Detention Pond and Drainage Ditch
Photo 3	Lowest 150m of Drainage Ditch
Photo 4	Waste pile/berm on lower bank of ditch
	and the second

Appendix A

Short Duration Rainfall Intensity

/ms

TABLE 1

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY PROJECT

PREDICTED AVERAGE MONTHLY CONDITIONS BASE FLOWS

Month	Average Precipitation (mm)	Snowmelt (mm)	Total Free Water (mm)	Total Runoff (m ³)	Average Monthly Flows (m ³ /s)
January	63.7	0	0	0	0
February 37.7		0	0	0	0
March 30.0		16.5	46.5	41,551	0.016
April 40.1		82.7	122.8	109,636	0.042
May	55.1	66.2	121.3	108,261	0.040
June	111.2	0	111.2	75,260	0.029
July	80.1	0	80.1	54,212	0.020
August	90,6	0	90.6	61,318	0.023
September	46.6	0	46.6	31,539	0.012
October	56.9	0	56.9	38,510	0.014
November	63.9	0	63.9	43,248	0.017
December	64.0	0	0	0	0

M:11/01/00001/21/A/Correspondence/VA08-02305 Polley Lake Haul Road detention pond/data/Tables 1 & 2 (Monthly & Storm Flows).xis]Storm

NOTES:

1. FOR THE PURPOSES OF THIS REPORT, IT HAS BEEN ASSUMED THAT ALL DECEMBER, JANUARY AND FEBRUARY PRECIPITATION FALLS AS SNOW. THE ACCUMULATED SNOW THEN MELTS 10% IN MARCH, 50% IN APRIL AND 40% IN MAY.

2. TOTAL RUNOFF IS BASED ON 50% UNDISTURBED AREA (RUNOFF COEFFICIENT = 0.24) AND 50% DISTURBED AREA (FRESHET RUNOFF COEFFICIENT = 1.0; GENERAL RUNOFF COEFFICIENT = 0.6).

3. MAXIMUM FLOW THROUGH 22" HDPE IS ESTIMATED AT 0.5m³/s.

4. MONTHLY AVERAGE PRECIPITATION IS DETERMINED IN LETTER 'MOUNT POLLEY WATER BALANCE' V4-0816, JULY 30, 2004.

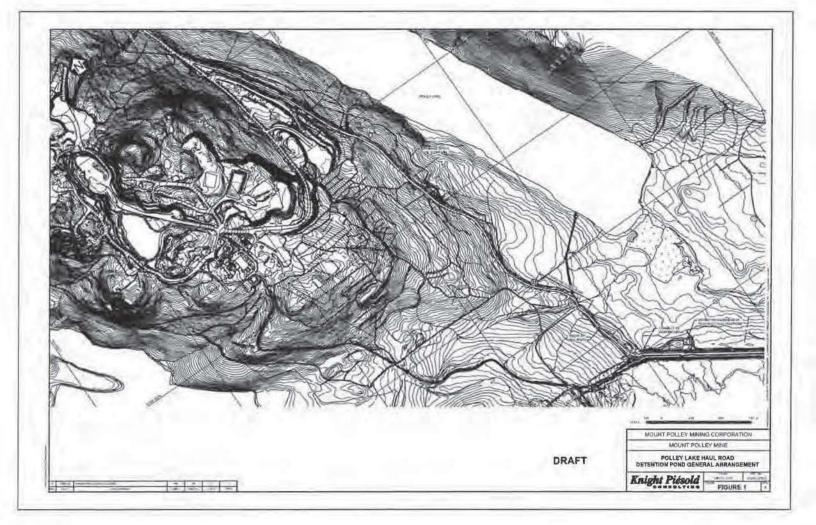
0	1205068	(SSUED WITH LETTER YARE 02205	845	.VM	
HEV 1	DATE	DESCRIPTION	PREPO	CHKD	APPD

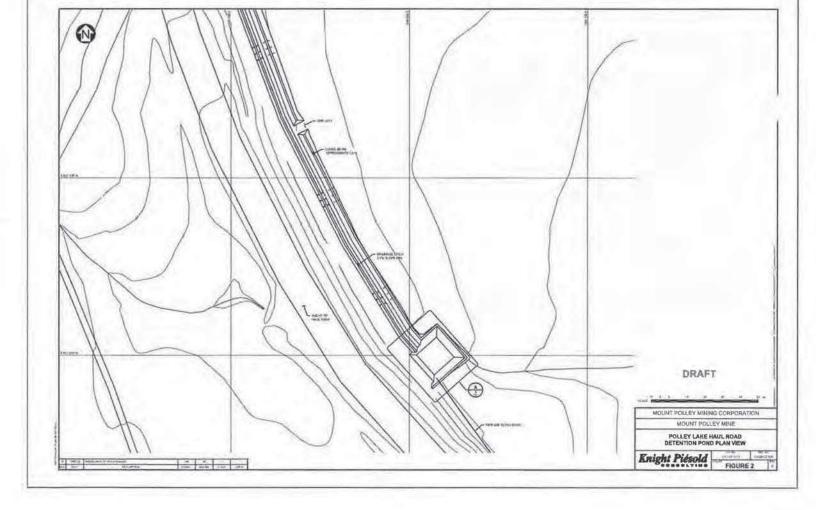
TABLE 2

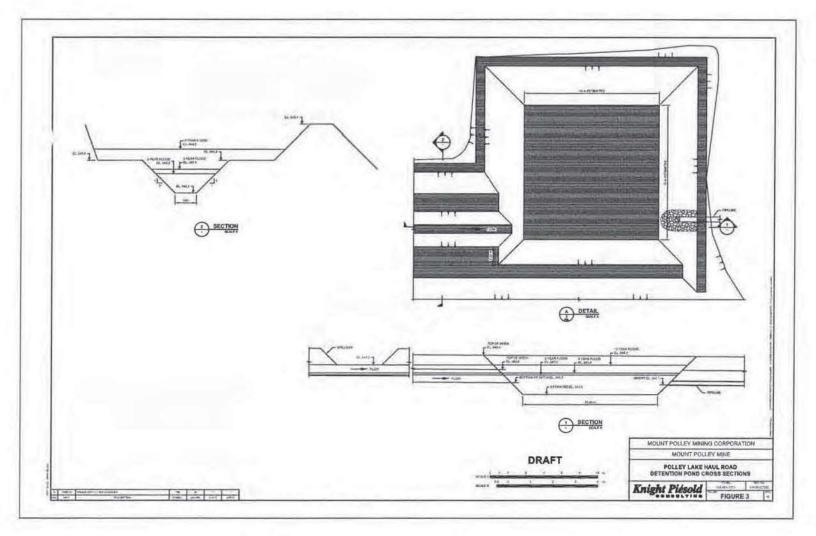
MOUNT POLLEY MINING CORPORATION MOUNT POLLEY PROJECT

PREDICTED FLOWS, STORAGE VOLUMES AND POND ELEVATIONS RESULTING FROM STORM EVENTS WITH ARI OF 2 - 100 YEARS

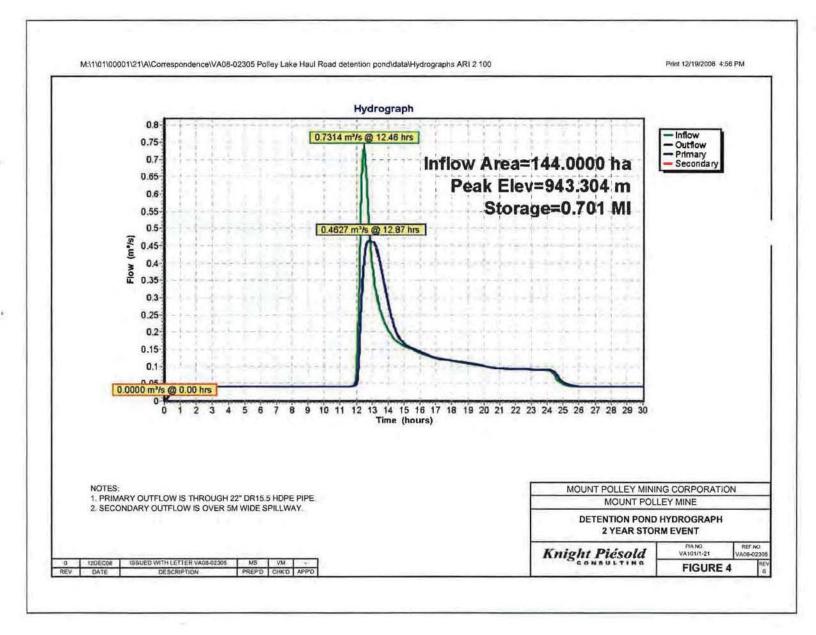
					_	Second Second	Prir	nt Jan/13/09 15:32:53
Average Recurrence Interval	24 Hour Precipitaion (mm)	Runoff Volume (m ³)	Peak Inflow (m ³ /s)	Peak Outflow Through Pipe (m ³ /s)	Maximum Storage (m ³)	Maximum Pond Elevation (m)	Peak Spillway Outflow (m ³ /s)	Total Spillway Volume (m ³)
2	25	5,310	0.73	0.46	700	943,3	0	0
5	26	5,930	0.85	0.47	900	943,5	0	0
10	29	7,942	1.23	0.49	1,700	944.3	0	0
15	31	9,390	1.51	0.50	1,870	944.4	0.47	660
20	34	11,700	1.97	0,50	2,000	944.5	1.15	1,900
25	36	13,400	2.30	0.50	2,080	944.6	1.57	2,850
50	41	17,700	3.20	0.51	2,200	944.7	2.59	5,560
100	46	22,430	4.17	0.51	2.380	944.8	3.59	8,665

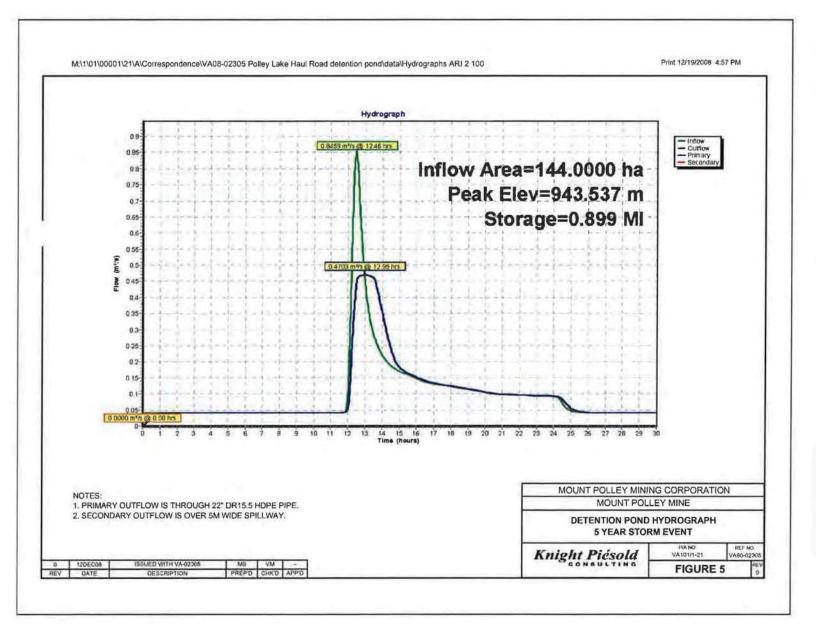

M:11/01/000011/21/A/Correspondence/VA08-02305 Polley Lake Haul Road detention pond/data/[Tables 1 & 2 (Monthly & Storm Flows) xis]Storm

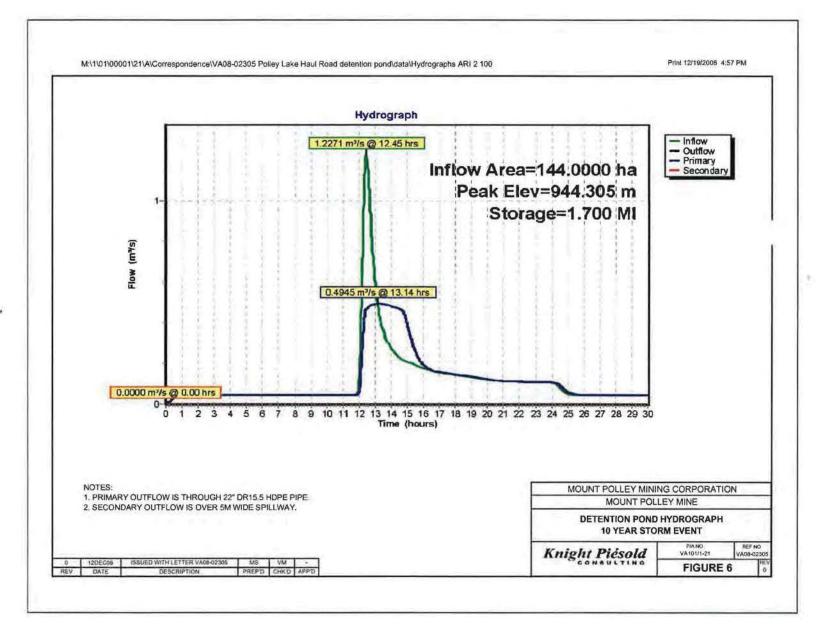

VA08-023

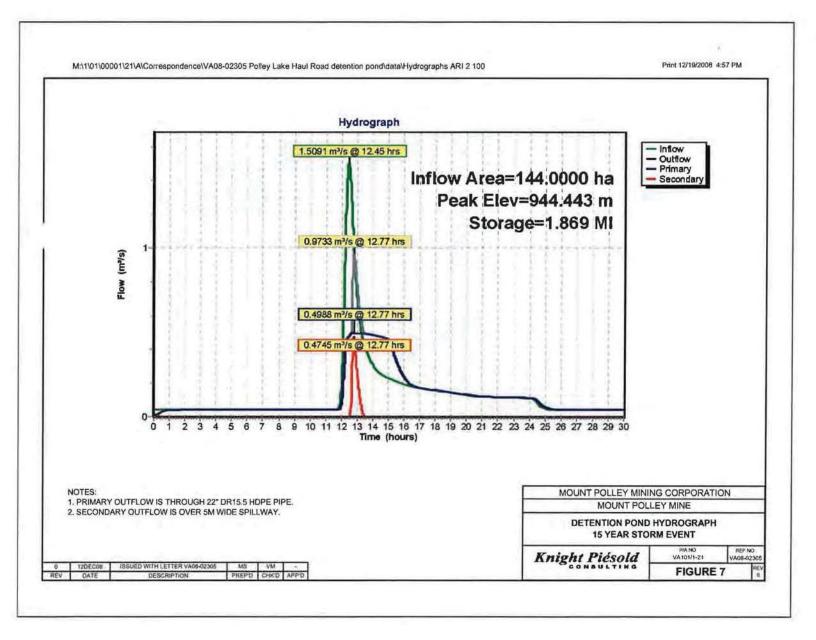

NOTES:

1 RETURN PERIOD STORM EVENTS ARE DERIVED FROM REPORT ON ON-GOING CONSTRUCTION REQUIREMENTS REF NO 10162/9-3.

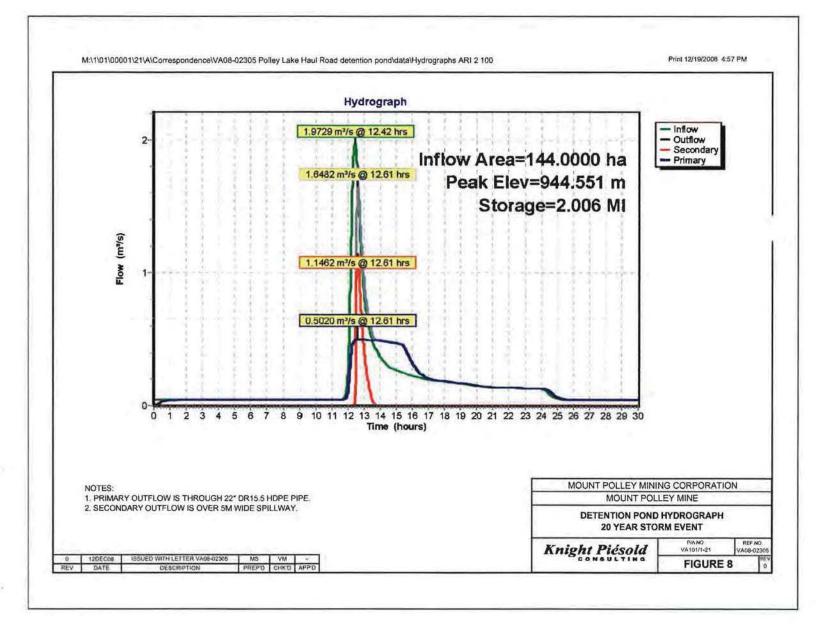

MAXIMUM FLOW THROUGH 22" HDPE IS ESTIMATED AT 0.5m³/s.
 WHEN INFLOW EXCEEDS OUTFLOW, STORAGE INCREASES. MAXIMUM STORAGE OCCURS WHEN INFLOW DECREASES TO A VALUE LESS THAN OUTFLOW

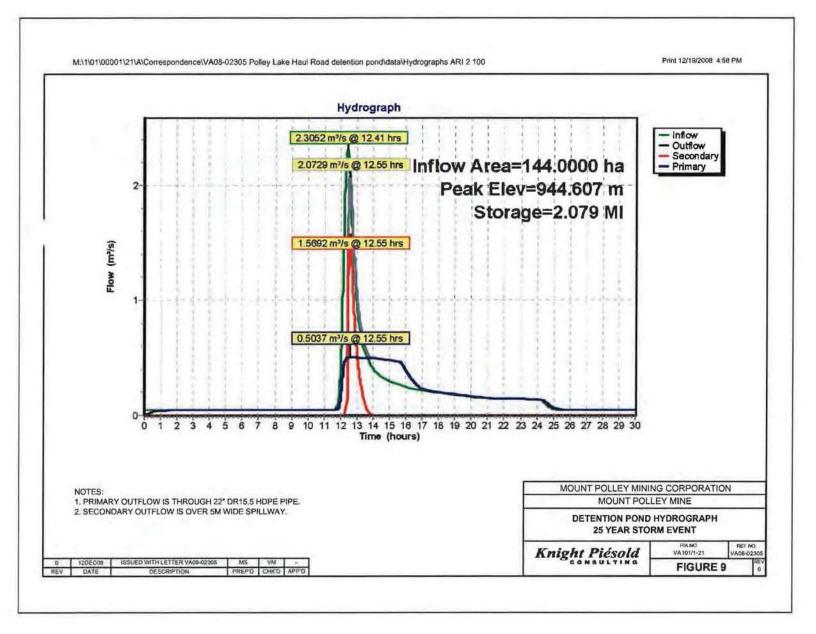


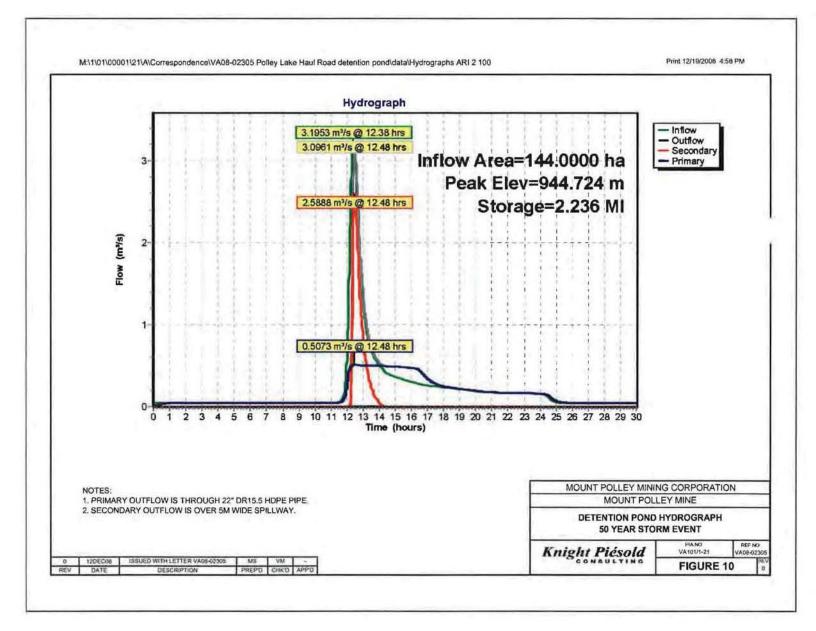

Page 1012 of 1157 INVESTIGATION KP 1-9 15 of 500



1.00




Page 1014 of 1157 INVESTIGATION KP 1-9 17 of 500



 \mathbf{v}

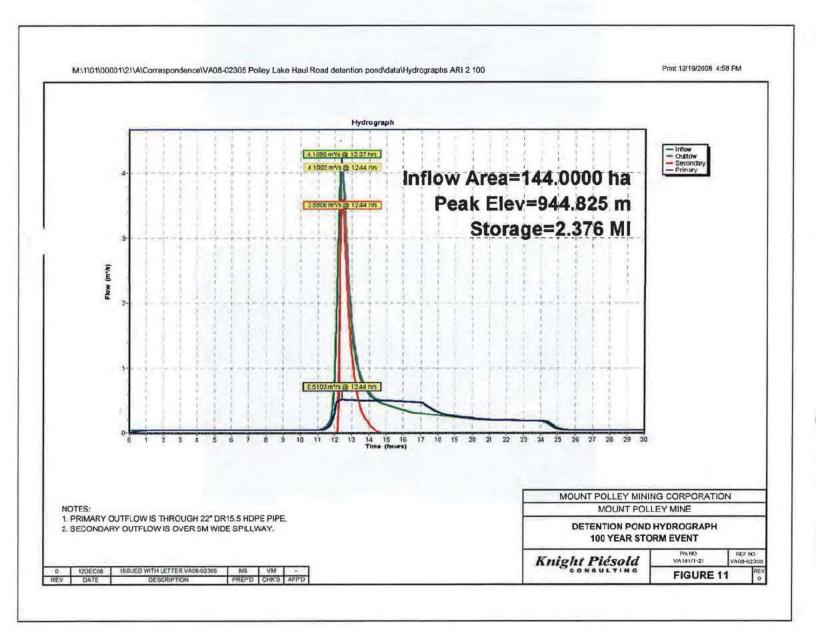


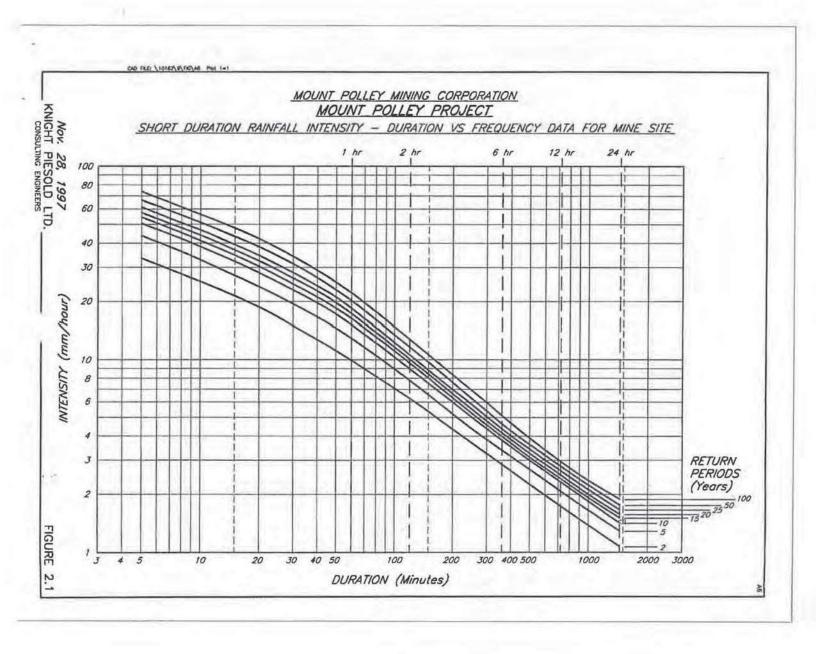
PHOTO 1 - Detention pond, ditch and outflow pipe.

PHOTO 2 – Detention pond and ditch, the spoil pile/berm can be seen on the right bank

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY PROJECT

VA08-02305 Rev 0 December 12, 2008

PHOTO 3 – Bottom 150m of ditch, showing terrain where spillway will release.


PHOTO 4- Waste pile/berm on lower bank of ditch.

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY PROJECT

> VA08-02305 Rev 0 December 12, 2008

APPENDIX A

Short Duration Rainfall Intensity Duration vs Frequency Data for the Mine Site

Page 1024 of 1157 INVESTIGATION KP 1-9 27 of 500

Calla Jamieson

From:Alexis McPhersonSent:Monday, August 10, 2009 10:43 PMTo:Ken Brouwer; Les Galbraith; Ron Martel (rmartel@mountpolley.com)Cc:tfisch@mountpolley.com; DonParsons@ImperialMetals.com; afrye@mountpolley.comSubject:Toe Drain Construction - Weekly Report August 4th to 9thAttachments:Weekly Report Aug 4-9.pdf

Hello,

The weekly toe drain construction report is attached.

Cheers, Alexis

Knight Piésold	MOUNT POLLEY PROJECT SOUTH EMBANKMENT TOE DRAIN CONSTRUCTION	
TO: Knight Piésold Ltd, Mount Polley Mines	DATE: Sunday, August 9 th , 2009	
ATTN: Ken Brouwer, Les Galbraith, Ron Martel	REF NO: VA101-1/26	
CC: Don Pearsons, Tim Fisch, Art Frye	REPORT NO: 1 (August 4 th to 9 th)	

1.0 GENERAL

1.1 PERSONNEL

The following are the key personnel involved in the 2009 South Embankment Toe Drain Construction at Mount Polley Mines.

- Mount Polley Mines (MPMC, Owner) Ron Martel Environmental Superintendent, John Anderson – Tailings Supervisor
- Knight Piésold Ltd. (KP, Consultant Engineers) Ken Brouwer Project Principal, Les Galbraith – Project Manager, Alexis McPherson – Field Manager/Field Engineer
- Construction Crew Dennis MacKenzie Contractor/Excavator Operator, Tony Sloan – Labourer (Shift 1), Frances Enyedy – Labourer (Shift 1), Nigel McKimm – Labourer (Shift 2), Sheila Gruenwald – Labourer (Shift 2)

1.2 WEATHER

The temperatures between August 4th and 9th, 2009 ranged from approximately 20 to 30°C. It ranged fro sunny to overcast during the day with thick fog the morning of August 6th. There were no weather related construction delays during this time period.

2.0 TOE DRAIN CONSTRUCTION

2.1 GENERAL

The following sections address toe drain construction scheduling and progress to date and toe drain construction materials.

2.2 SCHEDULING AND PROGRESS TO DATE

Toe drain construction started the morning of August 4th. The field engineer arrived on site in the late afternoon and began construction supervision and QA/QC activities the morning of August 5th.

Toe drain construction was scheduled to be completed in 21 days (from schedule provided by Ron Martel). Construction is on track to be completed in that time period (Figure 1) although it is anticipated that toe drain will restricted by sand cell production

before the toe drain reaches its ultimate extent. Due to this anticipated restriction, it is proposed that toe drain construction be divided into two phases; Phase 1a and 1b.

In Phase 1a the toe drain will be constructed from west to east along the south embankment, tying into the outlet drain at approximately Station 12+50. Toe drain construction will then be but on hold until the sand cells have been completed to, or near, the ultimate extent of the toe drain (approximately Station 18+10). Construction will then resume, Phase 1b, until toe drain construction reaches its ultimate extent.

Phase 1a is expected to be complete by August 17th (Figure 2) and Phase 1b is expected to be complete 8 or 9 days after construction resumes, assuming no significant construction delays.

2.3 CONSTRUCTION MATERIALS

It has been proposed by Ron Martel that wood chips will be placed above the final layer of Zone F to promote anaerobic bacteria growth in an effort to pre-treat the toe drain water. Tim Fisch is expected to provide a decision early next week as to whether or not wood chips will be placed.

3.0 EMBANKMENT CONSTRUCTION

3.1 GENERAL

The following sections address embankment construction requirements for 2009 and 2010 and construction scheduling and materials.

3.2 EMBANKMENT RAISES

An updated filling schedule indicates that a 2.5m embankment raise is required in 2009 (pre 2010 freshet) and a 4m embankment raise is required in 2010 (pre 2011 freshet). The rate of tailings production is the key driver to these embankment raises. At a production rate of 20,000 tpd an average embankment raise of 2.5m is required each year to store the additional tailings produced.

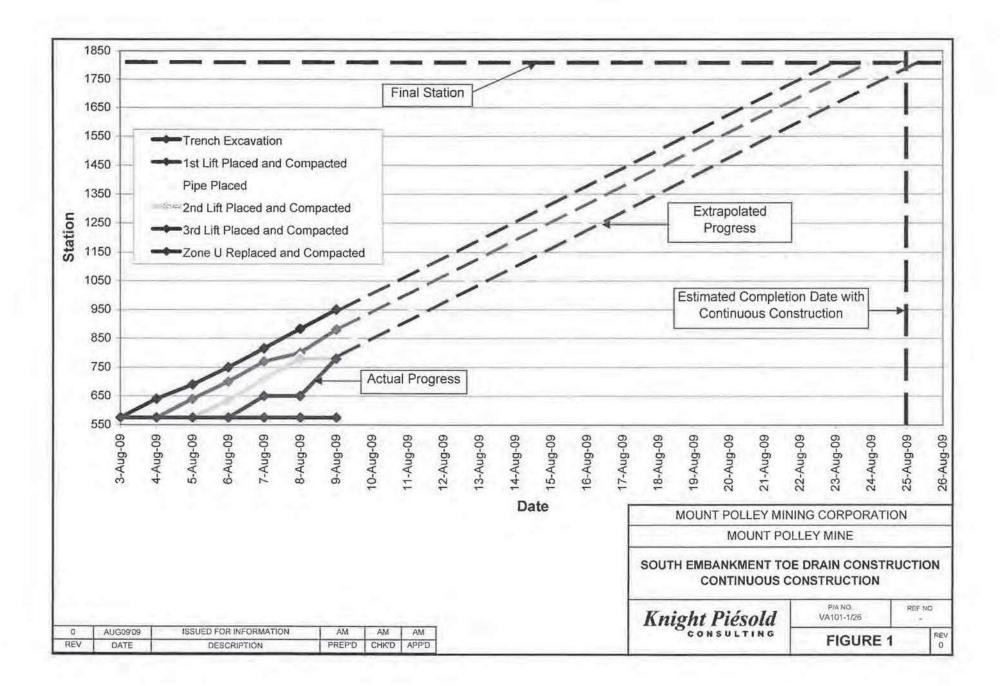
A letter outlining the embankment construction requirements for 2009 and 2010 will be distributed Wednesday August 12th.

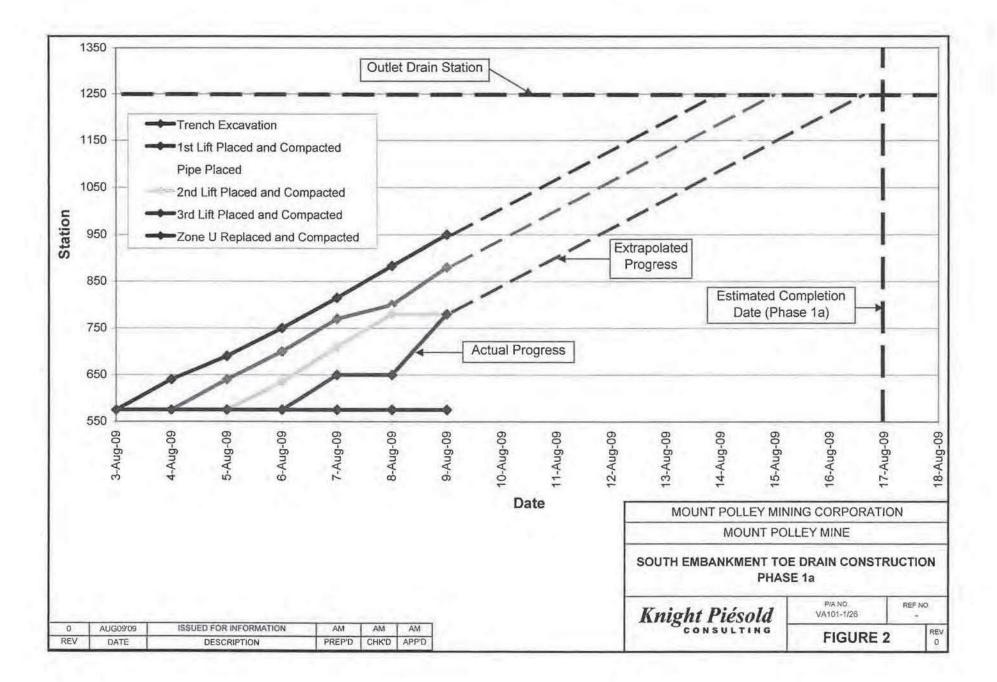
3.3 CONSTRUCTION SCHEDULING AND MATERIALS

Scheduling for 2009 embankment construction should be discussed when Ron Martel returns from his holidays August 24th.

A number of alternate concepts for construction materials have been discussed informally (i.e. use of till for the buttress and Zone U) and the practicability of these concepts may have been further investigated by MPMC. It would be much appreciated if the results, if any, of these investigations were communicated with KP to incorporate into calculations of the amount of construction material required and for consideration of the construction specifications of these materials.

A calculation of the amount of till available from the current borrow is underway with and the results will be distributed Wednesday August 12th.


4.0 FINAL COMMENTS


Please contact the field engineer on site if you have any questions, comments or concerns regarding the information presented within this report or if you would like any additional information presented on a weekly basis. Submitted by:

Alexis McPherson Staff Engineer Knight Piésold Ltd

Attachments:

Figure 1 – South Embankment Toe Drain Construction – Continuous Construction Figure 2 – South Embankment Toe Drain Construction – Phase 1a

File: PE-11678

November 25, 2009

Mount Polley Mining Corporation PO Box 12 Likely BC V0I 1N0

Attn: Ron Martel

Hazeltine Creek Flow Assessment Monitoring Review, Non-Compliance Advisory

The monitoring report Assessment of Hazeltine Creek Flows by Knight Piesold Ltd. (April 14, 2009) submitted to Mount Polley Mining Corporation, indicates accumulative flow measurement discrepancies at the Hazeltine Creek gauging station (W7). This report was reviewed by Environmental Protection staff and it was found that Mount Polley Mining Corporation did not comply with the requirements of Section 3.3 of Permit PE-11678. The information submitted in the report indicates that the flow rating is progressively shifting throughout the entire period of data collection. The various factors contributing to this are:

Staff gauge jacking, leaking weir, geo-textile fabric and downstream and in-pool
vegetation affecting flow through the weir. Details of these factors are described in the
report noted above.

Mount Polley Mining Corporation was evaluated as <u>out of compliance</u> for failure to maintain a suitable flow measuring device as required in Section 3.3 of Permit PE-11678. In order to bring Mount Polley Mining Corporation into compliance, the following actions are required:

 Refer to the recommendations from Knight Piesold Ltd., second option (second bullet) of the above noted report. The recommended second option should be in place at W7 by the 2010 non-freezing flow measuring season.

Also note that Section 3.3 of the permit requires annual checking and calibration of all staff gauges and flow measuring devices. The results of these checks should be reported in the subsequent annual report along with hydrology data summaries.

Ministry of Environment

Cariboo Region

Mailing/Location Address: 400 - 640 Porland Street Mailinger Lider FC, MST (201 Telephone: 250-398-4530 Facsimile: 250-398-4214 Not: www.gov.hep.35-6

Page 1031 of 1157 INVESTIGATION KP 1-9 34 of 500 offere e unles de services de la la la general des la parte e sub-spectien. Les services e regarding the administration of this permit, please fact from to contract du la fersignet et al 4550.

Yours truly, Nº Laur

 \sim

Brian Chapman Environmental Protection Officer Cariboo Region

cc: Moss Giasson, MEMPR, Victoria BC

From:	Kurt Merrifield
То:	Greg Johnston; Mark Smith; Les Galbraith; Ken Brouwer; rmartel@mountpolley.com
Cc:	Imoger@mountpolley.com
Subject:	March 13 Weekly Report
Date:	Sunday, March 14, 2010 12:16:20 PM
Attachments:	weekly.doc

Hello all,

Please see attached

Thanks, Kurt

Knight Piésold

WEEKLY SITE REPORT				
CLIENT: MOUNT POLLEY MINING CORP.	Project #: VA101-1/29	Pages (including this page): 2		
PROJECT: MOUNT POLLEY MINE	Date: Mar 21, 2010			
TAILINGS STORAGE FACILITY				
STAGE 6B EMBANKMENT RAISE	KP Inspector: Kurt Merrifi	eld		
To: Les Galbraith, Ken Brouwer, Ron Martel, Greg Johnson	l i i i i i i i i i i i i i i i i i i i			

Cc: Luke Moger

SECTION 1.0 - GENERAL

1.1 **REPORTING PERIOD**

This weekly report covers the period between March 14 and March 21, 2010.

1.2 WEATHER

The weather for the reporting period was a mixture of sun and cloud, with temperatures fluctuating above the The weekly weather statistics for Williams Lake BC, derived from the following link freezing point. (www.theweathernetwork.com), and are summarized below:

Max Temp: 10°C

Min temp: -2°C

Precip Accumulation: 1-2 mm

1.3 **GROUND CONDITIONS**

The air temperature on site has fluctuated around -2° to 8° for most of the week, with surface thawing during the day and ground freezing overnight. Ground conditions were generally good on site.

1.4 SAFETY

There were no safety incidents during this reporting period. Necessary safety precautions were preformed during all activities on site.

SECTION 2.0 - CONSTRUCTION ACTIVITIES

2.1 ZONE C

MPMC has placed no new Zone C material.

2.2 ZONE S

Zone S is now at a compliance elevation of 954.6 m for the entire perimeter of the dam, ahead of the April 1, 2010 deadline. Zone 2 till placement continues from corner 2 to corner 3 at an elevation of 954.9 m

Till pit development (over burden stripping, waste haulage, water control) as well as haul road maintenance are ongoing at the borrow site.

2.3 <u>ZONE F</u>

Filter material has be placed and compacted to an elevation of 954.6 m for the entire perimeter of the dam. The ³/₄ minus crush, stockpiled below the ME, was deemed acceptable by MPMC analysis (see attached).

2.4 <u>ZONE T</u>

No new transition material has been placed and compacted this week.

2.5 <u>ZONE U</u>

MPMC continues sand cell development along the SE, as well as along the PE abutment; however, the slurry in the mill has had limited sand build up over the last week.

Test holes have found no new snow and ice on the ME.

SECTION 3.0 - CONSTRUCTION CONTRACTING

The Lake Excavating Zone S production group consisted of:

- six 40 tonne and one 30 tonne rock trucks
- one 245 excavator and one 320 excavator
- one D8L and one D9 Dozer
- two 10 tonne vibrating compactors.

Pit development and maintenance forced a halt to till placement on Mar 21, 2010.

SECTION 4.0 - CONSTRUCTION QUALITY ASSURANCE AND QUALITY CONTROL ACTIVITIES - KP

The following KP activities were performed during this reporting period:

- Monitoring of construction material placement and compaction for Zone S and F construction
- Downloads of piezometer and inclinometer data
- Monitoring pit development and water control
- Preparation of weekly reports.

Submitted by,

Knight Piésold Ltd.

Kurt Merrifield

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE TAILINGS STORAGE FACILITY

OPERATION, MAINTENANCE AND SURVEILLANCE MANUAL

Rev. No.	Revision	Date	Approved
0	Issued in Final	December 22, 2004	
1	Issued in Final	February 06,2006	RM
2	Issued in Final	March 31, 2006	RM
3	Issued in Final	August 28, 2006	RM
4	Issued in Final	October 06, 2006	RM
5	Issued in Draft	November 28, 2007	RM
6	Issued in Draft	July 01, 2008	RM
7	Issued in Draft	December 31, 2009	RM
8	Final Copy	March 30, 2010	RM

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE TAILINGS STORAGE FACILITY

OPERATION, MAINTENANCE AND SURVEILLANCE MANUAL (REF. NO. VA101-00001/9-1)

TABLE OF CONTENTS

PAGE

		Sector P () and () be
SECTIC	N 1.0 - IN	TRODUCTION 1
1.1	OVER	VIEW
1.2	KEY F	PERSONNEL AND RESPONSIBILITIES
1.3	TRAIN	ING REQUIREMENTS
1.4		ON AND OPERATING CHANGES
1.5	CONT	ROL OF THIS MANUAL
1.6		SIONS TO THE MANUAL 2
1.7	REFE	RENCES
SECTIO	N 2.0 - DE	SCRIPTION OF TAILINGS IMPOUNDMENT
2.1	GENE	RAL
2.2	DESIC	SN BASIS
2.3	PROJ	ECT DESCRIPTION
	2.3.1	Site Location
	2.3.2	Project History
2.4	DESIC	IN FEATURES
2.5	DEPO	SITION PLAN
2.6	CLOS	URE PLAN
and the second second		PERATIONS MAINTENANCE AND SURVEILLANCE
3.1		RAL
3.2		NGS BASIN
3.3	TAILIN	NGS POND
	3.3.1	Pond Level Operations
	3.3.2	Surveillance
3.4	TAILIN	NGS EMBANKMENT
	3.4.1	Components
	3.4.2	Surveillance and Maintenance
3.5	TAILIN	NGS DISCHARGE PIPELINE 10
	3.5.1	Components and Operation
	3.5.2	Surveillance and Maintenance
3.6	RECL	AIM PIPELINE
	3.6.1	Components and Operation
	3.6.2	Surveillance and Maintenance
3.7	SEDIN	AENT PONDS
	3.7.1	Components and Operation
	3.7.2	Surveillance and Maintenance
3.8	SEEP	AGE COLLECTION PONDS
	3.8.1	Components and Operation

	3.8.2	Surveillance and Maintenance	14
3.9	INSTR	UMENTATION	15
	3.9.1	Components and Location	
	3.9.2	Surveillance and Maintenance	., 16
SECTION	14.0 - SA	FETY INSPECTIONS AND REVIEWS	17
4.1	ANNU	AL INSPECTIONS	. 17
4.2	DAM S	AFETY REVIEW	17
SECTION	15.0 - EM	ERGENCY PREPAREDNESS AND RESPONSE PLANS	. 19
5,1	GENE	RAL	19
5.2	WARN	ING SIGNS	19
5,3	INCIDE	ENT NOTIFICATION PROCEDURES	20
SECTION	6.0 - CE	RTIFICATION	. 22

SECTION 7.0 - Knight Plésold Construction Report

TABLES

Table 1.1 Rev 0	Personnel and Responsibilities List
Table 2.1 Rev 0	TSF Design Criteria
Table 3.1 Rev 0	Inspection and Surveillance Schedule
Table 3.2 Rev 0	Unusual Events and Occurrences requiring Non-Routine Walkovers
Table 3.3 Rev 0	Summary of Vibrating Wire Piezometers and Trigger Levels
Table 3.4 Rev 0	Summary of Slope Inclinometers and Trigger Levels
Table 3.5 Rev 0	Trigger Levels for Survey Monuments
Table 5.1 Rev 0	Emergency Warning Levels and Required Actions

FIGURES

Figure 2.1 Rev 0	Project Location Plan
Figure 2.2 Rev 0	TSF Bathymetric Survey
Figure 3.1 Rev 0	Filling Schedule and Staged Construction - 18,500 tpd
Figure 3.2 Rev 0	Groundwater Monitoring Well Locations

APPENDICES

APPENDIX A	References
APPENDIX B	Tailings Storage Facility - Inspection Log
APPENDIX C	Tailings Storage Facility - Instrumentation Data Sheet
APPENDIX D	TSF Stage 6a As-Built Drawings
APPENDIX E	Selected photos of TSF components
APPENDIX F	Procedure for operating valves on tailings line

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE TAILINGS STORAGE FACILITY

OPERATION, MAINTENANCE AND SURVEILLANCE MANUAL

SECTION 1.0 - INTRODUCTION

1.1 OVERVIEW

This Operations, Maintenance and Surveillance Manual applies to the Tailings Storage Facility and related pipelines and structures at the Mount Polley Mine. This Manual describes the roles and responsibilities of Mount Polley site personnel for the management of the TSF and associated facilities; operation, surveillance and maintenance requirements; inspection requirements; and emergency plans and procedures.

1.2 KEY PERSONNEL AND RESPONSIBILITIES

Table 1.1 identifies current key personnel (March 2010) and their responsibilities for management, operations, surveillance and inspections at the Mount Polley Mine Site and Tailings Storage Facility.

Government agencies involved in the operation, maintenance and surveillance of the Tailings Storage Facility include the Ministry of Energy, Mines and Petroleum Resources (MEMPR); Ministry of Environment (MOE), Ministry of Forests (MOF); and Department of Fisheries and Oceans (DFO).

1.3 TRAINING REQUIREMENTS

Training programs are required for any personnel involved in the operation, inspection and surveillance of the Tailings Storage Facility. A refresher course is required once per year. The training programs must be conducted by the Tailings Project Coordinator, qualified Professional Engineer or a suitably qualified individual familiar with the design, operation, maintenance and inspection of all civil and mechanical works associated with the facility.

Each training session must be documented, and a record kept. The records will contain a detailed list of site activities for which the trainee was trained on, and be signed by the person who provided/supervised the training.

1.4 DESIGN AND OPERATING CHANGES

Changes to the design or operating plan for the Tailings Storage Facility and related pipelines and structures must be reviewed, approved and documented. Design changes may be submitted to the Engineer of Record for review. Operational changes will be reviewed and approved by the Mine Manager. In all cases, documentation of the change, including as-built records, are required.

1.5 CONTROL OF THIS MANUAL

This manual will be controlled by the Environmental Superintendent. Copies will be maintained at the following locations:

- One (1) copy for Mount Polley Mining Corporation (Vancouver office),
- One (1) copy for the Environmental Superintendent's office,
- · One (1) copy in the Tailings Project Coordinator's office,
- · One (1) copy for the Operating Crew (Mill Shifter's Office),
- · One (1) copy for the Regional Water Manager (Williams Lake),
- Two (2) copies for the Director of the Provincial Emergency Program (P.E.P.),
- One (1) copy for the MEMPR Geotechnical Manager,
- One (1) copy for the Design Engineer of Record,
- · One (1) copy for the General Manager,
- · One (1) copy for the Mill Superintendent,
- One (1) copy for the Mill Maintenance Superintendent.

Mount Polley Mining Corporation is responsible for maintaining a record of the location of each copy of the Manual and to ensure the copies in these locations are kept up to date.

1.6 REVISIONS TO THE MANUAL

Reviews of the Manual are conducted at least annually.

The operating procedures and personnel at the Mount Polley Mine may change during the operation of the mine. It is the responsibility of the Environmental Superintendent to ensure that the Operations, Maintenance and Surveillance Manual is updated to reflect these changes. Substantial revisions to the Manual shall be submitted to the Ministry of Energy, Mines and Petroleum Resources.

A letter of transmittal that clearly identifies the distribution list must accompany each revision of this manual. An update may comprise the entire manual or be limited to specific pages or sections. A copy of each transmittal letter must be kept on record in the office of the Environmental Superintendent. Each revised page of the manual must be clearly marked as to the revision date prior to replacement. The replaced pages must be filed and kept on record in the office of the office of the Tailings Projects Coordinator.

1.7 REFERENCES

References relating to MPMC's Tailings Storage Facility and associated pipelines and facilities are included in Appendix A.

SECTION 2.0 - DESCRIPTION OF TAILINGS IMPOUNDMENT

2.1 GENERAL

The following sections provide a brief summary of the design and management of the Tailings Storage Facility and associated facilities. Additional information is available in the cited references in Appendix A.

2.2 DESIGN BASIS

Mill tailings are discharged as slurry into the Tailings Storage Facility, which has been designed to provide environmentally secure storage of the solid tailings and supernatant for mill process. As the solids settle out of the slurry, process fluids are collected and recycled back to the mill for re-use in the milling process. There is no surface discharge of any process solution from the Tailings Storage Facility. The basis of design must address the following:

- Permanent, secure and total confinement of all solid tailings material within a lined engineered impoundment,
- Secure and reliable transportation of the tailings from the mill to the Tailings Storage Facility,
- Collection and transport of runoff from waste rock storage areas to the Tailings Storage Facility,
- Temporary storage of supernatant water on the tailings beach, as required, with maximum recycling to the mill to produce a zero discharge condition for process water,
- Collection of all free draining liquids from the tailings deposit. Temporary storage is
 provided in lined external ponds. The water from the ponds is pumped into the supernatant
 pond and recycled to the mill to ensure that no discharges occur.
- Inclusion of monitoring facilities in the Tailings Storage Facility to confirm that the design objectives and operating requirements are being met,
- Staged development of the facility to enable modifications and upgrades to be implemented based on operating experiences and to distribute the capital expenditures over the life of the project.

The design basis and operating criteria for the Tailings Storage Facility and associated pipelines and structures are summarized in Table 2.1.

2.3 PROJECT DESCRIPTION

2.3.1 Site Location

The location of the Mine and access roads are shown on Figure 2.1. The Mount Polley Mine is located in central British Columbia, approximately 60 km northeast of Williams Lake. The main access route is via Likely Road. The turn to the Mine is located approximately 1.5 km east of Morehead Lake. The Mine is located a further 11 km to the southeast, on the Bootjack Lake Forest Service Road.

The Tailings Storage Facility is accessible along the following routes:

- Along the access road located on the south side of the Mill Site. This is the primary
 access to the TSF on the Mine site;
- Along the Polley Lake haul road south of the Wight Pit.
- Along the SE Zone dump road, which in turn ties into the Polley Lake haul road.
- Along the Gavin Lake Forest Service Road, which can be accessed from the Likely Road, located approximately 14 km south of Moorhead Lake. The TSF is located at approximately kilometre 16 along the road.

2.3.2 Project History

The Mount Polley mine commenced production on June 13, 1997. Ore is crushed and processed by selective flotation to produce a copper-gold concentrate. The mine was on care and maintenance status from October 2001 to February 2005. The mill throughput rate is approximately 20,000 tonnes per day (approx. 7.3 million tonnes per year). Mill tailings are discharged as slurry into the Tailings Storage Facility located on the south area of the Mine property. Additional historic information regarding the TSF and associated pipelines and facilities are available in the reports cited in Appendix A.

2.4 DESIGN FEATURES

Tailings slurry is conveyed from the Concentrator to the TSF via a tailings discharge pipeline. The tailings are deposited into the impoundment through moveable end discharge pipeline on the embankment crest. Some Tailings are used to construct sand cells. A floating reclaim pump recycles process water from the supernatant pond in the TSF for use in the mill processing circuit. Sediment ponds and seepage collection ponds are designed to intercept runoff from the surface and seepage from the embankment respectively. Drains, instrumentation and monitoring wells are constructed in and around the TSF to assist in monitoring the performance of the facility. Additional details are available in the reports referenced in Appendix A. As-built drawings for the latest construction program are included in Appendix D.

2.5 DEPOSITION PLAN

The objectives of the long-term tailings deposition strategy is to:

- Maximize the storage capacity of the facility.
- Maintain the supernatant pond in the area of the reclaim barge so as to maximize the amount of clean process water available for reclaim.
- Establish free draining tailings beaches adjacent to the embankments during the winter season to facilitate future embankment raises and to enhance embankment stability.

The above strategy is implemented by sequentially rotating the tailings discharge point along the entire length of the Perimeter, Main and South embankments on the upstream face, which allows inactive areas of the tailings beach to partially dry and consolidate. Eventually, beaches will be

formed around the entire upstream perimeter of the Facility and all supernatant water will be centralized around the reclaim barge.

Tailings settle in the tailings facility and form beaches with three distinct slopes. A sandy beach develops as the coarser tailings fraction settles more rapidly adjacent to the embankment. The average beach slope above water is about 0.5 percent. As the tailings flow into the supernatant pond it forms a submerged beach with a slope of 1 to 2 percent. Finer tailings particles are transported further out into the supernatant pond before settling at a slope of about 0.3 percent. The latest bathymetric survey of the tailings surface in the TSF is included in Figure 2.2.

Staged tailings deposition strategy is currently being implemented by MPMC, and one of the objectives of this plan is to ensure that tailings solids are deposited along the extent of all tailings embankments. The fundamental requirement of the tailings deposition plan is to ensure that a blanket of tailings solids is present immediately upstream of all embankments and along the abutments. Thus, there is a fundamental objective to establish beaches adjacent to the embankments, but it is not necessary to continuously maintain a minimum width of exposed beach adjacent to the embankment, and periodic temporary (less than 2 months duration) shallow flooding (less than 0.5 meters depth) of the beaches is anticipated.

Tailings deposited into sand cells and worked by a dozer along the upstream Zone U of the tailings embankment is also considered to be 'tailings beach' for this evaluation. One of the objectives of the tailings deposition plan currently being implemented by MPMC is to allow for sufficient flexibility to enable these sand cells to be constructed. It is recognized that this deposition strategy may result in short term flooding of the sandy tailings beaches elsewhere within the impoundment, but that the depth of flooding along the submerged tailings beaches must be no greater than 0.5 m depth before tailings deposition is re-instated over that section of flooded beach.

MPMC increases the frequency of measurements to at least once per week for embankment instrumentation systems (piezometer readings, foundation drain flow rate and turbidity) adjacent to embankment areas where tailings beaches are temporarily flooded.

2.6 CLOSURE PLAN

At closure of the Tailings Storage Facility, it is currently envisaged that the tailings surface will be decommissioned so as to develop a mixed forested/wetlands complex with a gradual transition towards a ponded area at the final spillway. This would require covering of the tailings embankments and the upland portions of the exposed tailings beach with a layer of soil stockpiled during operations. The topsoil would be revegetated with indigenous species of conifer and deciduous trees, willow and marshland grasses. Ultimately, all water would be routed over the tailings surface, through the wetlands and the final spillway.

Pipework for the tailings and reclaim systems will systematically be removed once all water quality and pit flooding requirements are met. Similarly, the seepage collection ponds and recycle pumps would be retained until monitoring results indicate that drainage flows and seepage from the tailings

area are of suitable quality for direct release to the environment. At that time, the seepage collection ponds could be decommissioned and the pumps removed. The groundwater monitoring wells and piezometers in the tailings embankment would be retained for use as long term monitoring devices. On-going monitoring of all reclamation measures will be carried out post closure, to confirm that the reclamation objectives are being achieved and sustained.

SECTION 3.0 - OPERATIONS MAINTENANCE AND SURVEILLANCE

3.1 GENERAL

The Tailings Storage Facility is comprised of several components and associated facilities. These components and facilities must be inspected and maintained regularly to ensure that any changes to the TSF conditions, performance, or a potentially hazardous condition can be identified and promptly addressed. Selected photographs of the TSF and associated components are included in Appendix E. An inspection and surveillance schedule is provided on Table 3.1.

The Mill Maintenance Superintendent is responsible for ensuring that surveillance is carried out regularly.

The Mill Maintenance Superintendent is responsible for daily management of the TSF and directs an operating crew to carry out routine activities. A list of site personnel and associated responsibilities are provided on Table 1.1.

The Tailings Project Coordinator will conduct a Dam Surveillance walkover at least once per quarter. All Dam Surveillance reports should be reviewed by the Mill Maintenance Superintendent and filed at the Mount Polley Mine Site.

Additional (non-routine), documented drive by's of the TSF and associated facilities will be required following extreme or unusual events. The Environmental Superintendent must be made aware of any unusual events or observations, and must contact the Design Engineer as required. Typical examples of unusual events and observations to be made during such walkovers are outlined in Table 3.2.

An inspection log is provided in Appendix B to help guide the observation and surveillance process. The inspection log covers major items related to the TSF and associated facilities. Additional details are provided in the following sections.

3.2 TAILINGS BASIN

The projected rate at which the tailings basin will fill, combined with storage provisions for make-up and storm water, determine the rate of rise for the embankment. The anticipated filling schedule and staged construction sequence is shown on Figure 3.1.

Close monitoring of the pond elevation, depth, area and volume is important for the following reasons:

- To ensure that there is a sufficient volume of water available as make-up water while the pond is frozen and precipitation is at a minimum.
- To enable monitoring of the supernatant pond depth/area/volume so that tailings characteristics such as dry density can be determined.
- To monitor water recoveries.

 To enable the correlation of the pond level with other data, such as the piezometer pressures and drain flow quantities.

Adjustments to the basin filling curve may be required due to variation between actual and projected mill throughput rates, tailings deposition characteristics, water inputs and outputs and in-situ tailings density. Adjustments to these variables will change the rate of rise for the tailings and embankments.

The TSF was previously operated under a water deficient condition, which means more process water was needed than available in the supernatant pond. This condition changed once the mill started up again in February 2005. The mine is operating under surplus conditions, which means there is more water in the system than Is required. Therefore, a combination of careful water management and tailings deposition is required to maximize the storage potential in the embankment without compromising the freeboard or embankment stability.

3.3 TAILINGS POND

3.3.1 Pond Level Operations

The TSF is required to have sufficient live storage capacity for containment of 679,000 cubic meters of runoff from the entire contributing catchment area during a 24-hour PMP event. This volume of stormwater would result in an incremental rise in the tailings pond level of approximately 0.39 meters. The TSF design also incorporates an allowance of 1 metre of freeboard for wave run-up. Therefore, the normal and maximum operating pond levels are as follows:

- Normal Operating Level Water level at least 1.39 meters below the embankment crest;
- Maximum Operating Level Water level is 1 meter below the embankment crest, which also means the loss of storage capacity for a 24-hour PMP event.

Tailings deposition will cease if the pond level reaches maximum operating level and the removal of water from the pond will commence using the reclaim barge. The area downstream of the dam will also be evacuated and access restricted as per the Emergency Preparedness Plan.

There are no restrictions, with respect to dam safety on the rate of filling of the supernatant pond up to the normal operating pond level or rate of emergency draw down within the pond.

3.3.2 Surveillance

The pond level must be at least 1.39 meters below the crest elevation under normal operating conditions. Emergency procedures, discussed in Section 5.0, must be followed if the pond reaches the maximum operating level. Regular inspections of the pond level

must be carried out according to the schedule outlined in Table 3.1. An inspection log is provided in Appendix B.

Additional pond level inspections are required after an unusual event. Table 3.2 outlines the additional observations that will need to be documented.

3.4 TAILINGS EMBANKMENT

3.4.1 Components

The tailings embankment consists of the Main, Perimeter and South Embankments. The embankments are constructed using zoned earthfill and rockfill and have been raised in stages by a combination of centreline and modified centreline approaches. Details of the design and construction are reported in various Knight Plésold reports and are referenced in Appendix A.

An upstream toe drain on the Main and Perimeter embankments allows for the controlled removal of process water from the upstream face of the embankment. Foundation and chimney drains are also included in the embankments to prevent build-up of excess pore pressures beneath the embankment and to transfer groundwater and/or seepage to the seepage collection ponds located at the downstream toe of the Main and Perimeter Embankments.

Monitoring sumps are located at the downstream toe of the Main and Perimeter Embankments. They are used to facilitate monitoring of flow rates and water clarity from the embankment drains and diversion channels.

3.4.2 Surveillance and Maintenance

Regular surveillance of the embankments and associated structures should follow the schedule outlined in Table 3.1. An inspection log is provided in Appendix B. Typical observations to be made during surveillance include:

- Evidence indicating dam structure deformation (e.g. slope bulging, tension cracks on the crest or crest settlement);
- Evidence indicating seepage, runoff or erosion;
- Clarity and quantity (visual estimate) of seepage water entering the seepage collection sumps;
- Possible evidence indicating piping downstream of the embankments;
- Other unusual conditions in the TSF area.

The embankment and associated structures do not require regular maintenance; however, specific maintenance items may be identified as a result of regular observations and surveillance of the embankment.

Table 3.2 outlines additional observations that will need to be documented after any unusual event.

3.5 TAILINGS DISCHARGE PIPELINE

3.5.1 Components and Operation

Tailings slurry is conveyed from the Concentrator through approximately 7000 metres of HDPE pipe to the TSF where it is discharged through a series of spigots along the embankment crest. The pipeline includes the following components:

- A 610 mm diameter DR 11 HDPE pipe from the Concentrator to the T2 Dropbox;
- A 610 mm diameter DR 15.5 HDPE pipe from the T2 Dropbox to the TSF;
- Two short sections of 762 mm diameter DR 15.5 HDPE pipe are included at the start of the two pipeline sections at the Concentrator.
- The T2 Drop box; (not in use)
- Moveable discharge section;
- A Dump Valve at the start of the Perimeter Embankment & start of the South Embankment;
- Sand cell skids with valve assemblies on the Perimeter & South Embankments;
- "Y" valve assembly at 5 corners;
- Pressure sensor device near the booster station.

The tailings pipeline is located on the shoulder of the access road from the mine. Tailings slurry is gravity fed to the TSF through the tailings pipeline. The tailings pipeline has a variable downhill slope that ranges from flat to 8.0% that ensures drainage.

The T2 Dropbox is located approximately mid-way along the pipeline and allows for the addition of runoff from the Southeast Sediment Pond into the tailings stream. It also serves as an overflow for the reclaim booster sump.

The deposition of tailings over the beach in the TSF is accomplished by end dumping. A dump valve is located at the start of the Perimeter and South Embankments to allow discharge of tailings during relocation of the discharge section. A "Y" valve assembly at 5 corners allows for the distribution to the Perimeter/Main or to the South/Main embankments.

The tailings discharge pipeline does not require any external adjustments during normal operations. The discharge pipeline will drain by gravity to the TSF in the event of a mill shutdown or power failure. However, the following points must be remembered during operation of the pipeline:

- Never leave all valves closed along the tailings discharge pipeline as they may be permanently blocked from sanding or suffer damages from excessively high pressures; (refer to Appendix F)
- Ensure that there is an open pathway for tailings to exit before the pipeline is filled.

During a mill shutdown or during freezing conditions the valve between the Southeast Sediment Pond and the T2 Dropbox must be open in order to prevent water from filling up the Reclaim Booster Sump when the pumps are not operating.

3.5.2 Surveillance and Maintenance

The tailings discharge pipeline will be inspected and maintained regularly to ensure that the system operates properly. Table 3.1 provides a schedule for regular surveillance of the pipeline. An inspection log is provided in Appendix B. Typical observations to be made during surveillance include:

- Locations of external excessive wear or damage of the pipeline;
- Evidence indicating leakage from the pipeline;
- Ensure a constant grade of all pipelines leading onto the embankments, maintaining a proper flow, to prevent sanding up or freezing of the lines.;
- Ensure that the valve between the Dropbox and Southeast Sediment Pond is open during a mill shutdown or freezing conditions when the booster pump is shut off.

Additional inspections are required after an unusual event. Table 3.2 outlines additional observations that will need to be documented. Repairs to the discharge pipeline, dropbox and/or discharge sections may be required after any unusual event.

3.6 RECLAIM PIPELINE

3.6.1 Components and Operation

Reclaim water is pumped from the Tailings Storage Facility for re-use at the Mill site. The reclaim pipeline includes the following components:

- Floating Reclaim Pump Barge; C/W Spargers
- A 610 mm diameter steel pipe connecting the barge to the reclaim line;
- Booster Pump Station beside the T2 Dropbox;
- A 610 mm diameter HDPE pipe from the steel pipe to the Booster Pump Station;
- A 610 mm diameter HDPE pipe from the Booster Pump Station and the Mill site.

The floating reclaim pump barge is located in the TSF in an excavated channel. The barge is accessible from land along an access walkway. The floating reclaim pump barge was designed by others. Refer to the manufacturer's manual for details related to operations, inspections and maintenance.

The reclaim pipeline is located beside the tailings pipeline on the shoulder of the access road. The pressure rating of the HDPE pipeline decreases as it approaches the Booster Pump Station and Mill site.

The Booster Pump Station is located mid-way along the reclaim pipeline, beside the T2 Dropbox. A valve located on the pipeline leading in from the Southeast Sediment Pond may be used to divert water into the reclaim pipeline. Water from the Southeast Sediment Pond can be diverted into the reclaim pipeline only if it is clear. Two overflow pipes connect the sump beneath the pump station to the T2 Dropbox to ensure water will not overflow in the pump station sump.

The reclaim pipeline does not require any external adjustments during normal operations. However, during maintenance periods, barge relocation or during a prolonged shutdown under extreme cold conditions the reclaim system should be drained via a drain valve located on the barge.

The Pump Barge and Booster Pump Station may be operated from the Mill control room. Both pumps may also be operated locally from the barge or pump station to provide water as required at the Mill site.

3.6.2 Surveillance and Maintenance

The reclaim pipeline, pump barge and booster pump station shall be inspected according to the schedule outlined in Table 3.1 and an inspection log completed as provided in Appendix B. Typical areas to inspect during surveillance of the reclaim pipeline include:

- Locations of excessive wear of the pipeline; (filed with maintenance department)
- Evidence indicating leakage from the pipeline;
- Monitor TSF Pond and Barge elevations to ensure that a gradient is maintained in the steel pipe. The barge ramp may need to be relocated higher or a new channel excavated for the re location of the barge;
- The de-icing system for the pump barge should be checked to ensure that it is working prior to freezing conditions;
- Monitor water from the Southeast Sediment Pond to ensure that it's clear before diverting it to the reclaim line.

Additional inspections are required after any unusual event. Table 3.2 outlines additional observations that will need to be documented. Repairs to the reclaim pipeline, barge and/or pump station may be required after any unusual event.

3.7 SEDIMENT PONDS

3.7.1 Components and Operation

A series of diversion ditches divert runoff to two collection ponds where the water is then directed to the TSF or pumped back to the Mill site. The two ponds are the Mill Site Sump and the Southeast Sediment Pond.

The Mill Site Sump is located south of the Concentrator Building. Runoff water from the Mill Site area is collected along diversion ditches and directed to the sump. The water collected in the sump is either pumped back to the mill or allowed to flow by gravity to an inlet point (T1) on the tailings pipeline. The normal operating level is the invert of the bottom inlet at the manhole (El. 1102.7 metres). The water level is kept at this low level so that storage capacity for the design storm event is available in the sump. Discharge from the manhole is conveyed to the reclaim line in an 8 inch (200 mm) HDPE pipeline. The pipeline is buried through the Millsite area and runs in the pipe containment channel, where it is connected to the 22 inch DR17 HDPE tailings line via a prefabricated Tee in a section of the pipeline that flows by gravity (non-pressurized flow). Currently, water is pumped into the reclaim line immediately adjacent to the Millsite Sump. The water level is maintained at the bottom inlet on the manhole at all times.

The Southeast Sediment Pond is located south of the East Rock storage area. Runoff water from the waste rock dump is collected along diversion ditches at the toe and directed to the pond. Water is decanted through a manhole which has four valved inlet pipes which can be used to control the water level in the sediment pond. The normal operating level is the invert of the second inlet at the manhole (El. 1054.5 metres). The water shall not be permitted to rise above this so that storage capacity for the design storm event is available in the pond. A 10 inch (250 mm) DR21 HDPE discharge pipeline runs from the manhole to the reclaim booster sump. By using manually operated valves at the sump, the water can be directed to the sump, if sufficiently clear, or into the T2 Dropbox.

3.7.2 Surveillance and Maintenance

The Mill Site Sump and Southeast Sediment Pond shall be inspected according to the schedule outlined in Table 3.1 and an inspection log completed as provided in Appendix B. Typical observations to be made during surveillance include:

- Water levels in the Mill Site Sump and Southeast Sediment Pond;
- Evidence indicating leakage from the pipelines;
- Erosion in the collection ditches;
- Evidence indicating slope deformation or erosion (i.e. tension cracks at the crest, erosion channels, bulging at the toe);
- Evidence indicating seepage out of the ponds.

The sediment ponds do not require regular maintenance; however, specific maintenance items may be identified during regular surveillance of the ponds.

Table 3.2 outlines additional observations that will need to be documented after any unusual event.

3.8 SEEPAGE COLLECTION PONDS

3.8.1 Components and Operation

The Main and Perimeter Seepage Collection Ponds are located at the downstream toe of the Main and Perimeter Embankments respectively. The ponds collect drainage water from the toe and foundation embankment drains as well as from local runoff.

A corrugated steel pipe connects each pond to a seepage recycle sump where recycle pumps are located. The pumps will recycle the seepage water back into the TSF through 8" (Perimeter) and 8" (Main) diameter, HDPE pipes that extend over the embankment crest. Level sensors in the seepage recycle sump controls the pumping frequency.

The seepage collection ponds and recycle pumps generally operate without requiring any external adjustments. However, the following special circumstances require adjustments to the operating procedures:

- During spring freshet, the pumps may not be able to keep up with the high inflows. All diversion ditches that feed the ponds may need to be directed away. Also, if water quality and permits allow, discharge of water may be possible.
- Under freezing conditions, the pumps are operated on a timed pumping cycle based on site conditions to prevent the pipes from freezing. The pumps will turn on and off based on the cycle time rather than water level. Once the temperatures return to normal the pumps can operate under normal conditions.

3.8.2 Surveillance and Maintenance

The seepage collection ponds and recycle pumps shall be inspected, by the surface crew, according to the schedule outlined in Table 3.1 and an inspection log completed as provided in Appendix B. Typical observations to be made during surveillance are as follows:

- Water levels in both collection ponds;
- Pump back flow rates from both pumps;
- Evidence indicating seepage from the collection ponds;
- Evidence indicating erosion or instability on the slopes of the ponds;
- The overflow culverts and pipelines between the monitoring sumps and recycle sumps are free of any obstructions;

 Ensure that the discharge end of the seepage recycle pipeline isn't submerged in tailings.

Additional observations will also be required under special circumstances as follows:

- Monitor the pumping from the ponds during freezing conditions to ensure that the pumping cycle is adequate at keeping the pipes from freezing and in keeping the pond level constant;
- Monitor the water quality in the ponds during spring freshet to ensure that the seepage water from the TSF is at acceptable levels if water permits allow for discharge.

Table 3.2 lists additional events and circumstances that will require increased observations and documentation.

3.9 INSTRUMENTATION

3.9.1 Components and Location

The tailings embankment and associated facilities were constructed with various instrumentation to assist in monitoring the facility. The various components are as follows:

- Vibrating Wire Piezometers;
- Slope Inclinometers;
- Groundwater Monitoring Wells.

The locations of the plezometers and slope inclinometers are on the drawings located in Appendix D.

The piezometers measure the pore pressures in the foundation soils, embankment foundation drains and embankment fill. They are connected to instrumentation readout panels located on the crest of the embankments and read using a piezometer readout box. A summary of the existing vibrating wire piezometers is presented on Table 3.3 with trigger levels, which if exceeded, will require investigation and possible contingency or remedial actions. Data may be entered on the piezometer data sheet included in Appendix C. A summary of the piezometer data will be sent to Knight Piésold according to the schedule outlined on Table 3.1

Four slope inclinometers are currently installed at the toe of the Main Embankment in order to measure potential deformation of the embankment materials. Operational procedures for operation of the inclinometer probe and data reduction are provided in the manufacturer's instruction book. Readings are carried out manually and displacements are calculated using software from RST and spreadsheets set up by MPMC. The spreadsheets are updated on site and summaries will be sent to Knight Piésold regularly. A summary of the existing slope inclinometers is presented on Table 3.4 with trigger

levels, which if exceeded, will require investigation and possible contingency or remedial actions.

Survey and surface movement monuments (to be installed) will be used to measure the vertical and lateral movement of the earthfill dams. Data is entered on the survey data sheet included in Appendix C. Trigger levels and the required appropriate actions are summarized on Table 3.5. A summary of the results will be sent to Knight Piésold according to the schedule outlined on Table 3.1.

Groundwater monitoring wells are located around the perimeter of the TSF. MPMC regularly measures the water levels and water quality from each well and submits the reports to the appropriate agencies. The location of the groundwater monitoring wells is shown on Figure 3.2.

3.9.2 Surveillance and Maintenance

All instrumentation components must be read regularly. The monitoring frequency for each is outlined on the schedule in Table 3.1. Data may be entered on the appropriate sheets included in Appendix C.

Data must be collected, plotted and reported according to the schedule outlined in Table 3.1. The design engineer must be notified of any anomalous trends. Additional readings and inspections as outlined in Table 3.2 will also be required after any unusual event or observation.

Generally, the instruments do not require regular maintenance but may require occasional maintenance as follows:

- The piezometer wires may need to be cut and re-attached if the readout box is unable to acquire any data;
- Piezometer wires that are exposed may become corroded and may need to be trimmed until a fresh surface is exposed to allow readings to be taken;
- Cover survey points with 20 litre buckets to keep snow off in the winter months;
- Protect surface movement monuments with used tires. These monuments need to be re-established and protected again after construction of a new embankment lift.

SECTION 4.0 - SAFETY INSPECTIONS AND REVIEWS

4.1 ANNUAL INSPECTIONS

Annual Inspections of the tailings impoundment and associated facilities are required to evaluate the current and past performance of the facility and to observe potential deficiencies in its condition, performance and/or operation. The Environmental Superintendent is responsible for arranging the inspections. This level of dam safety evaluation should be based on detailed observations made by the Design Engineer on site and the relevant information on the TSF operations collected by site personnel. Additional reviews may be required also as a follow up to the report of an unusual event or observation.

The Environmental Superintendent or designate should accompany the Design Engineer during the annual inspection. The Design Engineer will evaluate the safety of the TSF and incorporate a routine review of the following:

- The consequences classification of the dam;
- The operations and maintenance manual;
- The availability of all documents pertaining to dam safety on site;
- The site surveillance practice;
- · Changes in relevant regulatory requirements since the last inspection,

The Design Engineer will issue an annual inspection report after completing the review. The report will include the following:

- Conclusions on the status of the TSF;
- Statements indicating completion of recommendations from previous inspections and reviews;
- New recommendations if necessary.

The General Manager and the Ministry of Energy, Mines and Petroleum Resources should review each annual inspection report. Copies of the reports should be made available on site and are available in the office of the Design Engineer. The General Manager should prepare and execute an appropriate action plan to ensure that all recommendations made in the annual inspection report are followed. This action plan should be documented.

4.2 DAM SAFETY REVIEW

The principle objective of a Dam Safety review (DSR) is to ascertain that a dam has an adequate margin of safety, based on the current engineering practice and updated design input data. A DSR may also be carried out to address a specific problem.

A qualified engineer will be responsible for conducting each DSR at the Tailings Storage Facility. The engineer conducting the DSR must be qualified to conduct safety evaluations and be familiar with the designs and other site-specific conditions and requirements pertaining to operations of

the impoundment and associated facilities; but ideally should not have been involved in the design, construction or operation of the TSF.

Routine DSR's at the TSF will be carried out every 5 years but this scheduling requirement should be confirmed or revised at the time of each annual inspection. The next DSR for the TSF is scheduled for 2011.

A detailed scope of work for each DSR will be defined by the engineer prior to conducting the review, and be consistent with current engineering practice at the time it is conducted. Each DSR will evaluate the safety of the TSF and incorporate a detailed review of the following:

- The consequences classification of the dam;
- The adequacy of past annual inspection practice, the annual inspection recommendations, and their implementation;
- The Operation and Maintenance Manual;
- Timing for the next regular DSR.

Each DSR report should include conclusions and, if necessary, recommendations pertaining to the safety of the TSF. Copies of the DSR will be sent to the Environmental Superintendent and the Ministry of Energy, Mines and Petroleum Resources for review. Similar to the annual inspection report, an action plan should be prepared by the Environmental Superintendent to address the DSR recommendations. A copy of each report will be sent to the Ministry of Energy, Mines and Petroleum Resources and will also be available at the site and at the office of the Design Engineer.

SECTION 5.0 - EMERGENCY PREPAREDNESS AND RESPONSE PLANS

5.1 GENERAL

This Emergency Preparedness and Response Plan will enable MPMC to identify emergency and hazardous conditions threatening the TSF, expedite effective response actions to prevent failure, and reduce loss of life and property damage should failure occur.

In the event that MPMC is unable to comply with any of the terms and conditions of the permit, due to any cause, MPMC will:

- Immediately notify the Ministry of Energy, Mines and Petroleum Resources of the failure to comply.
- Immediately take action to stop, contain, and clean up unauthorized discharges or otherwise stop the non-compliance, correct the problem, and if applicable, repeat sampling and analysis of any non-compliance immediately.
- 3) Submit a detailed written report to the Ministry of Energy, Mines and Petroleum Resources within thirty (30) days (five days for upsets and bypasses), unless requested earlier by the Ministry of Energy, Mines and Petroleum Resources. The report will contain a description of the non-compliance, including exact dates and times, if the non-compliance has not been corrected, the anticipated time it is expected to continue, and the steps taken or planned to reduce, eliminate, and prevent reoccurrence of the non-compliance.

5.2 WARNING SIGNS

Three levels of emergency conditions (or warning signs) can be identified with respect to the site operations. These are defined as follows:

Level 1

Unusual conditions that do not yet represent a potential emergency, but do require prompt investigation and resolution.

Level 2

Conditions that represent a potential emergency, if sustained or allowed to progress, but no emergency situation is imminent.

Level 3

An emergency defined by either failure of a significant component of the TSF and/or associated facility or a significant failure of the performance of a component of the TSF. Such failure may have already occurred, or be imminent.

Typical situations that would be classified under the three levels of emergency conditions (Level 1, 2 or 3) and the actions to be taken are outlined in Table 5.1 and described below:

Level 1 Situation

The action in the event of a Level 1 Emergency Condition will typically involve an investigation, intensified monitoring, inspecting and/or testing, and defining and implementing possible corrective measures.

Construction equipment will be available at the Mine and include, but not be limited to, an excavator, a grader, haul trucks and a bulldozer. Material will be available both at the TSF and at the Mine for use in repairing or remediation of any damaged areas.

Level 2 Situation

The first action in the event of a Level 2 Emergency Condition is to discuss and define an action plan, at the site, under the direction of the Environmental Superintendent. After such a plan is prepared, it must be presented to the Mine Manager for approval. Construction equipment should be made available, if required, at short notice.

Level 3 Situation

The first actions in the event of any Level 3 Emergency Condition are:

- Check that all persons who could possibly be affected are safe; and
- Initiate the appropriate chain of communications.

The person who initiated the communication should then stand-by at a safe location near the problem area and await further instructions or decisions. All those involved in emergency response, after first having communicated with the appropriate parties, should consider two types of actions as first steps in the emergency response, with respect to the protection of human life and health, environment and property:

- What can be done to prevent the situation from worsening?
- What can be done to reduce the consequences of the impending or actual failure?

Any such action must be presented to the Mine Manager who will decide on its implementation in consultation with the Ministry of Energy, Mines and Petroleum Resources.

5.3 INCIDENT NOTIFICATION PROCEDURES

The following incident notification procedures are to be followed for all emergency conditions.

Level 1 and Level 2

The notification procedures are as follows:

 The person first noticing a Level 1 or Level 2 Emergency Condition shall notify the General Manager and initiate corrective actions and intensified monitoring. The General Manager shall notify the Design Engineer as appropriate.

Level 3

The notification procedure for a Level 3 Emergency Condition is as follows:

- The person noticing a Level 3 Emergency Condition shall notify the General Manager and initiate corrective actions and/or intensified monitoring, as appropriate.
- The General Manager shall notify MPMC Corporate office, MPMC Project director, and the Design Engineer.

In the event of an emergency situation that will result in an actual or potentially imminent dam failure, or release of untreated water, the General Manager shall also notify the Ministry of Energy, Mines and Petroleum Resources.

Names and telephone numbers for the key contacts are given in Table 1.1

SECTION 6.0 - CERTIFICATION

This report was prepared and approved by the undersigned.

Prepared by:

Ron Martel Environmental Superintendent

Luke Moger Project Coordinator

Approved by:

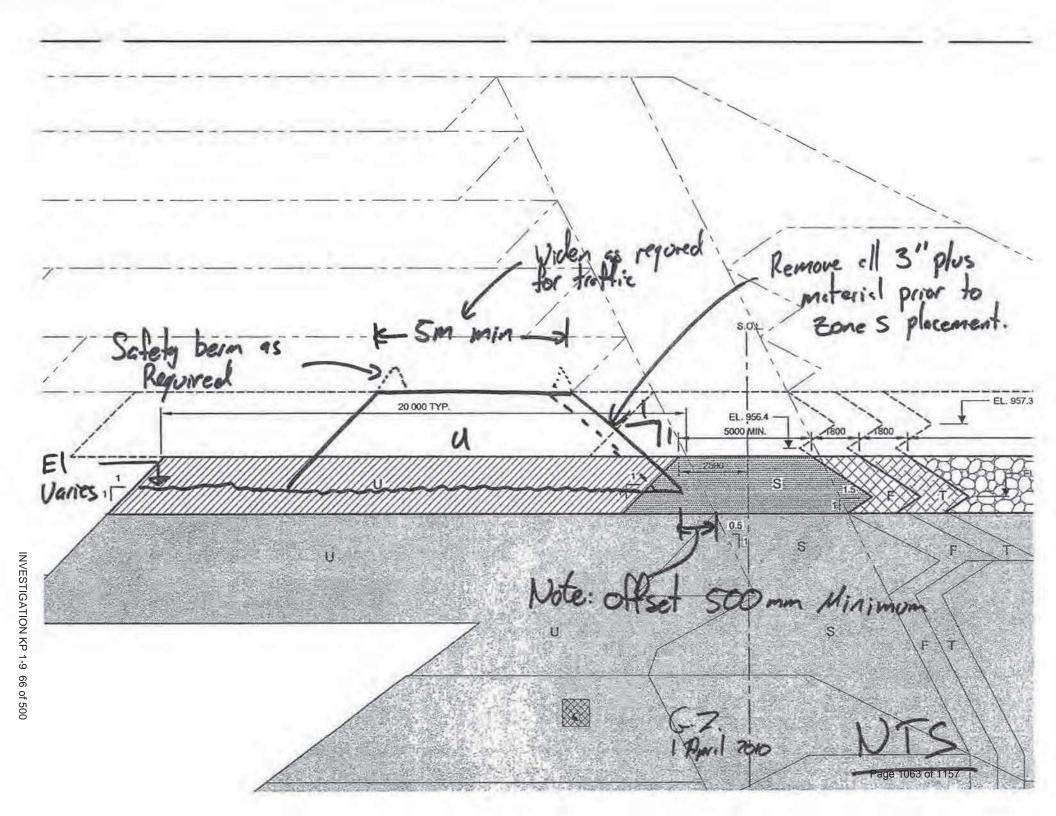
Tim Fisch General Manager

This report was prepared by Knight Piésold Ltd. for the account of Mount Polley Mining Corporation. The material in it reflects Knight Piésold's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Knight Plésold Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions, based on this report. This numbered report is a controlled document. Any reproductions of this report are uncontrolled and may not be the most recent revision.

FILE NO .:	2010-002			DATE: _30-Mar-10
		REQUE	EST FOR APPROVAL BY DE	
			OF CHANGE / SUBSTITU	TION
PROJECT:	ML Polley	Stage 6b Construction		PROJECT NO.: 101-0001/29
AREA OF WOR	τ Κ:	All embankments	0	
SENERAL DES	CRIPTION	OF PROPOSED WO	ORK: Wert	
				with mine waste rock. The new design will
		ed prior to till placmer		and the second se
				Strate 9.6

Place review !	he nronose	d change / substitutio	on as per the attached sheets.	
No. of Sheets:			and the standard and do.	
Reference Drav	vings / Clau	uses: See dra	awing 226	
	W 30			
11		1 1.		
Signed IV	nk /	lesir		Originator: Mark Smith, EIT
Signed. V ~u	000 /	-()		originator. Wark omiti, Eri
				Industry and a second
			FOR VANCOUVER OFFICE	USE
Sec. 1	25	Mach 2	ala	
Date Received:	<u>_h</u>	Mach C		
Proposed chan	ge / substit	ution not approved:		
		approved as submi	illed:	
		approved as amen	1ded: (87	
No. of sheets o	llachad.	approved as amen		
No. of sheets a	llached:		nded: (27	
No. of sheets a	llached:			ma ,
	llached:			Director:
Signed:	Itached:	<u>3</u> (ame		Director:
Signed: Date Returned:	<u>1 4</u>	<u> </u>	endments only)	Director:
Signed: Date Returned: Knight Piesold 1400 - 750 West	<u>1</u> IA Ltd. Pender Stre	<u> </u>	endments only)	y of all submissions and attachments.
Signed: Date Returned: Knight Piesold	<u>1</u> <i>Htd.</i> Pender Stre V6C 2T8	<u> </u>	endments only)	

FORM F - 3


Page 1061 of 1157 INVESTIGATION KP 1-9 64 of 500 The design change to use waste rock for a reduced width zone U is approved with amendments. The amendments are shown on the attached sketch and summarized as follows.

- Maintain a minimum 5m crest width of zone U. Increase zone U crest width as required for haul traffic.
- Place and compact zone U as for zone C. Place in 2m lift max, compaction by haul traffic.
- Maintain a slope of 1H:1V or flatter on the zone U to zone C interface.
- Remove all particles larger than a coarse gravel, (+75mm or +3") from the interface between zone U and zone C.

The following comments address constructability of the revised zone U.

- Zone S should not be used for equipment traffic. The zone S material does not have sufficient strength or durability for heavy construction equipment traffic. Traffic on the zone S will result in damage to placed material. The zone S damage may include rutting and deformation. Damaged zone S material will need to be removed and replaced.
- Zone U waste rock will have sufficient strength and durability for heavy construction traffic. Use of zone U for construction traffic will need to meet the 'Health, Safety and Reclamation Code for Mine in BC'.

6-2- 1 Apr. 1 2010

TABLE 3.3

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE TAILINGS STORAGE FACILITY

SUMMARY OF VIBRATING WIRE PIEZOMETERS AND TRIGGER LEVELS

0.3	Serial	ce\Incomming\From Site Office\2010_05_20 - Summary of Pizon Tip El. Zone Monitored	Trigger Level			
	Number	(m)		Frequency (Hz)	(m H2O)	Elevation (m)
A0-PE2-01	43675	928.0	Tailings		h an hugu	
A0-PE2-02	43657	927.9	Tailings			1
A1-PE1-01	64100	913.0	Foundation Drain	3000	2.0	915.0
A1-PE1-02	64098	912.1	Foundation Drain	3040	2.0	914.1
A1-PE1-03	64105	917.2	Chimney Drain	3015	2.0	919.2
A1-PE1-04	43649	936.3	Upstream Toe Drain			
A1-PE1-05	VW5357	947.9	Chimney Drain	2955	2.0	949.9
A2-PE1-02	69690	938.5	Glacial Till Fill			
10 081.05	6.50		Transformer design to the operation	i i i i i i i i i i i i i i i i i i i	n F ancioau	11
A2.082.01	120.550	2011	Finderfammer darage to	10	(5.20)	
An DEALS	6416	ACT N	Cardelloing that I want to the	11	A. L. Marth	
A2-PE2-03	64101	919.4	Glacial Till Fill		100 A	
A2-PE2-05	64102	921.9	Glacial Till Fill			
0.42.5		1000			5	-
A STATE OF A	CTEA .			-		
A2-PE2-09	VW5355	947.8	Zone U - Sand			
A2-PE2-10	VW5351	948.0	Glacial Till Fill			1
BURPETATI	8992	10051	Cychinesol (Los) in m			
SD-PE2-01	43674	0271	Takoreiu			
RG-PE2-02	43678	2217	Talings			
B0-PE2-03	VW5366	944.2	Tailings			
B1-PE1-01	64107	917.3	Foundation Drain	No	t Functionin	ng
B1-PE1-02	64106	916.0	Foundation Drain	3080	2.0	918.0
B1-PE1-03	64118	918.7	Chimney Drain	3115	2.0	920.7
B1-PE1-04	VW5362	948.2	Chimney Drain	2969	2.0	950.2
B2-PE1-01	67194	916.3	Zone T			
B2-PE1-03	69696	914.1	Foundation, depth 1.5 m	2964	7.5	921.6
62-PE 2-PT	DATE:	9020	Factoriation doctor search factor	- P		5
B2-PE2-02	64116	909.5	Foundation, depth approx. 7.9 m	2865	13.9	923.4
B2-PE2-04	64108	921.0	Glacial Till Fill			
CARL CI	for La.L.		CLASS OF THE STATE	Phil		3
32.962.005	STR.	1339.20	Tourse and the		1000	
LIGHER (T	V& OH	11053	Parenti Longo Parenti Longo			

TABLE 3.3

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE TAILINGS STORAGE FACILITY

SUMMARY OF VIBRATING WIRE PIEZOMETERS AND TRIGGER LEVELS

Printed:17-Feb-2015

0.3	Serial	Tip El.	Zone Monitored	T	rigger Leve	l
Identification Number	Number	(m)		Frequency (Hz)	Pressure (m H2O)	Elevation (m)
TOS PERION	The Gale II.	1		10.2		
ALC: N			12	1. 1. 1.		
CALCE-U.	AND COMPANY		Division of the second se	1 304		
1.104世纪2020年	10/20/12	SHEEL	() and ()			
C1-PE1-01	64111	914.7	Foundation Drain	No	t Functionir	ng
01 001	10050			0000		010.0
C1-PE1-04	43653	914.3	Foundation Drain	2960	2.0	916.3
00.051.00	00005	000.5		-		
C2-PE1-02	69695	938.5	Glacial Till Fill	1		
- + E				1		
The second	(C. 4 - 57)	1.017	1 mar (if) and			
C2-PE2-02	64119	910.5	Foundation, depth approx. 5.2 m	2955	11.2	921.7
C2-PE2-02	64112	921.0	Glacial Till Fill	2000	11.4	521.7
CL-PL10	04112	521.0		-		
C2-PE2-06	43647	906.6	Foundation, depth approx. 9.1 m	2940	15.4	922.0
CAPEL 07	436.43	000.0		THE	-0.000	0
C2-PE2-08	43656	914.0	Foundation, depth approx. 2.0 m	3000	8.0	922.0
C2-PE2-09	VW5360	947.7	Zone U - Sand			
and 100 10	WWW.254	1.47	Chief and a Martin			
D0-PE2-01	VW5365	946.9	Tailings			
D1-PE1-02	66520	928.8	Outlet Drain			5
D1-81-03	SNOTD	5.542	Chicupie Druks		E DOCTOR I	
D1-PE1-04	VW5356	948.2	Chimney Drain	2865	2.0	950.2
DZPETOT	STR.	- 30	Stores II	1	1	11
02,002,011	1.4(set)	122.0	Contra a		1K	1
D2-PE2-02	67192	927.3	Foundation, depth approx. 3.6 m	3030	9.9	937.2
Dear Borney	100	1440	and the second second			
D2-PE2-04	VW5343	948.3	Glacial Till Fill			
E0-PE2-01	VW5367	944.6	Tailings			A CONTRACTOR OF THE
E1-PE1-01	VW5359	947.9	Chimney Drain	2960	2.0	949.9
E2-PE2-01	43651	914.2	Foundation, depth approx. 4.6 m	2930	10.6	924.8
E2-PE2-02	43648	909.7	Foundation, depth approx. 9.1 m	2980	15.1	924.8
E2-PE2-03	VW5361	947.6	Zone U - Sand	-		1
E2-PE2-04	VW5363	948.3	Glacial Till Fill		. Frank a	
F2-PE2-01	53765	938.5	Foundation, depth 1.3 m	No	t Functionir	g
F2-PE2-02	VW5347	948.1	Glacial Till Fill	0704	0.5	010 5
F2-PE2-03	VW5342	940.0	Foundation, depth approx 0.5 m	2794	6.5	946.5
F0-PE2-01	VW9474	?	Tailings	8487		
G0-PE2-01	VW5371	946.9	Tailings			

TABLE 3.3

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE TAILINGS STORAGE FACILITY

SUMMARY OF VIBRATING WIRE PIEZOMETERS AND TRIGGER LEVELS

Printed:17-Feb-2015

0.3 Serial Tip El. Identification Number (m) Number	Tip El.	Zone Monitored	Т	Trigger Level		
		Frequency (Hz)	Pressure (m H2O)	Elevation (m)		
10.5811955-01	Any see	241.8	Actual and			
G2-PE2-02	VW5354	948.1	Glacial Till Fill			
H0-PE2-01	VW5369	947.0	Tailings			
11 Street T	1.000	112.17		1 2	(NCE)	gta
H2-PE2-01	VW5353	948.1	Zone U - Sand			
H2-PE2-02	VW5350	948.5	Glacial Till Fill			
10-PE2-01	VW5344	?	Tailings	8476		
12-1412-01	SYN SO		AUT	1 Aller		9.
12-PE2-02	VW5348	948.1	Glacial Till Fill			
12-PE2-03	VW5341	944.7	Foundation , dpeth approx. 0.5 m	2765	6.5	951.2

Notes:

 Trigger level is the level at which the monitoring frequency must be increased (daily) and when contingency or remedial plans must be developed.

The trigger level for foundation piezometers is approx. 6.0 metres above ground and is based on the level where the factor of safety is approaching 1.1.

3. The trigger level for drain piezometers is approx. 2.0 metres of head.

4. Fill piezometers have no set trigger level, but must be closely monitored for pressure increases.

5. The required action to be taken by MPMC in the event of rising plezometer readings is to change the reading frequency to daily. The Design Engineer should be contacted if the plezometer readings continue to rise over a period of a few days or the trigger levels are reached in the foundation or drain plezometers.

Rev 1 - Issued with VA101-00001/9-1

motifie d?

Calla Jamieson

'om:	Ron Martel <rmartel@mountpolley.com></rmartel@mountpolley.com>
_ent:	Thursday, October 07, 2010 3:41 PM
To:	Les Galbraith
Cc:	Greg Johnston; Ken Brouwer; Luke Moger; Tim Fisch
Subject:	1-Mt Polley OMS Manual_r0
Attachments:	MasterMine Emergency Response Plan.doc; June2010monthly.docx; May2010monthly.docx; 1-Mt Polley OMS Manual_r0.doc

Hi Les...per you inspection/ audit, you will find up to date OMS / ERP and evidence that water elevations are tracked on a monthly basis

Thanks for your time

RONM

MOUNT POLLEY MINES

IMPERIAL METALS CORPORATION

MINE EMERGENCY RESPONSE PLAN 2010

Scope:

Being prepared for a mine site emergency is critical in order to effectively respond and control any unexpected occurrence.

Emergencies may be site specific where onsite emergency response team personnel can effectively respond to the situation or the incident may involve the use of outside personnel and other resources necessary to coordinate effective response.

The following plan has been designed and developed for Mount Polley to coordinate and effectively respond to any and all mine emergencies.

Goals:

- To ensure and maintain a high standard of emergency response training for mine personnel.
- To identify and ensure adequate resources are available on site and off site in order to facilitate effective emergency response.
- To introduce and train management in the roles of the" Control Group"
- To introduce and train all workers in the relevance of the Mine Emergency Response Plan.

INTRODUCTION & OVERVIEW

Why have a Mine Emergency Response Plan?

A definitive plan to deal with all types emergencies is important and essential as a part of the mining plan as is mandated by the Health, Safety & Reclamation Code for Mines in British Columbia.

Besides the major benefit of providing guidance during an emergency, developing the plan has other advantages. Unrecognized hazardous conditions that would aggravate an emergency situation may be uncovered, allowing them to be eliminated. The planning process may bring to light deficiencies, such as the lack of resources (equipment, trained personnel, supplies), items that can be rectified before an emergency occurs. In addition an emergency plan promotes safety awareness and shows the organization's commitment to the safety of workers and other parties who may be affected by an eventuality.

The lack of an emergency plan could lead to severe losses such as multiple casualties and possible financial collapse of the organization.

Since emergencies will occur, preplanning is necessary to prevent possible disaster. An urgent need for rapid decisions, shortage of time, and lack of resources and trained personnel can lead to chaos during an emergency.

Time and circumstances in an emergency mean that normal channels of authority and communication cannot be relied upon to function routinely. The stress of the situation can lead to poor judgement resulting in severe losses.

2. What is the overall objective of this plan?

This emergency plan specifies procedures for handling sudden unexpected situations. The objective is to reduce the possible consequences of the emergency by:

- Preventing fatalities and injuries;
- Reducing damage to and protecting company property, inclusive of all machinery and equipment
- Preventing and/or reducing damage to the environment
- Accelerating the resumption of normal operations.

Page 1069 of 1157 INVESTIGATION KP 1-9 72 of 500

2

Development of the plan begins with a risk assessment. Which will describe:

- How likely a situation is to occur
- What means are available to stop or prevent the situation and
- · What is necessary for a given situation?

From this analysis, appropriate emergency procedures can be established.

3. What is a risk assessment?

Although emergencies by definition are sudden events, some occurrences can be predicted with some degree of certainty. The first step is to find which hazards pose a threat to Mount Polley,s mining operation.

When a list of hazards is made, records of past incidents and occupational experience are not the only sources of valuable information. Since major emergencies are rare events, knowledge of both technological (chemical or physical) and natural hazards can be broadened by consulting with fire departments, insurance companies, engineering consultants, government departments and other mining companies

4. What are technological and natural hazards?

Areas where flammables, explosives, or chemicals are used or stored should be considered as the most likely place for a technological hazard emergency to occur. Examples of these hazards are:

- Fire
- Explosion
- Building collapse
- Major structural failure
- · Spills of flammable liquids
- Accidental release of toxic substances
- Deliberate release of hazardous biological agents, or toxic chemicals
- Other terrorist activities
- Accidental release of tailings
- Loss of electrical power
- Loss of water supply
- Loss of communications

The risk from natural hazards is not the same across Canada but the list would include:

- Floods,
- Earthquakes,
- Tornados,
- Other severe wind storms,
- Snow or ice storms,
- Severe extremes in temperature (cold or hot), and
- Pandemic diseases like influenza.

The possibility of one event triggering others must be considered. An explosion may start a fire and cause structural failure while an earthquake might initiate all the events noted in the list of chemical and physical hazards.

5. What are the series of events or decisions that should be considered?

Having identified the hazards, the possible major impacts of each are itemized, as:

- Sequential events (for example, fire after explosion)
- Evacuation
- Casualties
- Damage to plant infrastructure
- Loss of vital records/documents
- Damage to equipment
- Disruption of work

Based on these events, the required actions are determined. For example:

- Declare emergency
- Sound the alert
- Evacuate danger zone
- Isolate source, if possible
- · Call for external aid, if needed
- Initiate rescue operations
- Attend to casualties
- Fight fire

The final consideration is a list and the location of resources as needed:

- Medical supplies
- Auxiliary communication equipment
- Power generators
- Respirators
- Chemical and radiation detection equipment
- Mobile equipment
- Emergency protective clothing and equipment
- Fire fighting equipment
- Ambulance
- Rescue equipment
- Trained personnel

4

6. What are elements of the emergency plan?

The following Mine Emergency Response Plan includes

- All possible emergencies, consequences, required actions, written procedures, and the resources available
- Detailed lists of key personnel including their home telephone numbers, their duties and responsibilities
- Floor plans, site plans and plans of the location of stored hazardous liquids and gases in and around the property
- Large scale maps showing evacuation routes and service conduits (such as gas and water lines).

The plan provides key personnel members with written instructions about their particular emergency duties and outlines the course of action they should take in the event of an emergency

The following are the more relevant parts of the Mine Emergency Response Plan and may not cover every situation in every workplace but reference the most critical elements

7. Objective

The objective is a brief summary of the purpose of the plan; that is, to reduce human injury and damage to property in an emergency. It also specifies those staff members who may put the plan into action.

The objective identifies clearly whom these staff members are since the normal chain of command may not prevail in the event of an emergency. At least one of them must be on the site at all times when the mine is operational. The extent of authority of these personnel must be clearly indicated.

8. Organization

One individual will be appointed and trained to act as Emergency Cocoordinator as well as a "back-up" co-coordinator. However, personnel on the site during an emergency are key in ensuring that prompt and efficient action is taken to minimize loss. In some cases it may be possible to recall off-duty employees to help, but the critical initial decisions usually must be made immediately.

Specific duties, responsibilities, authority, and resources are clearly defined.

Among the responsibilities that must be assigned are:

- Reporting the emergency
- Activating the emergency plan
- Assuming overall command
- Establishing communication
- Alerting staff
- Ordering evacuation
- Alerting external agencies
- Confirming evacuation complete
- Alerting outside population of possible risk
- Requesting external aid
- Coordinating activities of various groups
- Advising relatives of casualties
- Providing medical aid
- Ensuring emergency shut offs are closed
- Sounding the all-clear
- Advising media

This list of responsibilities are clearly defined for all key personnel, however, in some instances where the mine is operating with reduced numbers of personnel it may be necessary to assign them with multiple duties.

External organizations that may be available to provide assistance (with varying response times) include:

- Ministry of Energy & Mines
- Ministry of Water, Land & Air Protection
- Ministry of Forests
- Fire/Rescue departments
- Rescue teams from other mines
- Ambulance services
- Police departments
- Telephone company
- Hospitals
- Utility companies
- Industrial neighbours
- Government agencies

In the event that outside emergency personnel are required to respond to an emergency on the mine site they will be fully briefed of any hazards that they may encounter @ the areas they are responding to.

These organizations will be liaised with in the planning stages to discuss each of their roles during an emergency. Mutual aid with other mines is in place in the event of an emergency. Pre-planned coordination is necessary to avoid conflicting responsibilities. For example, the police, fire/rescue departments, ambulance services and any other responding agency may be on the scene simultaneously.

A pre-determined chain of command in such a situation is required to avoid organizational difficulties. Under certain circumstances, an outside agency may assume command.

Possible problems in communication have been mentioned in several contexts. Efforts will be made to seek alternate and effective means of communication during an emergency, especially between key personnel such as overall commander, on-scene commander, Mount Polley response personnel, engineering, fire/rescue departments, medical and other outside agencies.

The Mine Emergency Response Plan lists the telephone numbers of all personnel and agencies critical for effective response and control of any outlined or perceived emergency.

9. Procedures

Many factors determine what procedures are needed in an emergency, such as

- · The degree of emergency,
- The size of organization,
- · The capabilities of the organization in an emergency situation,
- · The immediacy of outside aid,
- · The physical layout of the premises, and
- The number of structures determines procedures that are needed.

Common elements in all emergencies include pre-emergency preparation and provisions for alerting and evacuating staff, handling casualties, and for containing the emergency.

Natural hazards, such as floods or severe storms, often provide prior warning.

The Mine Emergency Response Plan takes advantage of such warnings with, for example, instructions on sand bagging, removal of equipment to needed locations, providing alternate sources of power, light or water, extra equipment, and relocation of personnel with special skills. Phased states of alert allow such measures to be initiated in an orderly manner.

The evacuation order is of greatest importance in alerting staff. To avoid confusion, only one type of signal will be used for the evacuation order.

Commonly used for this purpose are the Mill fire alarms with personnel mustering at the first aid station

The all-clear signal is less important since time is not such an urgent concern and will be communicated by radio, telephone or by word of mouth.

The following "musts" are part of the Emergency Response Plan:

- Identifying evacuation routes & alternate means of escape.
- · Keeping all routes free from obstruction
- Providing training in all emergency response procedures
- Specifying safe locations for staff to gather for head counts to ensure that everyone has left the danger zone. Assign individuals to assist any handicapped employees in emergencies.
- Carrying out treatment of the injured and search for the missing simultaneously with efforts to contain the emergency.
- Providing alternate sources of medical aid when normal facilities may be in the danger zone.
- Containing the extent of the property loss should begin only when the safety of all staff and neighbours at risk has been clearly established.

10. Testing and Revision

Completing a comprehensive plan for handling emergencies is a major step toward preventing disasters. However, it is difficult to predict all of the problems that may happen unless the plan is tested. Exercises and drills will be conducted to practice all or critical portions (such as evacuation) of the plan. A thorough and immediate review/de-briefing after each exercise, drill, or after an actual emergency will point out areas that require improvement.

The plan should be revised when shortcomings have become known, and should be reviewed at least annually. Changes in plant infrastructure, processes, materials used, and key personnel are occasions for updating the plan.

It should be stressed that provision must be made for the training of both individuals and teams, if they are expected to perform adequately in an emergency. An annual full-scale exercise will help in maintaining a high level of proficiency.

Page 1075 of 1157 INVESTIGATION KP 1-9 78 of 500

8

In order to maintain a workable and effective plan in place it is necessary to identify some of the most common errors found with most emergency response plans, these being;

- 1. No upper management support
- 2. Lack of employee buy-in
- 3. Poor or no planning
- 4. Lack of training and practice
- 5. No designated leader
- 6. Failure to keep the plan up to date
- 7. No method of communication to alert employees
- 8 Applicable Codes and Standards are not a part of the plan
- 9. No procedures for shutting down critical equipment
- 10. Employees are not told what actions to take in an emergency

IDENTIFYABLE POTENTIAL MINE SITE/MINE LEASE EMERGENCIES

- 1. Major Structural Fires
- 2. Mill, Mine Maintenance and warehouse buildings
- 3. Forest Fires
- 4. Land Movements
- 5. Building Collapse
- 6. Weather Related Occurrences
- 7. Avalanches
- 8. Vehicle accidents
- 9. Spill Response Procedures

A. Major Structural Fires

Structural fires may present a minimal potential hazard at Mount Polley as most buildings are constructed of steel and cement. The offices and administration complex within the main building would pose a greater threat taking into consideration the materials from which they are constructed of. The following functions listed below are essential in maintaining

the integrity of the fire suppression systems and also providing adequate and effective response in the case of an outbreak of fire.

Fire Prevention

Monthly fire suppression systems inspections are essential to ensure the integrity of all systems.

Scheduled maintenance and repairs are imperative in order to maintain the integrity of fire suppression systems.

Particular attention to housekeeping and observing the National Fire Code will ensure that fire protection remains effective at all times.

Combustibles shall not be stored inside buildings unless they are part of a work process.

Flammable materials such as paints and aerosols shall be stored in approved and appropriate storage cabinets.

Evacuation of the Entire Building

All persons shall be evacuated from the building involved and shall assemble in a common area that is a safe distance away and upwind of any fire and smoke.

Circumstances permitting, the normal designated gathering or muster area shall be the "First Aid Station" located in front of the main administration building

Head Counts of Persons

This includes all workers and visitors in the area who have signed in at the administration building inclusive of other workers not directly related to the area but who may have had occasion to enter that area, this being the case a head count shall be performed for all workers and visitors who have reported for work or signed in, on arrival at the mine site.

Contact the Local Fire Department

In the event of a fire and to ensure that other resources are readily available, if needed, it is essential to contact the local fire department at "Big Lake".

Shut Down Utilities

Shut of and isolate power to the fire area, this will eliminate any further fuelling of the fire

Page 1077 of 1157 INVESTIGATION KP 1-9 80 of 500

10

Flammable Gas Containers

If it can be achieved safely and if at all possible remove gas cylinders and propane tanks from the fire area.

Victim Recovery

If unknown, the start of a search for unaccounted persons should commence at the area last seen.

After searching this area, a systematic search should be made commencing, if possible, at the most hazardous area and completing the search with the least hazardous.

Water Sources

One of the most important factors to consider when fighting fire shall be maintaining an adequate supply of water and ensuring that alternate sources are readily available.

B. Mill, Mine Maintenance & Warehouse Buildings

Successful evacuation and accurate accountability of personnel from the mill complex will preclude the necessity to put emergency response team members at risk if they were required to enter the buildings for the purposes of searching for victims

Basic Evacuation Procedure:

Reasons for Evacuation:

When an emergency occurs that is significant enough to affect the health and safety of employees in any work area, an evacuation of the areas may be required.

Examples of emergencies requiring evacuation are fires that cannot be controlled or contained, the release of toxic gases and any other situation where the health and safety of personnel may be at risk.

It is of the utmost importance, with safety in mind, that a fire be contained at the initial/incipient phase where a hand held fire extinguisher may be most effective

Procedure for Evacuation:

Evacuating a specific area:

- 1. Anyone finding or recognizing an emergency situation that would be cause for evacuation should ensure that everyone in the immediate area is aware of the emergency by raising/sounding the alarm.
- 2. Attempts should be made to contain the condition using all reasonable measures without compromising ones own or anyone else's health and safety.
- If appropriate, close doors around the area to starve the fire of Oxygen and contain any toxic gases.
- 4. Evacuate the area by attempting to head directly into any flow of fresh air. If this is not possible, head directly outside the affected area using the shortest and safest route possible.
- 5. When safely outside and at a safe distance, assign someone to watch over the entrances in the event that other personnel may inadvertently enter the affected area.
- 6. All employees, with the exception of those with assigned duties shall muster at the **FIRST AID STATION**.
- 7. After personnel from the affected area have mustered at the First aid Station an accurate headcount shall be conducted taking into account any personnel who have been assigned Emergency response duties and any other personnel who may have responded to the alarms from other areas of the mine.
- 8. The supervisor of the area affected by the emergency shall conduct the headcount.
- 9. Personnel shall only be allowed to return to their worksite when the designated Control Officer/Incident Commander has given the "all clear".

C. Forest Fires

With the mining area having been "logged off" the potential of a large fire in the pit is minimal, however the potential of forest fire still exists around the property, hence the following considerations should be taken.

Forest Fire Prevention

It is essential that any burning of combustibles be carried out in a diligent manner, taking into consideration the proximity of forest and timber. Educate and inform visitors and contractors of the importance to be aware of ignition sources if working in or close to forested areas of the mine site.

Fire Discovery

Close and early attention shall be made during and after lightening storms to ensure that any fires that have started are extinguished before they spread.

Initial Attack

Upon the discovery of a fire and with a failed initial attempt to extinguish it, trained response personnel shall be dispatched as soon as possible.

Response time is critical in order to achieve early suppression.

Ministry of Forests

The Ministry of Forest's fire suppression crews have extensive training and expertise in this field and should be contacted at the onset of a fire

Access and Egress to the Mine site

In the event of a forest fire breaching the mine access road, this would probably prevent any egress or entry of the mine site and measures such as providing alternate means of transportation, if necessary, would have to be taken into consideration. Another concern would be if persons were stranded at the mine site, food would need to be brought in other than by road.

Available Equipment

Mobile equipment such as dozers, front-end loaders and any other available resources shall be readied to respond to the construction of fireguards under the direction of a qualified person.

Transportation of crews

The transport of personnel to the fire site shall be necessary by means of crew cabs or other acceptable modes.

Time scheduling

A person shall be appointed to keep accurate record of the times and names of personnel accessing and regressing the fire site.

D. Land movement

Prevention of Burial

Either a shift boss or a qualified person will examine dumps or stockpiles at intervals not exceeding 4 hours before any work is performed below in the run-out zone or on top of the dump

The conditions noted shall be recorded in the daily logbook. Items of concern include:

- Dumps and Stockpiles
 - Cracks appearing on the dump floor or face.
 - Subsidence of the dump floor.
 - Material hanging up on the face of the dump.
 - Water flows or pooling
- Pit walls:
 - Cracks developing along or near the edge.
 - o Cracks in the face.
 - Overhangs developing on the bench face.
 - Water flowing into the rock

If any of the above items are observed contact the Shift boss who will inspect the site and determine what actions are to be taken. In the event that the area appears unsafe do not enter and contract the Shift boss immediately for direction.

If cracks are observed on the rock dump floor the area shall be blocked off and monitored to determine if additional movement is occurring. Dumping in the area shall not recommence until the Mine Superintendent gives approval.

Overburden and soils piles will slough and compact as they are being built. Dumping shall take place back from the edge and dozed over. If bulging of the face or curved cracks are observed dumping shall cease in the area and the area shall be monitored for additional movement. Dumping in the area shall not recommence until the Mine Superintendent gives approval.

E. Building Collapse

The roofs on the buildings at Mount Polley have been built to withstand a 30-year high for snow load, thus it would be highly unlikely that a building would collapse due to snow load. However, an indicator has been installed on the main Mill building to indicate depth of snow.

Ice build up on the roof of the main Mill building has been an inherent problem at Mount Polley but shall be remedied by laying heat tape down during 2005.

Collapse Prevention

Monitoring of snow load and frequent inspection of building structures shall be made to identify any defect in structural integrity.

Evacuation of the Buildings

Personnel will be evacuated from the building in the event of a potential or identifiable structural defect.

Evacuation will adopt the same procedure as that which shall be followed for fire and that being to leave the area and "muster" at the *First Aid Station*

Head Counts

In the event of an emergency all personnel on the Mount Polley property shall be accounted for

Structural Integrity

If the structural integrity is compromised in some way, any rescue attempt shall be preceded by an inspection by a qualified and authorized person

Utilities

All electrical supplies together with any gas or water supplies not necessary for any rescue operation shall be isolated from the building involved.

Support Equipment

Any equipment such as lifting or raising devices shall be immediately made available to any rescue operation or any other effort to render the building safe

F. Weather Related Occurrences

Heavy snowfall, rainfall, cold temperatures and high winds can create adverse weather conditions, which could have impact on the safety of personnel and mine production.

To safeguard personnel, property and equipment, operations would need to be shut down if a foreseeable potential for a dangerous occurrence was perceived.

Weather related problems might affect operations at the mine, the safety of personnel on the mine site and the well being of personnel traveling to and from the mine site.

Traveling on the mine site or on the highway may involve vehicle accidents and would require that a proactive approach be taken to avoid such occurrences.

Prevention of Weather Related Occurrences

Consideration should be given to the severity of the weather and the shutting down of operations to ensure the safety of personnel, property and equipment.

Having workers return home may be an option, taking into consideration whether the roads are safe and passable.

Head Count

As is standard procedure, a head count should be taken in the event of any emergency situation.

Travel

To minimize the risk of injury, use buses or multi-passenger vehicles if travel is deemed to be a safe and an appropriate measure.

In the event of extreme weather conditions at the mine site, consider escorting haul trucks and personnel to an area for assembly.

G. Avalanches

The potential for avalanche in and around the Mount Polley mine site is minimal.

Potential areas where an avalanche hazard may exist would be on inactive waste dumps around the property having slopes angles of between 30 & 45 degrees.

Prevention of Occurrence

Ensuring that avalanche areas are monitored and stabilized before any work is conducted near or around them can minimize the risk of an incident.

If work has to be carried out below a potential avalanche zone, then those personnel will be required to carry a transceiver on their person.

Head Count

In the event of an unlikely avalanche, a head count of all workers on site shall be taken.

Pre-Response

Before any search or rescue attempt, the avalanche zone shall be inspected and an assessment made as to the stability of the slope. If a hazard does exist, control measures shall be taken to ensure stability of the slope Access will only be allowed to designated personnel.

Support personnel

The local dog masters, if any, need to respond A.S.A.P by the quickest transportation available. *Refer to resource listings*

Support Equipment

Equipment such as shovels, probes and transceivers will be made available in the event of a slide.

H. Vehicle incidents

There is a potential for vehicle accidents involving multiple casualties on the Mine-Access road.

There would be a reasonably high risk of multiple casualties taking into consideration the volume of traffic and the mode of transportation, that being buses and multi-passenger vehicles.

Access control

One of the early priorities would be to prevent access to the scene by assigning 2 persons as guards, one at each end of the mine access road.

Travel into and out of the mine can then be restricted to essential and key personnel.

Emergency Response Personnel

If indeed there are multiple casualties it may be necessary for additional outside medical help. It would take a minimum of 1 hour for help to arrive from Williams Lake and if available, 30 minutes response from Likely; therefore, it is of the utmost importance that a "Triage station" be established so that casualties can be transported in the order of emergency medical importance.

Transportation

Consideration must be given to the situation where there are multiple casualties needing transportation to medical facilities in Williams Lake. If this is the case it may be necessary to facilitate the use of crew cabs or other multi-passenger vehicles as long as they can provide the necessary comfort for the casualties

SPILL RESPONSE PROCEDURES

Index

Index	
	Page Number
Policy, Definition of an Emergency, a reportable spill	25
Plan Objectives, Revisions and Training	26
Mine-site Personnel Critical Phone Numbers	27
Agency Critical Phone Numbers	28
Required Government Agency Contacts	29
Potential Mine-site Spills Materials and Chemicals	30
Potential Spill Types and Locations	31
Spill Assessment Potential	32
Mine-site Control Emergency Group	33
First On-site Responsibility	34, 35
Levels of Emergency	36
Main Response Elements	37
Control Group Members Responsibility	38 - 39
Appendix A (Product Classification)	40 - 42
Appendix B (Hazardous Material Response Plan)	43 - 48
Class 1: Explosives	49 - 50
Class 2: Flammable Compressed Gases	51 - 53
Class 3: Flammable Liquids	54 - 57
Class 4: Flammable Solids	58 - 59
Class 5: Oxidizers and Organic Peroxides	60 - 61 -
Class 6: Infectious Substances	62 - 66
Class 7: Radioactive Materials	67 - 68
Class 8: Corrosive	69 - 70
Lime	71 - 72
Tailings/concentrate or Sulphur Soil or Recycled soil	73
Appendix C Protocol for Corporate Reporting of an Environmental Incident	74 - 75
Appendix D Preliminary Incident Report	76 - 77
Appendix E Reportable Levels for Certain Substances	78 - 79
Appendix F Equipment Listing	80 - 84

MOUNT POLLEY MINING CORPORATION

STANDARD PROCEDURE

SUBJECT:

Emergency Spill Response Contingency Plan

EFFECTIVE DATE: February 2005 REVISION DATE: May 23, 2007

Policy:

To ensure preparedness and to maximize valuable time in case of an emergency.

To confirm Mount Polley Mining Corporation commitment to operating its business at the highest standards to protect the health and safety of workers, the public and the environment.

Definition of an Emergency

A current or imminent situation that requires prompt coordination of actions of trained persons to protect health, safety, or welfare of people and to limit damage to property and to the environment.

Definition of a Reportable Spill

Legal Definition:

A spill means any polluting substance whether gaseous, liquid or solid that, in the opinion of the minister, is capable of causing pollution if it were to:

- Escape into the air
- Be spilled onto any land or into any body of water, or
- Escape onto any land or into any body of water.

MOUNT POLLEY MINING CORPORATION

STANDARD PROCEDURE

SUBJECT:

Emergency Spill Response Contingency Plan

Objectives:

- 1. Ensure compliance with B.C. Environmental Management Act: Part 7
- 2. Ensure compliance with the Federal Transportation of Dangerous Goods Act.
- 3. Ensure compliance with the Federal Fisheries Act.
- Outlines response strategies to spills of potentially hazardous substances at or near the minesite.
- 5. Facilitate the rapid deployment of trained personnel to deal with spills so that the environmental impact and risk are minimized.
 - 6. Provides Guidelines for Communicating environmental incidents and issues to corporate management
- 7. Ensure that responsible personnel are:
 - > Familiar with the Emergency Spill Response Contingency Plan.
 - > Aware and are trained in the potential hazards associated with the Plan.
 - > Understand and are trained in the responsibilities of Team Members.
 - Locations of spill containment materials.
 - > Action Plan for respective substances.
 - > Reporting procedures.

Plan Audits and Revisions:

The Environmental Superintendent is responsible to conduct an annual review of this plan and revise when necessary.

Training:

It is the responsibility of the Environmental Superintendent, with the assistance of the Safety Department, to organize, coordinate and conduct training sessions of the mine-site Emergency Response Team Members.

MOUNT POLLEY MINING CORPORATION

STANDARD PROCEDURE

SUBJECT:

Critical Personnel Contact Phone Numbers

General Manager Tim Fisch	Bus. Ph: Home Ph: Sat Phone:	250-790-2215 Loc. 200 s.22 403-987-5822	
Environmental Superintendent Ron Martel	Bus. Ph: Home Ph: Cell:	250-790-2215 Loc 409 s.22	
Human Resources and Safety Superintendent Paul Allan	Bus. Ph: Home Ph:	250-790-2215 Loc 101 s.22	
Safety Coordinator Wally Rennie	Bus. Ph.: Home Ph: Cell:	250-790-2215 Loc. 185 s.22	
Mine Superintendent Art Frye	Bus. Ph: Home Ph: Cell:	250-790-2215 Loc 406 s.22	
Mill Operations Superintendent Doug Ablett	Bus. Ph: Home Ph: Cell:	250-790-2215 Loc 145 s.22	
Mill Maintenance Superintendent Darcy Hannas	Bus Ph: Home Ph: Cell:	250-790-2215 Loc 102 s.22	
Administration Manager Dale Reimer	Bus. Ph: Cell Ph:	250-790-2215 Loc 177 s.22	
Mine Maintenance Superintendent Merv Wourms	Bus. Ph: Home Ph:	250-790-2215 Loc 142 s.22	
The Provincial Emergency Program		1-800-663-3456	

Environment Canada: Smithers (24Hour Numbers)		1-250-561-6902 1-250-961-3040	
CANUTEC Ministry of the Environment Williams Lake	Bus Ph.	1-613-996-6666 250-398-4716	

Kamloops Bus Ph:

23

250-371-6220

Brian Kynoch Company President

Cell Ph:

s.22

Mines Inspector Stephen Rothman

Bus. Ph: 250-371-6053 Cell Ph: s.22

MOUNT POLLEY MINING CORP.

STANDARD PROCEDURE

Subject: Agency Critical Contact Phone Numbers

Poison Control Centre:	1-800-567-8911
Hospital Emergency Room: BC Ambulance Service:	1-250-392-8225 911
Big Lake Fire and Rescue:	1-250-243-2400
City Hall Williams Lake	1-250-392-2311
Likely – Fire and Rescue	1-250-790-2287
	1 200 190 2201
Forest Fire Reports:	911 or *5555
Government Agencies:	
Provincial Emergency Program: 24 hour service:	1-800-663-3456
Water Land and Air Protection:	1-250-398-4530
(Associated with Ministry of Environment)	1-250-398-4716
	1-250-371-6220
District Inspector of Mines:	1-250-319-2054
Ministry of Health:	1-866-847-4372
RCMP: Williams Lakes Detachment:	1-250-392-6211
Spill Response Advice:	
Canutec: Transport Canada [Quote #2-0053]	1-613-996-6666
a la segura a la servició a la servició en el segura parte de la construction de la servició de la segura de la	1-800-663-9628
Propane: Canwest 1	-250-392-2971
Commercial Clean-Up Services:	
Triple Sanitation:	1-250-392-4414
Gord's Septic Services	1-250-392-4647
Orville's Septic Service	1-250-395-4638

1-250-453-9411

Arrow Transport

MOUNT POLLEY MINING CORP.

STANDARD PROCEDURE

Subject: Regulatory Reporting Requirements

The Emergency Contingency Plan Control Officer/Designate must contact the Provincial Emergency Program (PEP).

1-800-663-3456

This is a 24-hour toll free number.

The Provincial Emergency Program staff will notify all concerned agencies, including the following, as appropriate:

The local PEP office.

The Williams Lake Police Fire Ambulance		1-250-392-6211 1-250-392-4242 1-250-392-5402
WLAP (Ministry of Environment)		1-250-398-4716 1-250-371-6220 1-250-398-4550
Ministry of Health.		1-866-847-4372
Environment Canada. Smithers, B.C.	Phone: Fax: Cell:	1-250-847-1879 1-250-847-1879 1-250-961-3040

MOUNT POLLEY MINING CORP.

STANDARD PROCEDURE

Subject: Potential Spill Materials

Spill Materials:

- 1. Gasoline.
- 2. Diesel Fuel.
- 3. Mill Tailings.
- 4. Propane.
- 5. Lime.
- 6. Mill Reagent PAX.
 - 7. MIBC.
- 8. Ammonia Nitrate
 - 9. NaHS

٤.

10. Concentrate /Sulphur Soil /Recycle Soil

.

MOUNT POLLEY MINING CORP.

STANDARD PROCEDURE

Subject: Spill Types and Locations

Spill Types:

- 1. Minor spills from equipment due to leaks.
- 2. Minor spills from containers being damaged or knocked over.
- 3. Minor/Major spills from fuelling stations.
- 4. Major spills from storage tanks outside the Mill.
 - 5. Major spills from storage tanks inside the Mill.
 - 6. Major spills form transportation and delivery vehicles.
 - 7. Spills from slurry tailings line.

Spill Locations:

- 1. General Mine-site grounds.
- 2. Mill Building and surrounding areas.
- 3. Pipeline route to Tailings Pond.
- 4. Fuelling station.
- 5. Access road to mine site.
- 6. Access road around mine site.
- 7. Open Pit

Spill Gear Location

We have in stock an assortment of spill absorbent material like booms and pads stored in the grey "C" can immediately North West of the Mine shifters office.

MOUNT POLLEY MINING CORP. STANDARD PROCEDURE

Subject: Spill Assessment Potential

Transportation:

The area of greatest vulnerability for spills are transport related incidents resulting from road conditions, and mechanical failures.

Contingency plans files by the Shipper with Transport Canada and requires to be in possession of the driver are intended to address these types of incidents.

Ensure that Shipping Papers are carried in the cabin of the transport vehicle.

The Company:

Undertakes to provide information to the Shipper on avoidance of poor road conditions and rescheduling of deliveries, if necessary.

Ensures to maintain the mine road conditions in as favorable condition as possible.

Provide the manpower and equipment required to control and minimize the affects on the environment.

Fuels:

Standard procedures are in effect for the safe unloading of fuels to storage tanks and safety berms are provided to contain spills at the storage facilities.

Emergency Contingency Plans for effective response to spills are addressed in this document.

Lime:

Unloading of granular quicklime from bulk tank trucks can result in spillage. These spillages, if any, will be cleaned up with a front-end loader and disposed of by recycling the material to the crusher.

Explosives:

Transport, handling and transfer of explosives are addressed within the Emergency Contingency plan of this document.

Explosive materials storage is in separate containers and conform to the Ministry of mines and transport Canada standards.

Tailings:

The tailings lines are protected against vehicle collision. The pipeline is also contained in a ditch along the access road to the tailings pond.

Other Consumables:

All consumables are contained within their original shipment containers prior to transfer to end user containers. End user spillage Emergency Contingency Plans are addressed in this document.

7

MOUNT POLLEY MINING CORP.

STANDARD PROCEDURE

Subject: Contact Group

Spills of chemicals, fuels and other substances may occur as isolated events or they may occur with other emergencies such as fire, explosion, natural causes or accident.

A number of response personnel may be involved to protect mine property and the health and safety of mine personnel and the public.

The key persons involved during a spill occurrence would be as follows:

The person discovering the spill, and his/her Supervisor.

The General Manager or his Designate.

The Area Superintendent.

The Environmental Superintendent.

The Safety Superintendent or his Designate.

The On-Scene Co-ordinator (OSC).

The Response Team Leader (RTL).

The Clean-up crews.

The responsibilities of key personnel are outlined in the General Emergency Contingency Plan Control Group section.

Applicable telephone numbers are kept current and posted at the mine-site.

MOUNT POLLEY MINING CORP. STANDARD PROCEDURE

Subject: First-On-The-Scene Personnel Responsibilities

Person discovering the spill:

- 1) Assess the hazard to one's own health and safety and to others in the vicinity.
 - If fire or explosion hazards are perceived immediately retreat to a safe distance.
- 2) Notify your Supervisor IMMEDIATELY.
- 3) Stop the spill only as long as it is safe to do so.
- 4) Barricade or flag off the area to ensure the safety of others
- 5) If the risk of gas poisoning exists ensure qualified personnel conduct atmospheric testing with the appropriate equipment prior to entry.

Action Items:

- Ensure the Area Supervisor is notified IMMEDIATELY.
- Barricade/Flag the area.
- Place physical guards at a safe distance.
- Warn others in the immediate vicinity of the situation.
- Arrange for appropriate operating equipment to be shut down, if applicable, to minimize the extent of the spill.
- If warranted, notify on-site Industrial First Aid Attendant for first aid.
- Fire fighting response will be co-ordinated by Area Supervisor in attendance backed up by Emergency Response Team personnel.
- The Supervisor or the person discovering the spill with the following information must contact the General Manager or his designate IMMEDIATELY:
 - Name of person discovering the spill.
 - The time of the spill.
 - The location of the spill.
 - The type of substance spilled.
 - The quantity of the spill.
 - The cause of the spill.
 - The weather conditions.
 - Perceived potential for hazard, and any injury to aquatic systems, wildlife or people.
 - Actions already taken.
 - Whether a fire or explosion hazard is deemed to exist.
 - Personnel already notified.
 - Contained the spill?
 - Are there or could there be environmental effect?
 - Are there any injuries?

Note:

- Ensure every remedial action is taken safely and efficiently to stop and/or minimize the extent of the spill.
- The Supervisor must remain in place to direct personnel and equipment upon instructions from the Command Post.

MOUNT POLLEY MINING CORP.

STANDARD PROCEDURE

Subject: Level of Emergency

Levels of Emergency

Level 1- A spill that is below the external reportable quantity or an emergency where the **potential health and safety risks are low** (no employees are injured). Incidents that can be cleaned up or resolved with little impact on the mine and or environment. No command post is necessary in such an incident.

Level 2- A spill that is above the external reportable quantity or an emergency whereby the health and safety of staff member(s) may be jeopardized. It is a spill that requires the initiation of the emergency measures. No external help is needed in this situation but a command post may need to be established.

Level 3- A spill that is above the external reportable quantity or an emergency where there is great potential health and safety risks. There may be casualties. This type of emergency requires internal and (may required) external intervention. A command post may be set up both onsite and offsite.

Level	Is the spill above external report quantity?	Potential Health and Safety Risk	Command Post	External Support
i	No	Low	No	No
2	Yes	Maybe	Maybe	No
3	Yes	Yes	Yes	Maybe / yes

MOUNT POLLEY MINING CORP.

STANDARD PROCEDURE

Subject: Main Response Elements

Find and Identify

Establish Communication System Collect Information Isolate the Emergency Scene

Notify

Notification of Employees Notification to public, agencies and media

Ensure Public Health and Safety Protection

Search and Rescue Medical Care

Environmental Protection

Establish Spill Plan Manage spill response equipment and resources Conduct Hazardous material clean up

Terminate the Incident

MOUNT POLLEY MINING CORP. STANDARD PROCEDURE

Subject: Personnel Responsibilities

General Manager/Designate:

- Notifies Corporate, PEP and Media.
- · Maintain responsibility for the activities at the site of the spill.
- Maintain contact with and co-ordinate work with the Environmental Superintendent, Terminates the Incident, conducts brief.

Environmental Superintendent:

- Notifies Government Agencies
- Monitors Environnemental Impact.
- Establishes decontamination measures with safety coordinator.
- Update the Spill Contingency Plan as required, for all potentially hazardous materials, accurate names of personnel and phone numbers.
- Plan and co-ordinate required skills.
- Be responsible for assessing new spill hazards as they develop and take preventative actions, whether covered in the manual or not.
- Check and maintain the operating status of required response equipment, which may be required at a spill.
- Train emergency response personnel with respect to their duties:

Superintendent of Affected Area:

- Has authority to direct response operations.
- Needs to clear incident action plan with manager
- Determines level of Incident
- Assigns Command Post if necessary
- Executes the incident action plan and enforces worker safety and environmental protection
- Briefs team/teams on specific assignments and deploys the necessary crews and equipment required for cleanup.

Communications:

- Responsible for the communication and emergency assistance
- Notifies emergency response personnel by telephone or radio in the event of an emergency
- Assigns scribe
- · Records incident details and subsequent developments as they occur.
- Responsible for establishing communication and emergency assistance.
- Establishes external support system (if required)
- Assisting Safety Supervisor.

33

 Maintains communication contact with the work parties via walkie-talkies, signal horns, or other means

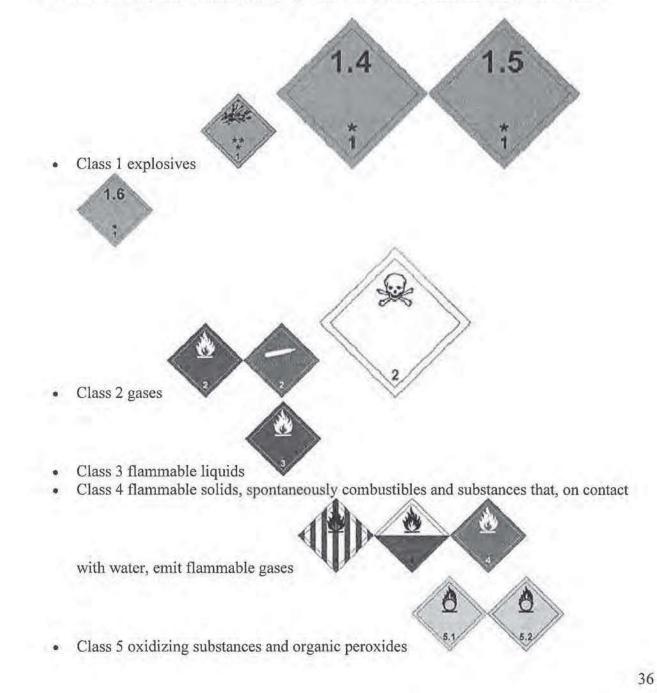
Health and Safety:

- Advises the incident commander on all aspects of health and safety on the site. Recommends stopping the work if any of the work operations threaten worker or public safety.
- Ensure proper PPE is used and maintained.
- Controls entry and exit at the access control points.
- Monitors onsite hazards and conditions.
- Enforces the Buddy system
- Control the decontamination of all equipment, personnel and samples from the contaminated areas.
- Assist In the disposal of contaminated clothing and materials.
- Advises medical personnel of potential exposures and consequences.

Emergency Response Team Members:

- Consult Appendix C of this manual, to review the site plan relative to building location of the spilled material and specific location of the material within the building/site.
- Consult the appropriate ACTION PLAN contained in this document, to review the properties of the spilled material and recommended response actions.
- If further information is required, contact one of the resource services listed in this document.
- Assess the spill requirements for manpower, equipment, materials, tools and protective gear to contain the spill, in consideration of the resources available.
- Mobilize these resources and take responsibility for implementation of the response actions in the spill site.
- If the spill is too large or complex to be handled entirely by the Company's resources, call an appropriate group or agency listed in this document.
- Contact the Environmental Superintendent to determine what, if any, sampling should be done and to discuss the spill and any environmental implications.
- Once the initial response action is underway, contact the General Manager or designate review the situation and strategy.

APPENDIX A


Product Classification

8

APPENDIX A

Product Classification...

Federal and provincial legislation provide for the regulation of an extensive list of products, substances or organisms classified as dangerous. The products fall into one of nine classes:

Page 1103 of 1157 INVESTIGATION KP 1-9 106 of 500 · Class 6 poisonous (toxic) and infectious substances

Q

5

8

Class 7 radioactive materials

- Class 8 corrosives
- Class 9 miscellaneous products or substances
 - miscellaneous identified dangerous goods
 - certain specified goods considered dangerous to the environment
 - dangerous wastes

APPENDIX B

Hazardous Material Response Plan

38

Page 1105 of 1157 INVESTIGATION KP 1-9 108 of 500

APPENDIX B

Hazardous Material Response Plan

Hazardous Materials Checklist

1. Isolate the Area and Deny Entry

- Determine the Hazard Area Involved
- Establish Control of the Hazard Area
- Determine Incident Control Zones (Hot, Warm, Cold)
- Advise All Units of Area to be Isolated
- 2. Identify and Verify the Materials Involved
 - Obtain Shipping Papers or Facility Documents (only if safely possible)
 - Write Down All Information Obtained
 - Verify the Source and Accuracy of all Information

3. Hazard and Risk Assessment

Evaluate the Following Concerns

Health Physical Properties

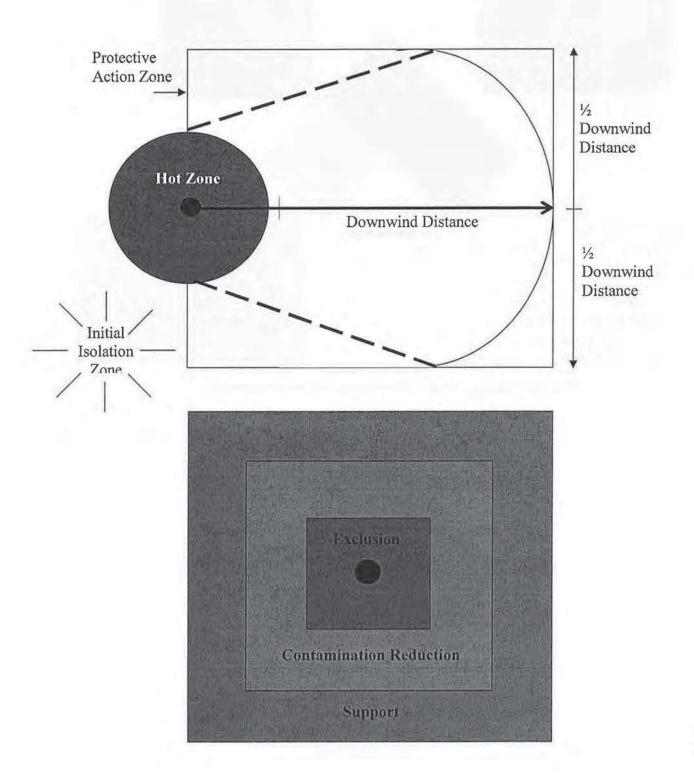
Flammability Chemical Properties

Reactivity

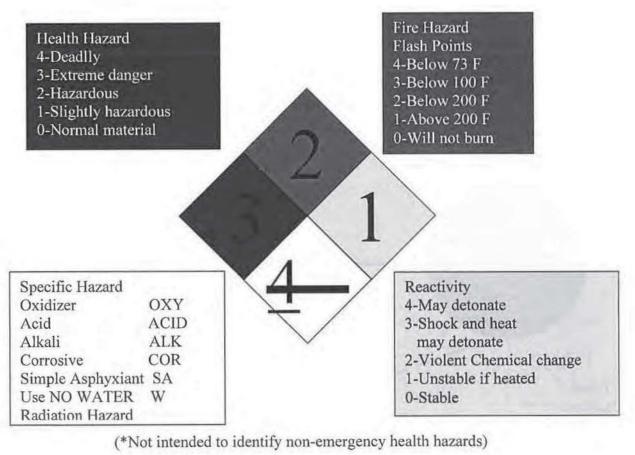
- □ Assess Container Integrity (Stress, Breach, Release, etc.)
- Determine all Exposures
- Estimate Likely Harm Without Intervention
- 4. Evaluate Protective Clothing and Equipment
 - Determine Proper Type and Level of Protective Clothing Required

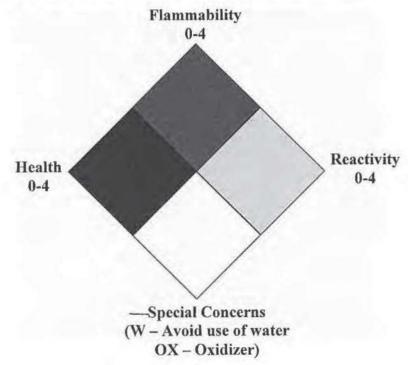
Note: Structural Fire-Fighting Clothing Will Not Provide Protection

- 5. Coordinate Information and Resources
- Coordinate Information Between All Branches/Divisions/Groups
- Conduct Briefing of All Division/Group Officers to Develop Tactical Options
- Advise Incident Commander of Tactical Options and Recommendations


- 6. Control, Containment and Confinement
- D Review Tactical Options With Entry Personnel
- D Coordinated All Operations With the Safety Officer
 - □ Will Decontamination be Required After Entry Operations?
 - Yes Implement Decontamination Procedures Prior to Entry
 - D No Continue
- 7. Decontamination Procedures
 - Decontamination Procedures Determined and Verified
 - Decontamination Area In Place and Fully Staffed
- 8. Entry Team Procedures

(SOP's of the department supplying the hazardous materials technicians shall be used for all entries)


- 9. Termination Procedures
 - D Ensure All Personnel Are Briefed as Necessary
 - D Signs and Symptoms of Exposure Provided
 - Dersonnel Exposures Documented


Initial Isolation/Protective Action

Hot- Exclusion Zone. Entry Team only Warm-Decontamination, Properly trained & equipped personnel only Cold- Staging & Operations

NFPA 704 HazMat* Classification

Hazardous Materials Response Plan

Response Guide by TDG Hazardous Classification

Environmental Canada's Transportation of Dangerous Goods Act divides hazardous materials into nine major hazard classes. A hazard class is a group of materials that share a common major hazardous property, i.e., radioactivity, flammability, etc. These hazard classes include:

Class 1-Explosives Class 2-Compressed Gases Class 3-Flammable Liquids Class 4-Flammable Solids Class 5-Oxidizers Class 6-Poisonous and Infectious Substances Class 7-Radioactive Materials Class 8-Corrosives Class 9-Miscellaneous Hazardous Materials

Notes:

- In some emergency response procedures for TDG hazard classes, a distinction is made between bulk or package quantities. Packing Groups indicate the degree of danger of a product or substance, and are always shown in Roman Numerals: I great danger, II moderate danger, III minor danger
- Class 9, "Miscellaneous Hazardous Materials," refers to those materials that are hazardous but do not meet criteria for inclusion in the aforementioned classes.

Note: The material presented in this Response Guide has been written in accordance with industry standards. However, this guide cannot anticipate all possible emergency events or situations and emergency responses and therefore cannot be used without the competent review of the emergency response team and plant management. Conditions may develop in operations where standard methods will not suffice and nothing in this guide shall be interpreted as an obstacle to the experience, initiative, and ingenuity of the responders in overcoming the complexities that exist under actual emergency conditions. Responders should use all available resources to determine the appropriate strategies and tactics.

Class 1: Explosives

Definition

An explosive is any chemical compound, mixture, or device, the primary or common purpose of which is to function by explosion, e.g., with a substantial instantaneous release of gas and heat.

General Emergency Response Procedures

- 1. Identify the material involved.
- 2. Keep non-essential people away (includes non-essential emergency service personnel).
- 3. Establish control zones (isolate area and deny entry).
- 4. Extinguish all sources of ignition in the vicinity. Do not allow vehicles or other sources of ignition in the area.
- 5. Wear positive pressure SCBA and full protective clothing.
- 6. Avoid exposure to smoke, fumes, vapors, dust, or direct contact. The combustion products of some propellant explosives are poisonous.
- 7. Do not allow personnel to touch or move explosives. Explosives should be moved only under the advice and supervision of trained explosive personnel.
- 8. Contact local police or military bomb units.
- 9. When a HAZMAT team is requested to respond to a bomb threat involving hazardous materials, under no circumstances will the HAZMAT team conduct building or area searches even when hazardous materials are involved. The HAZMAT team will stage in a safe area, but not less than 200 metres feet from the incident scene.
- 10. The HAZMAT team will act as a technical resource for the bomb unit. This may involve the loaning of chemical protective clothing to bomb unit personnel, assistance in dressing, researching chemical data, etc.

Emergency Response Procedures-Fire

- 1. Do not fight fire in cargo or storage area containing explosives. Withdraw from the area and let the fire burn.
- 2. If a fire is near explosives, efforts should be taken to prevent the fire from reaching the explosives. For fires involving the motor, cab, or tires of vehicles transporting explosives, flood the area with water.
- 3. The application of water to burning Class A or B explosives may cause an explosion.
- 4. Evacuate the area:
 - Class A Explosives 800 m in all directions.
 - Class B Explosives 800 m in all directions.
 - Class C Explosives 450 m in all directions.
 - Blasting Agents- 800 m in all directions.
- 5. Do not overhaul areas where explosives have burned or exploded.
- 6. Explosives that have been exposed to heat may be very shock sensitive. Keep all personnel away and do not move these containers.
- 7. When explosives are involved in fire or serious accidents on the roadways, Canutec (613) 996-6666 should be notified.

Definition

A flammable material or mixture having a vapor pressure exceeding 40 psi absolute at 100° F.

General Emergency Response Procedures

- 1. Identify the material involved.
- 2. Keep non-essential people away (includes non-essential emergency service personnel.)
- 3. Establish control zones (isolate area and deny entry).
- 4. Stay upwind and keep out of low areas.
 - 5. Ventilate confined areas before entering.
- 6. Wear positive pressure SCBA and full protective clothing. This is a minimum level of protective clothing and will not provide adequate protection for all incidents. In some cases, chemical protective clothing carried by the HAZMAT team will be required for the safe handling of the incident.
 - 7. Avoid exposure to gas.
- 8. Since the application of water to pools of liquefied gas will increase the vaporization rate, this is not usually a recommended practice.
- 9. If a tank truck or tank car is involved in fire, isolate 800 m in all directions.
 - 10. Determine and implement appropriate decontamination procedures for personnel and equipment.
- 11. Consult CANUTEC (1-613-996-6666) for product information and assistance.

Emergency Response Procedures-Fire

- 1. Do not extinguish the fire unless the flow of gas can be stopped. The recommended means of extinguishing is to stop the flow.
- 2. If a leaking tank is involved in fire, cooling the tank with water may reduce the internal pressure and the rate of leakage. If sufficient water is available, use water spray to cool the tanks and adjacent combustibles affected by the heat of the fire. For massive fires, use unmanned monitors. If this is not possible, withdraw from the area and let the fire burn.
- 3. Uninsulated pressure tanks may rupture violently if there is flame impingement on the vapor space at the top of the tank. If it can be done safely, remove all vehicles or containers not already burning.
- 4. Let tank, car, tank truck or storage tanks burn unless leak can be stopped.
- 5. Stay away from the ends of the tank exposed to heat or flame impingement.
- 6. Observe tanks for evidence of bulging or red hot spots in the metal, and listen for a rising sound from venting safety devices. These indicate that the tank may fail.

Emergency Response Procedures-Spill or Leak

- 1. Extinguish all sources of ignition in the vicinity (vehicles, traffic light control boxes, machinery, tar pots, etc.).
- 2. Flammable gases may be heavier or lighter than air. Determine the vapor density of the material from reference sources and use combustible gas detectors to determine the boundary of the gases. Survey the area where the gases are likely to accumulate. Common lighter-than-air flammable gases include:
 - Hydrogen
 - Acetylene
 - Hydrogen cyanide
 - Ammonia
 - Methane
 - Natural Gas
 - Carbon Monoxide
 - Ethylene (ethane)
 - Propane is heaver and will tend to migrate to low laying areas. (Density 1.5)
- 3. Flammable gases may ignite and flash back to the opening from which the gas originated.
- 4. Do not allow vehicles or other sources of ignition in the area as long as the combustible gas detector indicates the presence of flammable gases.
- 5. Do not enter the gas cloud. Be aware that the flammable gases extend beyond any visible cloud.
- 6. Water spray can be used to absorb water miscible gases, and water spray or explosion proof fans can be used to disperse gas clouds. Do not get water inside containers. Runoff must be contained for later analysis and possible disposal. Do not permit the runoff to enter storm, sewer, or water systems.
- 7. If it can be done safely, locate all leaks and close valves or otherwise reduce the amount of leakage.
- 8. If it can be done safely, move undamaged containers to a safe area, being careful to avoid sparks or friction.
- 9. Post guards and keep spectators at least 800 meters away from leaks from tank cars, tank trucks, or large storage tanks containing compressed gas, liquefied gas, and cryogenics.
- 10. Wrecking operations or transfer of product should not begin until all the gas is dispersed. Confirmation of gas dispersal should be done with a combustible gas detector.
- 11. To prevent the build up of static electricity, bond and ground the containers and equipment before product transfer.
- 12. Cutting torches or spark generating saws must not be used on the shell of empty or loaded cars or containers.
- 13. Empty tanks or tanks containing residue should be regarded as containing an ignitable gas-air mixture.

Class 3: Flammable Liquids

Definition

A liquid having a flash point below 140° F.

General Emergency Response Procedures

- 1. Identify the materials involved.
- 2. Keep non-essential people away (this includes non-essential emergency service personnel).
- 3. Establish control zones (isolate area and deny entry).
- 4. Stay upwind and keep out of low areas.
- 5. Eliminate ignition sources.
- 6. Ventilate confined areas before entering.
- 7. Wear positive pressure SCBA and full protective clothing. This is a minimum level of protective clothing and will not provide adequate protection for all flammable liquid incidents. In some cases, chemical protective clothing carried by the HAZMAT team will be required for the safe handling of the incident.
- 8. Avoid exposure to smoke, fumes, vapors, or direct contact.
 - 9. If spilled material has entered storm, sewer, or water systems, notify the proper authority.
 - Maps should be used to determine the direction of flow and destination (outflow) of the system. Consideration should be given to diking the storm, sewer, or water system ahead of the flow.
 - It may be appropriate to apply foam not only at the spill site, but also into the storm, sewer, or water system.
 - To lessen the chances of ignition, it may be advisable to apply foam ahead of the flowing spill, either into storm drains or manholes down flow from the spill or down flow on the surface of an open storm, sewer, or water systems.
 - 10. If a tank truck or tank car is involved in fire, isolate 800 m in all directions.
 - 11. Most flammable liquids float on water. Therefore, the application of water to a spill area may enable the flammable liquid to spread beyond the boundaries of the original incident.
 - 12. The vapors of all flammable liquids are heavier than air. Therefore, in addition to eliminating ignition sources in the immediate spill area, the downwind area and adjacent low areas should be checked for sources of ignition and accumulations of flammable vapors.
 - 13. Consider the need for additional resources and equipment (diking material, absorbents, foam, over pack, containers, transfer equipment, private cleanup contractors, etc.).
 - 14. Request sufficient foam supplies.
 - 15. Determine and implement appropriate decontamination procedures for personnel and equipment.
 - 16. Consult CANUTEC (1-613 996-6666) for product information and assistance.

Emergency Response Procedures-Fire

- 1. For small fires, use dry chemical, CO2, the appropriate foam or water spray.
- 2. For large fires use the appropriate foam or water spray. Water may be ineffective on low flash point flammable liquids.
- 3. If sufficient water is available, use water spray to cool tanks and adjacent combustibles affected by the heat of the fire. For massive fire, use unmanned monitors. If this is not possible, withdraw from the area and let the fire burn.
- 4. If it can be done safely, remove any vehicles or containers not already burning.
- 5. Dig trenches or build dikes in the path of the burning liquids to confine the fire and protect exposures.
- If vapors are burning at the valves, do not extinguish the fire unless re-ignition can be prevented.
- 7. Observe tanks for evidence of bulging or red hot spots in the metal. Listen for pinging sounds or loud noises from the tank that increases in intensity. Withdraw immediately in case or rising sound from venting safety device or discoloration of tank. These indicate that the tank may fail.
- 8. Do not puncture or rupture the shell of a transport vehicle involved in a fire as this may liberate more flammable liquid and extend the fire.
- 9. If safety relief valves are obstructed, try to reposition the tank to allow the valves to function properly, but only if this can be done safely.

Emergency Response Procedures-Spill or Leak

- 1. Extinguish or eliminate all sources of ignition in the vicinity (traffic light control boxes, machinery, vehicles, tar pots, etc.). Use combustible gas detectors to determine the boundaries of the vapors.
- 2. Do not allow vehicles or other sources of ignition in the area as long as the combustible gas detector indicated the presence or flammable vapors.
- 3. Keep oxidizing materials away from spilled flammable liquids.
- 4. Post guards and keep spectators at least 800 m away for leaks from tank cars, tank trucks or large storage containers.
- 5. Dig trenches or build dikes ahead of the flow to confine the spill for later disposal or recovery.
- 6. Do not allow flammable liquids to enter storm, sewer, or water systems.
- Cover flammable liquids with appropriate foam to blanket the surface and reduce the rate of evaporation. When ambient temperatures are less than 100° F, combustible liquids will usually not require blanketing to reduce vapors. Do not permit the runoff to enter storm, sewer, or water systems.
- 8. Water spray can be used to absorb water miscible vapors, and water spray or explosion-proof fans can be used to disperse vapors. Do not get water inside containers. Runoff must be contained for later analysis and possible disposal. Do not permit the runoff to enter storm, sewer, or water systems.
- 9. If it can be done safely, attempt to close valves or otherwise reduce the amount of leakage.
- 10. Since most flammable liquids float, for leaks near the bottom of the tank, water may be added to the tank to float the flammable liquid if the leak cannot be controlled or stopped. The water flow can be adjusted so that only water leaks out and the flammable liquid does not overflow the tank. This will provide time to offload the remaining flammable liquid.
- 11. Wrecking operations or transfer of product should not begin until the area is determined safe. A combustible gas detector should be used to check the area continually during the entire operation.
- To prevent the buildup of static electricity, bond and ground containers and equipment before product transfer.
- Empty tanks and tanks containing residue should be regarded as containing an ignitable vapor-air mixture.
- Cutting torches or spark generating saws must not be used on the shell of empty or loaded cars or containers.
- 15. If it can be done safely, move undamaged containers to a safe area, being careful to avoid sparks or friction.
- 16. Do not separate tractor units from their trailer, as the support gear on the trailer may fail.

Class 4: Flammable Solids

Definition

Any solid material, other an explosive, which under conditions normally incident to transportation is likely to cause fires through friction or retained heat from manufacturing or processing, or which can be ignited readily and when ignited burns so vigorously and persistently it creates a serious transportation hazard.

Included in this class are spontaneously combustible and water reactive materials. Two materials shipped in bulk that can cause major problems for responders are phosphorous and sodium.

General Emergency Response Procedures

- 1. Identify the materials involved.
- 2. Keep non-essential people away (this includes non-essential emergency service personnel).
- 3. Establish control zones (isolate area and deny entry).
- 4. Stay upwind and keep out of low areas.
- 5. Wear positive pressure SCBA and full protective clothing. This is a minimum level of protective clothing and will not provide adequate protection for all incidents. In some cases, chemical protective clothing carried by the HAZMAT team will be required for the safe handling of the incident.
- 6. Avoid exposure to smoke, fumes, vapors, or direct contact. Toxic products may be produced from contact with water, heat, and other substances.
- 7. Consider the need for additional resources and equipment (diking material, absorbents, foam, over pack containers, transfer equipment, private cleanup contractors, etc.).
- 8. If spilled material has entered storm or sewer systems, notify the proper authority.
- 9. Determine and implement appropriate decontamination procedures for personnel and equipment.
- 10. Consult CANUTEC (1-613 996-6666) for product information and assistance.

Emergency Response Procedures-Fire

- 1. Do not use water or foam on water-reactive materials.
- 2. If it can be done safely, remove containers from fire area.
- 3. Chemical reference sources will indicate appropriate extinguishing agents. Agents such as dry chemical, soda ash, lime, or sand may be appropriate for use on water-reactive materials, but they must be moisture-free.
- 4. Water may be used to cool containers exposed to fire, but if the water contacts water-reactive materials, the incident could escalate rapidly.

Emergency Response Procedures-Spill or Leak

- 1. Keep ignition sources away.
- Extinguish all sources of ignition in the vicinity. Do not allow vehicles or other sources of ignition in the area.

- 3. If it can be done safely, attempt to close valves, plug, reposition containers, or otherwise reduce the amount of leakage.
- 4. Keep water-reactive materials dry and do not get water inside containers containing waterreactive materials.
- 5. Keep material out of storm, sewer, and water systems.
- 6. Dig trenches or build dikes around spills of water-reactive or environmentally damaging materials to prevent water from reaching them.
- 7. Powder spills can be covered with a plastic sheet or tarp to minimize spreading and prevent water/moisture contact.

Warning: If the sun is shinning directly on the plastic sheeting, moisture may collect on the underside of the sheeting, producing a reaction with water reactive materials.

Class 5: Oxidizers and Organic Peroxides

Definition

An oxidizer is a substance that yields oxygen readily to stimulate the combustion of other material.

An organic peroxide is an organic derivative of the inorganic compound hydrogen peroxide where organic radicals have replaced one or more of the hydrogen atoms. Organic peroxides readily release oxygen to stimulate the combustion of other materials.

General Emergency Response Procedures

- 1. Identify the materials involved.
- 2. Keep non-essential people away (this includes non-essential emergency service personnel).
- 3. Establish control zones (isolate area and deny entry).
- 4. Stay upwind and keep out of low areas.
- 5. Wear positive pressure SCBA and full protective clothing. This is a minimum level of protective clothing and will not provide adequate protection for all incidents. In some cases, chemical protective clothing carried by the HAZMAT team will be required for the safe handling of the incident.
- 6. Ventilate confined areas before entering.
- 7. Avoid exposure to smoke, fumes, dust, vapors, or direct contact. Burning oxidizers frequently produces toxic products.
- 8. Caution should be exercised when water is used on oxidizers, as most oxidizers are water-soluble and will produce solutions that can impregnate wood and other organic combustibles. Upon drying, these materials can spontaneously ignite and burn vigorously.
 - 9. In accidents involving chlorates and other oxidizing materials, care is necessary to prevent ignition by friction or contact with acids.
 - 10. When chlorates are mixed with organic matter, or even dust, a flammable mixture is formed.

- 11. Chlorates mixed with finely divided combustible material may burn with explosive violence.
- 12. Leaking of nitric acid, perchloric acid, or hydrogen peroxide may cause fire. These materials are also corrosive.
- 13. Organic peroxides generally have the special property that if they are heated beyond their transportation temperatures; they are likely to detonate.
- 14. Consider the need for additional resources and equipment (diking materials, absorbents, foam, over pack containers, transfer equipment, private cleanup contractors, etc.)
- 15. If spilled material has entered storm or sewer systems, notify the proper authority.
- 16. Determine and implement appropriate decontamination procedures for personnel and equipment.
- 17. Consult CANUTEC (1-613-996-6666) for product information and assistance.

Emergency Response Procedures-Fire

- 1. If it can be done safely, remove any containers not already burning.
- 2. Cool affected containers with flooding quantities of water. For massive fires, use unmanned monitors. If this is not possible, withdraw and let the fire burn. Runoff water must be contained for later analysis and proper disposal.

Emergency Response Procedures-Spill or Leak

- 1. Keep flammables, combustibles and organic materials away from spilled material.
- 2. Avoid contact with spilled material.
- Extinguish all sources of ignition in the vicinity. Do not allow vehicles or other sources of ignition in the area.
- 4. If it can be done safely, attempt to close valves, plug, or otherwise reduce the amount of leakage.
- 5. Water spray can be used to absorb water miscible vapors, and water spray or explosionproof fans can be used to disperse vapors. Do not get water inside containers. Runoff must be contained for later analysis and possible disposal. Do not permit the runoff to enter storm, sewer, or water systems.
- 6. Keep material out of storm, sewer, and water systems.
- 7. Dig trenches or build dikes ahead of the flow to contain the spill for later disposal.
- 8. Powder spills can be covered with a plastic sheet or tarp to minimize spreading.

Class 6: Pesticides and Poisons

Definition

Pesticides are chemical agents used to destroy pests. Poisons are substances that, through chemical action, usually kill, injure, or impair an organism.

General Emergency Response Procedures

1. Identify the materials involved.

- 2. Keep non-essential people away (this includes non-essential emergency personnel).
- 3. Establish control zones (isolate area and deny entry).
- 4. Wear positive pressure SCBA and full protective clothing. This is a minimum level of protective clothing and will not provide adequate protection for all incidents.
 - Due to the construction and materials used for firefighter turnout clothing, the clothing may actually absorb and hold the pesticide or poison if contact with the smoke, fumes, dust, vapors, or material occurs. The firefighter would be re-exposed each time the clothing were worn if proper decontamination operations were not performed.
 - In most incidents involving pesticides or poisons, the chemical protective clothing carried on the HAZMAT team will be required for safe handling of the incident.
- 5. Stay upwind and keep out of low area. If you can smell pesticide, you are too close and not sufficiently protected.
- 6. Avoid exposure to smoke, fumes, vapors, dust or direct contact.
- Determine signs and symptoms of exposure and advise all personnel operating at the site. Some symptoms may not become present for up to 48 hours following exposure.
- 8. Ventilate confined areas before entering. It is not advisable for fire personnel to enter tanks or other confined spaces that contain or have contained pesticides and/or poisons.
- 9. If spilled material has entered storm, sewer, or water systems, notify the proper authority. Maps should be used to determine the direction of flow and destination (outflow) of the system. Consideration should be given to diking ahead of the flow.
- 10. Determine and implement appropriate decontamination procedures for personnel and equipment.
- 11. Flush any contacted material from skin or clothing immediately.
- 12. Remove and isolate any contaminated clothing at the site and avoid spreading contamination to non-contaminated areas.
- 13. Consult CANUTEC (1-416-996-6666) for product information and assistance.

Emergency Response Procedures-Fire

- 1. Consider protecting exposures and allow the fire to burn. This may create less of a hazard to people and the environment, especially if runoff cannot be confined.
- 2. For small fires, use dry chemical, CO2, water spray or the appropriate foam.
- 3. For large fires use the appropriate foam or water spray.
- 4. Do not extinguish fire unless the flow can be stopped.
- 5. If sufficient water is available, use water spray to cool containers exposed to the fire.
- 6. Dike fire control water for later analysis and/or disposal.

Emergency Response Procedures-Spill or Leak

1. For a liquid pesticide spill, extinguish or eliminate all sources of ignition in the vicinity as many pesticides have flammable liquids as the carrier of the poison. Use combustible gas detectors to determine the boundary of the vapors if the pesticide is a flammable.

- 2. Do not allow vehicles or other sources of ignition in the area as long as the combustible gas detector indicates the presence of flammable vapors.
- 3. If it can be done safely, attempt to close valves, plug, or otherwise reduce the amount of leakage.
- 4. Water spray can be used to absorb water miscible vapors, and water spray or explosionproof fans can be used to disperse vapors. Do not get water inside containers. Runoff must be contained for later analysis and possible disposal. Do not permit the runoff to enter storm, sewer or water systems.
- 5. Keep material out of storm, sewer, and water systems.
- 6. Dig trenches or build dikes ahead of the flow to confine the spill for later disposal or recovery.
- 7. Powder spills can be covered with a plastic sheet or tarp to minimize spreading.

Class 6: Infectious Substances

Definition

Substances or materials hosting or contaminated by communicable pathogens. Examples include medical waste, laboratory samples, etc.

General Emergency Response Procedures

- 1. Identify the materials involved. Infectious substances include the red infectious waste bags and "sharps" containers from hospitals (sharps containers are used for the disposal of needles and other sharp instruments). Caution should be used if these containers are encountered.
- Keep non-essential people away (this includes non-essential emergency service personnel).
- 3. Establish control zones (isolate area and deny entry).
- 4. Wear positive pressure SCBA and chemical protective clothing. Firefighter protective clothing will not provide adequate protection for all incidents involving infectious substances. The chemical protective clothing carried on the HAZMAT team may be required for safe handling of the incident.
- 5. Stay upwind and keep out of low areas.
- 6. Avoid exposure to smoke, fumes, vapors, or dust. Do not contact damaged containers or spilled material. Virus and disease-bearing substances are often present.
- 7. If leakage is discovered in transit, the vehicle must not be moved and the area must be isolated.
- 8. If spilled material has entered storm or sewer systems, notify the proper authority.
- Implement appropriate decontamination procedures. A freshly mixed 10% or stronger bleach/water solution is an effective decontamination solution for most infectious substance exposures.

Emergency Response Procedures-Fire

1. If it can be done safely, remove containers from the fire area. Do not touch or move damaged containers.

2. Use dry chemical, soda ash, or lime for small fires.

1

56

. .

Emergency Response Procedures-Spill or Leak

- 1. Cover damaged containers or spill area with dampened towel or rag, and keep wet with liquid bleach.
 - To decontaminate the area and equipment, a garden sprayer with a 10% bleach/water solution can used to spray exposed surfaces.
 - Recently mixed bleach/water solutions should be used, as premixed solutions lose their strength after a few days.
- 2. Dike spills for later disposal.
- 3. Keep material out of storm, sewer and water systems.

Class 7: Radioactive Materials

Definition

Radioactive materials contain charged particles (ions) and have a specific gravity greater than 0.002 microcuries per gram. These charged particles may cause damage to molecules, cells, or tissues. Atoms that emit ionizing radiation are said to be radioactive; radioactivity is the process whereby atomic changes, known as decay or disintegration, occur through the emission of ionizing radiation.

General Emergency Response Procedures

- I. Identify the materials involved. Radioactive materials are often shipped in lead containers.
- 2. Keep people as far away as practical, at least 50 m upwind.
- 3. Establish control zones (isolate area and deny entry). Use radiation-monitoring devices to determine control zones and assess areas for contamination.
- 4. Wear positive pressure SCBA and full protective clothing. This is a minimum level of protective clothing and will not provide adequate protection for radioactive incidents.
- 5. Avoid exposure to smoke, fumes, vapors, dusts or direct contact.
- 6. All personnel should utilize dosimeters. Zero dosimeters prior to use.
- Entry should not be made until appropriate radiological personnel are on scene and the degree of radiation is known.
- 8. Enter Exclusion Zone only to save a life, and limit entry into the Exclusion Zone to the shortest possible time.
- 9. If spilled material has entered storm, sewer, or water systems, notify the proper authority.
- 10. Implement appropriate decontamination procedures for personnel and equipment.
- 11. Delay clean up until arrival or instructions of qualified radiation personnel.
- 12. Equipment used in the Exclusion Zone shall not be removed until appropriate decontamination procedures have been performed and the equipment has been monitored and declared clean.
- 13. Contact a radiological team for assistance and equipment.
- 14. Consult CANUTEC (1-613-996-6666) for product information and assistance.

Emergency Response Procedures-Fire

- 1. Do not move damaged containers, but undamaged containers should be moved to a safe area if it can be done safely.
- 2. Assume the fire involves radioactive materials.
- 3. Avoid exposure to smoke, fumes, or dust. Airborne contamination is a great cause of concern for emergency responders. Stay upwind from the fire area.
- 4. Evacuate downwind area.
- 5. The fire should be extinguished as quickly as possible, with a minimum amount of water. Try not to disturb the radioactive containers.
- 6. Fight fire from a maximum distance. Do not allow personnel into the area after fire knockdown.
- 7. For massive fires, use unmanned monitors.
- 8. Dig trenches or build dikes ahead of the flow to contain the spill for later disposal.
- 9. The fire area should not be overhead.

Emergency Response Procedures-Spill or Leak

- 1. Do not touch damaged containers or contact the spilled material.
- 2. Prevent spread of spilled material and keep it out of water systems and sewers. Dike far ahead of large spills to confine the material for later disposal.

Class 8: Corrosives

Definition

Any liquid or solid, including powders, that can destroy tissue, or a liquid that has a severe corrosion rate on steel or aluminum.

General Emergency Response Procedures

- 1. Identify the materials involved.
- 2. Keep non-essential people away (this includes non-essential emergency service personnel).
- 3. Establish control zones (isolate area and deny entry).
- 4. Wear positive pressure SCBA and chemical protective clothing. This is a minimum level of protective clothing and will not provide adequate protection for corrosive incidents. The chemical protective clothing carried by the HAZMAT team may be required for the safe handling of most incidents involving corrosives.
- 5. Stay upwind and keep out of low areas.
- 6. Avoid exposure to smoke, fumes, vapors, dusts, or direct contact. Highly toxic fumes are often present.
- 7. Ventilate confined areas before entering.
- 8. Consider the need for additional resources and equipment (diking material, absorbents, over pack containers, transfer equipment, private cleanup contractors, etc.).
- 9. If spilled material has entered storm or sewer systems, notify the proper authority.
- 10. Determine and implement appropriate decontamination procedures for personnel and equipment.

11. Consult CANUTEC (1-613-996-6666) for product information and assistance.

Emergency Response Procedures-Fire

- 1. Many corrosive chemicals react violently with water, liberating heat and toxic gases.
- 2. If it can be done safely, remove undamaged containers from the fire area.
- 3. Do not get water inside the container.
- 4. Use water to cool containers that are exposed to flame until well after the fire is out. Do not allow water to get inside container.

Emergency Response Procedures-Spill or Leak

- 1. Avoid contact with spilled material.
- 2. Extinguish all sources of ignition in the vicinity. Do not allow vehicles or other sources of ignition into the area.
- 3. Do not apply water unless directed to do so. Contact with water may cause the generation of large quantities of vapors and heat.
- 4. Do not get water inside the container.
- 5. Water spray can be used to absorb water miscible vapors, and water spray or explosion-proof fans can be used to disperse vapors. Do not get water inside containers and do not put water on leak or spill area. Runoff must be contained for later analysis and possible disposal. Do not permit the runoff to enter storm, sewer, or water systems.
- 6. Keep combustibles (wood, paper, oil, etc.) away from spilled material.
- 7. If it can be done safely, attempt to close valves, plug, or otherwise reduce the amount of leakage.
- 8. Dig trenches or build dikes ahead of the flow to contain the spill for later disposal or recovery.
- 9. Powder spills can be covered with a plastic sheet or tarp to minimize spreading.
- 10. Keep material out of storm, sewer, or water systems.
- 11. Do not attempt neutralization. Neutralization may cause the production of vapors and heat, creating additional problems.
- 12. Do not attempt dilution. The quantity of water required to dilute one gallon of concentrated acid to a neutral pH of 7 is in the hundreds of thousands of gallons.

MOUNT POLLEY MINING CORP. STANDARD PROCEDURE

Subject: Specific Action Plan

LIME: PROPERTIES:

- White powder to granular.
- Very alkaline; very corrosive to eye surfaces.
- Effects of acute exposure corrosive.
- Effects of chronic exposure are burns, ulceration, and blindness.

ACTION STEPS:

- · Report spill.
- Stop source if possible.
- Contain spill materials.
- Protect area.
- Remove material.
- Reclaim area.
- Complete spill report.

NOTIFICATION:

· Immediately notify the Area Supervisor.

INITIAL SPILL RESPONSE:

- Stop spill at source, if possible.
- Avoid dusting.
- Keep spilled lime dry.
- Prevent from entering watercourses.
- If mixed with water, dyke and contain the milk of lime.

HAZARDS and ENVIRONMENTAL THREATS:

- Heat generated when mixed with water.
- Strong alkaline protect self from exposure, especially eyes.
- No environmental hazard.

ACTION FOR FIRE:

Shovel and contain dry material in containers.

Dyke and contain milk of lime and pump into proper mill circuit.

DISPOSAL:

Dispose of recovered solids by recycling material through the crushing circuit to the mill process.

MOUNT POLLEY MINING CORP. STANDARD PROCEDURE Subject: Specific Action Plan

TAILINGS OR CONCENTRATES OR SULPHUR SOIL OR RECYCLED SOIL

PROPERTIES:

• Maybe toxic when ingested and or the fumes, if any, are inhaled from residual milling components.

HAZARDS and ENVIRONMENTAL THREATS:

- Will cover and kill vegetation.
- May exhibit ARD properties overtime.

ACTION STEPS:

- Report spill.
- Stop source, if possible.
- Contain spill, if possible.
 - Protect area.

NOTIFICATION:

· Immediately notify your Area Supervisor.

INITIAL SPILL RESPONSE:

- Stop the flow, if possible.
- Prevent spills from entering watercourses
- Contain spilled liquid using sand, straw, or commercial absorbents.
- If raining cover with tarps

ACTION FOR FIRE:

Slightly flammable

RECOVERY:

- Pump or scoop up material.
- If necessary, contaminated soil should be excavated.

DISPOSAL:

 Recovered spilled materials and contaminated soils should be disposed of in the tailing storage facility. (ONLY AFTER CONSULTATION WITH THE MOE)

Appendix C

MOUNT POLLEY MINING CORP. STANDARD PROCEDURE

Subject: Specific Action Plan

A) Protocol for Corporate Reporting of an Environmental Incident:

1) Corporate reporting of an "environmental incident" is required when:

(a) Any environmental event occurs that:

- Poses a serious or imminent threat to human health or to the environment.
- · Precipitates an immediate, external reporting requirement to regulatory authorities.
- Requires a minimum expenditure of \$Cdn25, 000 in materials and/or offsite technical or legal support.
- Is subject of an inquiry from the media?

(b) Any environmental event occurs when:

- An administrative or judicial enforcement action is taken
- A notice of a citizen suit or other significant complaint from the public is received
- A private lawsuit premised on personal injury or property damage is filed
- A civil or criminal action is taken against any Barrick employee, manager, officer or Director.

2) Protocol for Report

- (a) The Environmental Superintendent will immediately notify the General Manager (or his designate).
- (b) The general manager will notify the Company President.(CP)
- (c) Consultation with the general manager will determine the extent of legal counsel involvement.
- (d) The environmental manager will prepare a "Preliminary Draft Incident Report for the general manager to authorize and fax as soon as possible to the CP. The "Final Incident Report" will be submitted once the investigation of the incident is complete.
- B) Protocol for Communicating Environmental Issue

1) Corporate communication of an "environmental issue" is required when:

(a) A situation arises or an event occurs that has, in the opinion of the Environmental Superintendent, the potential to become an Environmental Incident as defined above.

2) Protocol for Communicating and Environmental Issue.

- (a) When an issue becomes apparent, the environmental superintendent will inform the general manager.
- (b) Actions plans to mitigate a possible incident will be developed and approved by the General Manager.
- (c) The general manager will keep the CP informed of any issues with the potential to become ." Incidents".

APPENDIX D PRELIMINARY INCIDENT REPORT

DATE: **OPERATION/PROPERTY: CONTACT: OUESTION:** ANSWER: What is the preliminary assessment of the risk/exposure (high/medium/low)? Describe the incident? When and where did the incident occur? Is the incident situation stopped or is it ongoing? If the incident situation involves an accidental release: How much has been / continues to be released? Do you know if the substance may or is likely to cause an adverse effect? -Are containment/remedial measures being developed, being implemented, or completed? If yes, what is completed/planned? Timing? Is a monitoring program intended, designed or implemented? If yes, what are the details?

At this stage, what, if any, external support is required?

Have the appropriate environmental regulators been notified? Who specifically was notified?

Are environmental regulators on site? If so, who? Are other Government agencies on site or intending responding?

Have others been notified (municipality, adjacent owners, Fisheries & Oceans Canada, other regulatory agencies)?

Currently, is there any media involvement? Who specifically?

Suggest that responsibility for management of the incident and dealing with Government regulators / the media be assigned to one person.

Obtain names of witnesses and individuals involved.

Obtain names, phone numbers and extensions of persons to be contacted if further information is required.

APPENDIX E

Reportable Levels for Certain Substances

		Column 1 Substance spilled	Column 2 Specified amount		
Ammonium Nitrate	i	Explosives of Class 1 as defined in section 3.9 of the Federal Regulations	any		
Propane 2 NaHS		Flammable gases, other than natural gas, of Division 1 of Class 2 as defined in section 3.11 (a) of the Federal Regulations	10 kg, if the spill results from equipment failure, error or deliberate action or inaction		
	3	Non-flammable gases of Division 2 of Class 2 as defined in section 3.11 (d) of the Federal Regulations	10 kg, where spill results from equipment failure, error or deliberate action or inaction		
	4	Poisonous gases of Division 3 of Class 2 as defined in section 3.11 (b) of the Federal Regulations	5 kg, where spill results from equipment failure, error or deliberate action or inaction		
	5	Corrosive gases of Division 4 of Class 2 as defined in section 3.11 (c) of the Federal Regulations	5 kg, where spill results from equipment failure, error or deliberate action or inaction		
Diesel fuel, MIBC 6		Flammable liquids of Class 3 as defined in section 3.12 of the Federal Regulations	100 L		
Pax	7	Flammable solids of Class 4 as defined in section 3.15 of the Federal Regulations	25 kg		
	8	Products or substances that are oxidizing substances of Division 1 of Class 5 as defined in section 3.17 (a) and 3.18 (a) of the Federal Regulations	50 kg		
	9	Products or substances that are organic compounds that contain the bivalent "-0-0-" structure of Division 2 of Class 5 as defined in sections 3.17 (b) and 3.18 (b) of the Federal Regulations	1 kg		
	10	Products or substances that are poisons of Division 1 of Class 6 as defined in section 3.19 (a) to (e) and 3.20 (a) of the Federal Regulations	5 kg		

11	Organisms that are infectious or that are reasonably believed to be infectious and the toxins of these organisms as defined in sections 3.19 (f) and 3.20 (b) of the Federal Regulations	any
12	Radioactive materials of Class 7 as defined by section 3.24 of the Federal Regulations	All discharges or a radiation level exceeding 10 mSv/h at the package surface and 200 μ Sv/h at 1 m from the package surface
NaHS 13	Products or substances of Class 8 as defined by section 3.25 of the Federal Regulations	5 kg
14	Miscellaneous products or substances of Division 1 of Class 9 as defined by section 3.27 (1) and (2) (a) of the Federal Regulations	50 kg
15	Miscellaneous products or substances of Division 2 of Class 9 as defined in section 3.27 (1) and (2) (b) of the Federal Regulations	1 kg
16	Miscellaneous products or substances of Division 3 of Class 9 as defined in section 3.27 (1) and (2) (c) of the Federal Regulations	5 kg
17	Waste asbestos as defined in section 1 of the Special Waste Regulation	50 kg
18	Waste oil as defined in section 1 of the Special Waste Regulation	100 L
19	Waste containing a pest control product as defined in section 1 of the Special Waste Regulation	5 kg
Tailings, 20 Concentrate, Contaminated soil and Sulphur	A substance not covered by items I to 19 that can cause pollution	200 kg
21	Natural gas	10 kg, if there is a breakage in a pipeline or fitting operated above 100 psi that results in a sudden and uncontrolled release of natural gas

APPENDIX F

EQUIPMENT LISTING

Equip No:	Location	Description	Make	Model	Year	Serial Numbe
6306	Mine Operations	Front End Loader	Caterpillar	966	1200	
6307	Mill Operations	Scooptram	Jarvis Clark	JS220		
6308	A CONTRACTOR OF A	Skid Steer	New Holland			
6309	Mine Operations	Front End Loader	Caterpillar	992C	1980	42X588
6310		Skid Steer	Bobcat		1.	1.000
6311	1. 1. 1. 1. 1. 1.	Excavator	Hitachi	400		164-3954
Rental	Mine Operations	Front End Loader	Caterpillar	950		0.000
6312	Mine Operations	Front End Loader	Letourneau	L1100		1049
6381	Mine Operations	Grader	Caterpillar	14G		096U04997
6382	Mine Operations	Grader	Caterpillar	16G		093UO1899
6403		Crane	American	125 Ton		G515916
6404		Crane	Drott			6223905
6405		Crane	B&E	50 Ton	1	127865C
6406		Crane	Grove	27 Ton	-	51420
						403FGC15-
6452		Forklift	Toyota		1981	10332
6453		Forklift	Blue Chip		1978	3058
6456	Warehouse	Forklift	Caterpillar	GP40	1996	AF2800041
6501	Mine Operations	Haul Truck	Caterpillar	777B	1989	4YC00833
6502	Mine Operations	Haul Truck	Caterpillar	777B	1989	4YC00850
6503	Mine (Rental)	Haul Truck	Caterpillar	777B	1505	4YC00853
6504	Mine (Rental)	Haul Truck	Caterpillar	777B		
6505	Mine (Rental)	Haul Truck	Caterpillar	777B		
6506	Mine Operations	Haul Truck	Caterpillar	777B		4YC00677
6507	Mine (Rental)	Haul Truck	Caterpillar	777B		1 1 2 2 2 2 2 2 2
6508	Mine (Rental)	Haul Truck	Caterpillar	777B		
6509	Mine (Rental)	Haul Truck	Caterpillar	777B		·
6510	Mine (Rental)	Haul Truck	Caterpillar	777B		
6511	Mine Operations	Haul Truck	Caterpillar	785C		01HW00098
6512	Mine Operations	Haul Truck	Caterpillar	785C	×	01HW00099
6514	Mine Operations	Haul Truck	Caterpillar	785C		01HW00100
6515	Mine Operations	Haul Truck	Caterpillar	785C		1.
6516	Mine Operations	Haul Truck	Caterpillar	785C		
6517	Mine Operations	Haul Truck	Caterpillar	785C		
6518	Mine Operations	Haul Truck	Caterpillar	785C		
6519	Mine Operations	Haul Truck	Caterpillar	785C		
6520	Mine Operations	Haul Truck	Caterpillar	785C		
6521	Mine Operations	Haul Truck	Caterpillar	785C		5 APR -
6522	Mine Operations	Haul Truck	Caterpillar	785C		67 34 of 1157

INVESTIGATION KP 1-9 137 of 500

Equip No:	Location	Description	Make	Model	Serial Number	
6602	Mine Operations	Shovel	P&H	2100 BL	E48335	
6603	Mine Operations	Shovel	P&H	2100 BL	E42850	
6604	Mine Operations	Shovel	P&H	2100 BL	E42855	
6701	Mine Operations	Track Dozer	Caterpillar	D7G	092V01779	
6702	Mine Operations	Track Dozer	Caterpillar	D10N	02YD00823	
6705	Mine Operations	Rubber Tire Dozer	Caterpillar	824	036H00506	
6706	Mine Operations	Track Dozer	Caterpillar	D10N	03SK00681	
6707	Mine Operations	Track Dozer	Caterpillar	D10N	03SK01008	
6708	Mine Operations	Track Dozer	Caterpillar	D10N	03SK01066	
6802	Mine Operations	Port Compressor	Gardner Denver		W19990	
6803	Mine Operations	Port Compressor			ARP681696	
6850	Surface General	Diesel Water Pump	Caterpillar		67U12929	
6871	Surface General	Diesel Generator	Detroit Diesel		L0443-005	
6872	Surface General	Diesel Generator	Detroit Diesel		547	
6873	Mine Operations	Port Light Plant	Kubota		CO14108/08	
6874	Mine Operations	Port Light Plant			12VA072077	
6875	Mine Operations	Port Light Plant			12VA0720696	
6876	Mine Operations	Port Light Plant				
6883	Maintenance	Welder	Lincoln	DC400		
6884	Maintenance	Welder	Lincoln	DC400		
6885	Maintenance	Welder	Lincoln	DC400		
6886	Maintenance	Welder (Diesel)	Miller 600	600D	KF900675	
6887	Maintenance	Welder (Diesel)	Miller 400	4612571	KG132516	
6888	Maintenance	Welder (Diesel)		8215243	K04156038R	
6889	Maintenance	Welder (Diesel)	h and a little	ACK400	KC235856	
6890	Maintenance	Welder (Diesel)	Lincoln	SAM650	U1981008538	
6891	Maintenance	Welder (Diesel)	Lincoln	K1308-17	C1980900056	
6892	Crushing Plant	Welder (Electric)	Lincoln	300/300	106684	
6893	Crushing Plant	Welder (Electric)	Miller	SRH-555	CC5569	
6894	Mill	Welder (Electric)	Acklands	4510-753	JC533683	
6895	Mill	Welder	Lincoln		148111	

		(Electric)	1.5000.000		
		Welder	The second second	1	1
6896	Mill	(Electric)	Lincoln		104011
	1.	Welder			
6897	Mill	(Electric)	Hobart		82W505614
		Welder			
6898	Mill	(Electric)	Lincoln	K1308-17	C1980900058
		Welder	1.	1202 10 10	1
6899	Mill	(Electric)	Lincoln	K1308-17	C1980900060
6901	Mine Operations	Primary Drill	B&E	45R	140346
6902	Mine Operations	Primary Drill	B&E	45R	139517
6903	Mine Operations	Primary Drill	B&E	45R	132182
6910	Mine Operations	Primary Drill	Drill Tech	C40K3H	731521
Equip No:	Location	Description	Make	Model	Serial Number
6602	Mine Operations	Shovel	P&H	2100 BL	E48335
6603	Mine Operations	Shovel	P&H	2100 BL	E42850
6604	Mine Operations	Shovel	P&H	2100 BL	E42855
Equip No:	Location	Description	Make	Model	Serial Number
6602	Mine Operations	Shovel	P&H	2100 BL	E48335
6603	Mine Operations	Shovel	P&H	2100 BL	E42850
6604	Mine Operations	Shovel	P&H	2100 BL	E42855
	20170000			1. SC 12 ST 12 ST 12	
6701	Mine Operations	Track Dozer	Caterpillar	D7G	092V01779
6702	Mine Operations	Track Dozer	Caterpillar	D10N	02YD00823
		Rubber Tire			
6705	Mine Operations	Dozer	Caterpillar	824	036H00506
6706	Mine Operations	Track Dozer	Caterpillar	D10N	03SK00681
6707	Mine Operations	Track Dozer	Caterpillar	D10N	03SK01008
6708	Mine Operations	Track Dozer	Caterpillar	D10N	03SK01066
1.0.1					
		Port	Gardner		
6802	Mine Operations	Compressor	Denver		W19990
- 19 A		Port			
6803	Mine Operations	Compressor			ARP681696
		Diesel Water			
6850	Surface General	Pump	Caterpillar		67U12929
	1. 1. 1. 1. 1.	Diesel			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
6871	Surface General	Generator	Detroit Diesel		L0443-005
		Diesel			
6872	Surface General	Generator	Detroit Diesel		547
6873	Mine Operations	Port Light Plant	Kubota		CO14108/08
5874	Mine Operations	Port Light Plant			12VA072077
6875	Mine Operations	Port Light Plant			12VA0720696
6876	Mine Operations	Port Light Plant			

6883	Maintenance	Welder	Lincoln	DC400	
6884	Maintenance	Welder	Lincoln	DC400	
6885	Maintenance	Welder	Lincoln	DC400	
6886	Maintenance	Welder (Diesel)	Miller 600	600D	KF900675
6887	Maintenance	Welder (Diesel)	Miller 400	4612571	KG132516
6888	Maintenance	Welder (Diesel)		8215243	K04156038R
6889	Maintenance	Welder (Diesel)		ACK400	KC235856
6890	Maintenance	Welder (Diesel)	Lincoln	SAM650	U1981008538
6891	Maintenance	Welder (Diesel)	Lincoln	K1308-17	C1980900056
6892	Crushing Plant	Welder (Electric)	Lincoln	300/300	106684
6893	Crushing Plant	Welder (Electric)	Miller	SRH-555	CC5569
6894	Mill	Welder (Electric)	Acklands	4510-753	JC533683
6895	Mill	Welder (Electric)	Lincoln		148111
6896	Mill	Welder (Electric)	Lincoln		104011
6897	Mill	Welder (Electric)	Hobart		82W505614
6898	Mill	Welder (Electric)	Lincoln	K1308-17	C1980900058
6899	Mill	Welder (Electric)	Lincoln	K1308-17	C1980900060
6901	Mine Operations	Primary Drill	B&E	45R	140346
6902	Mine Operations	Primary Drill	B&E	45R	139517
6903	Mine Operations	Primary Drill	B&E	45R	132182
6910	Mine Operations	Primary Drill	Drill Tech	C40K3H	731521
Equip No:	Location	Description	Make	Model	Serial Number
6602	Mine Operations	Shovel	P&H	2100 BL	E48335
6603	Mine Operations	Shovel	P&H	2100 BL	E42850

Arrow Transportation Systems Inc.

Mount Polley Mining Corporation

GVRD

Highland Valley Copper

Spill Contingency Plan

.

Page 1138 of 1157 INVESTIGATION KP 1-9 141 of 500

SPILL CONTINGENCY PLAN

INTRODUCTION

Preparedness is the key to efficient remedial action where an accident is threatening some aspect of the receiving environment. Arrow Transportation Systems Inc. recognizes its responsibility with respect to safeguarding, protecting and minimizing the risk to the environment, harm or degradation and therefore is striving to gain the necessary preparation.

It should be realized that the complete understanding of ones allocated responsibility is necessary in order to prevent an accident from happening, and to be able to react quickly in the case of an unforeseen occurrence. This understanding must be complemented by common sense and a sincere desire to uphold the company principles to respect the Environment.

This contingency plan outlines the allotment of responsibility at a personal level with respect to environmentally threatening accidents and serves as a reference document for those who must understand the steps to be taken in the case of an accident.

A primary focus of the plan is to minimize impact of local water courses. Substances covered by this plan are required for the general operation of the company, the mine and concentrator complex.

ORGANIZATION AND RESPONSIBILITIES

Where a spill occurs, <u>the person</u> who immediately before the spill had possession, charge or control of the spilled substance shall take all reasonable and practical action, having due regard for the safety of the public and of himself or herself, to stop, contain, and minimize the effects of the spill. (Further action, Section 3, SPILL REPORTING REGULATION, BC Reg 263/90, under the Waste Management Act.)

It is the responsibility of the **ARROW TRANSPORTATION SYSTEMS INC.** and our employees to ensure that proper execution of the emergency is of utmost importance, and that any threats to the local environment, employees of Arrow or GVRD or local residents are thoroughly evaluated. However, this entire process depends on you to report any potential mishaps.

The person who is immediately on the scene will have the prime responsibility of coordinating and directing control efforts at the scene of a spill incident. The duties of this individual will be to immediately assess the situation, if fuel is flowing stop it, as well as any environmental threat situation, when the spill is contained and not in danger of damaging the environment to the best of your ability you must contact your supervisor, and the local RCMP. Arrow Transportation Systems Inc. personnel assume full responsibility for any and all recovery of their equipment and product being hauled at the time of the incident on the scene; therefore your supervisor has instructions to contact all relevant and key personnel unto the scene in order to gain control of and the ability to reclaim the area.

The Supervisor or his/her designate will:

- 1) Notify PEP and the Ministry of the Environment, Lands and Parks.
- Assess the impact of the spill on the environment and direct the actions needed to reduce further impact.
- Determine appropriate disposal techniques and restoration measure in cooperation with Government representatives.

The Safety Officer will ensure that personnel involved with spill containment and clean up are outfitting and properly trained with proper safety equipment. In addition, clean up personnel will be advised of the possible hazards and proper clean up procedures for the spill.

Action Steps

Report Spill, stop source if possible Contain spill material Protect area Remove material Reclaim area Spill report Arrow Transportation Incident Report

SPILL RESPONSE

Upon discovery of the spill we must:

- Assess the hazards to health and safety
- If danger exists, warn others of what the perceived danger is
- Immediately stop flow of spilling material if possible

SUPERVISOR

Upon notification of the spill the Supervisor will

- get the name of the person involved
- time of spill
- location of spill
- type of substance spilled
- quantity of substance spilled
- cause of the spill
- weather conditions
- perceived potential for hazard to personnel and the environment
- actions already taken
- persons already notified & further notify as required

THE PERSON IN CONTROL OF THE SCENE MUST REMAIN ON THE SCENE UNTIL THEY ARE RELIEVED BY THEIR SUPERVISOR OR AN AUTHORITY WITH ABILITY OR DESIGNATION TO TAKE OVER THE SCENE.

GASOLINE AND DIESEL FUEL

- Stop the flow shut off valves and plug holes
- Eliminate fire danger stop smoking, extinguish flames and shut off sources of ignition.
- Get help contact supervisor who will ensure that again key personnel are contacted and are made aware of concerns or potential dangers to environment. Contact the Ministry of Environment, Lands and Parks and PEP (Provincial Emergency Program)
 1-800-663-345624 hours per day, 7 days a week.
- Contain spill by surrounding product with earth dykes or absorbent socks and pump product back into barrels, if possible, or absorb with floor dry and shovel into safe containers, NOT INTO WATERCOURSES OR DRAINAGE AREAS.

EMERGENCY TELEPHONE NUMBERS

Government Agencies

P.E.P. M.E.LP. Poison Control Centre Crime Stoppers Forest Fire Reports ONLY B.C. Provincial Ambulance Services

R.C.M.P.

(Provincial Emergency Program) (Ministry of the Environment)	1-800-663-3456 1-250-398-4533 1-800-567-8911 1-250-374-8477 Zenith 5555 1-250-392-5402
Ashcroft	1-250-453-2216
Bumaby	1-604-294-7922
Chilliwack	1-604-792-4611
Delta	1-604-946-4411
Hope	1-604-869-2432
North Vancouver	1-604-985-1311
Richmond	1-604-278-1212
Surrey	1-604-599-0502
Williams Lake	1-250-392-6211
100 Mile House	1-250-395-2456

Personnel Arrow Transportation Systems Inc.

Rob Davies	Operations Manager	Office: 250-453-9411	
		Residence: Cellular: s.22	
Tim Bell	General Manager BC Operations	Direct: 250-571-7764 Office: 250-374-3831	
	0	Cellular s.22 ther Contact:	
Rick Viventi	Director of Safety	Direct: 250-571-7763 Office: 250-374-3831 Cellular: \$.22	
		Residence S.22	
Clive Gilray	Director of Maintenance	Office: 250-323-7410 Residence:	
		Cellular: s.22	
Roy Taki	Vice President Trucking Operations	Direct: 250-571-7765 Office: 250-374-3831 Cellular:	
		Residence s.22	

EMERGENCY TELEPHONE NUMBERS cont'd

Arrow Personnel continued...

Nadine Illingworth	Administration/Ashcroft	Office: Office: Residenc	250-453-2399 e ^{s.22}
Mitchell Zulinick	Vice President	Direct: Office:	250-571-7760 250-374-3831
Personnel-Greater Vancouver Rep	gional District		
Ken Lee	Senior Project Engineer	Office: Cellular: Cellular:	604-432-6452 s.22
Personnel-Highland Valley (Copper		
Bruce Mulleny	Transportation Coordinator	Office: Cellular: Residenc	604-688-0387 e ^{s.22}
Bob Hamaguchi	Senior Environmental Engineer	Office: Cellular: Residenc	250-523-3237 e ^{s.22}
Mark Freberg	Superintendent of Environmental Se	ervices Office: Residenc	250-523-3200 e _{s.22}
Highland Valley Copper Security Mill Shift Foreman	Security Foreman	Office: Office:	250-523-3307 250-523-3322
For Specific Emergencies at t	he plants:		
Annacis Main Switchboard Hour Line:		Operations 0 604-525-568	1
Annacis Control Room (also monitor I	Lulu from here)	Hotline:	604-526-5948
Lulu switchboard (7 a.m. to 3:30 p.m. (monitored by Annacis control room)	only)after 3:30 p.m. call 604-526-5948	Office:	604-274-4511
Lions Gate	Vince Chiu	Office: Cellular:	604-904-8315 s.22
	lain Sellars	Office: Cellular:	604-985-8302 s.22

CONTRACTORS

Argo Road Maintenance - Kamloops, B.C. Line:	Tom Bone 800-661-2025	24 Hour	
		Office:	250-374
Sambo Services - Vacuum Truck Services Line:	Eric or Violet MacKenzie 250-374-3600	24 Hour	
		Cellular:	s.22
Don' Towing - Kamloops, B.C.		24 Hour	
Line:	250-374-6281	2.000	
Advanced Hydro-Tech - Vacuum Truck Services	Bert	Office:	250-374
		Cellular:	s.22
		Or:	250-376
Cariboo Road Services (All services)		24 Hour	
Line:	250-392-6673		
		Office:	250-392
Triple P Sanitation of Wildwood	vacuum truck/water truck	24 Hour Line:	
	250-989-5533		
Peterson Contracting of Williams Lake	excavator, water trucks	24 Hour Line:	250-329
153 Mile Contracting	storage pit	Office:	250-296
		Autotel:	250-398
L.A. Fencing - Williams Lake	Wendel McKnight - Fencing	Office:	250-398
Ministry of Highways - Williams Lake	Nic Antisaoff	Office:	250-398
Capilano Highway Services	Steve Drummond - all equipment available	24 Hour	
Line:	800-665-3135	24 Hour	
Comm:	604-983-2551	24 Hour	
Payless Auto Towing - North Vancouver		24 Hour	
Line:	604-988-4176	211100	
Main Road Contracting Line:	Bob Neilson - all equipment available 604-271-0337	24 Hour	
McRae Vacuum Service - Aldergrove	Dan - special waste facility available too	24 Hour	
Line:	604-856-8344	2411001	
		Or	888-894

Paul's Towing and Tractor Service - Richr	nond	24 Hour	
Line:	604-273-1232		
Clover Towing & Tractor Service - Surrey		24 Hour	
Line:	604-513-1900		
Emil Anderson Maintenance- Abbotsford t	to JackAss		
Roy Allan - all services available		24 Hour	
Line:		604-869-	
7171	an mit	the second second	
Coquihalla to Portia and Hwy 3 Manning F	Park	Residence:	
		Weekends:	6
H.M.C. Maintenance - Merritt	Doug Scott	24 Hour	
Line:	800-665-7959		
		Office:	2
Tom's Towing - Merritt	2 large tandems & access to special serv.	24 Hour	
Line:	250-378-500		

£.

THE SCENE OF THE CRIME

A Preliminary Analysis and History of the Mount Polley Mine Tailings Storage Facility

> By Will Koop December 1, 2014 BC Tap Water Alliance (www.bctwa.org)

8. Those Piezometers: The Instrumentation Saga

One of the limitations of the present report is the restricted unavailability of published reports and relevant documents held by the provincial government. This is a main disadvantage for the topic of installed monitoring instrumentation at Mount Polley's Tailings Storage Facility (TSF). I.e.:

- the four types of <u>piezometers</u> used to monitor 'pore pressures' in the TSF's tailings mass, embankment fill materials and drains, and within the foundation materials;
- and inclinometers that detect physical movement or shift in the TSF's three slope structures.

As one of the physical engineered "components" of the TSF, these instruments monitor the critical internal workings of an artificial structure that professional engineers say is supposed to be designed and last for an eternity.

The documents that were retrieved only cover accounts for three annual TSF inspection reporting years, 2008, 2009 and 2010, with only summary comments found in annual reports for years 2011, 2012, and 2013. Despite the missing descriptive records before 2008 and those after 2010, the information contained in the three annual reporting years relate an ominous and disturbing tale about neglect and mismanagement.

2008 TSF Report

Knight Piésold, Mount Polley Mining Corporation's (MPMC's) former geotechnical consultants (1989 - February 2011), gave a short and a simple overview of the TSF instrumentation in the Executive Summary of its *TSF Report on 2008 Annual Inspection*.

The TSF instrumentation currently consists of four slope inclinometers installed at the Main Embankment and 68⁵⁸ operating vibrating wire piezometers installed in the Main, Perimeter and South Embankments. The piezometers monitor the pore pressures in the foundation materials, embankment fill materials, the tailings mass, and the embankment drains. There have been no significant deviations in the inclinometers and no unexpected or anomalous pore pressures reading in the vibrating wire piezometers.

The next sentence in the same paragraph issued an "however" warning:

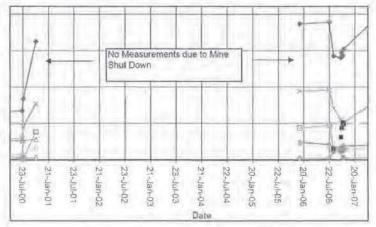
However, inclinometer SI01-02 is showing slight deviations at an approximate depth of 10 m below ground in the lacustrine silts. The short term recommended action is to increase the monitoring frequency of the instrumentation to weekly, with weekly reporting to Knight Piésold, and increasing the buttress at the Main Embankment.

If all that a member of the public chose to read of the 97-page long, 2008 annual TSF inspection report was the *Executive Summary*, then one would walk away with an impression that all was rosy (a smiley face) on the Mount Polley TSF front. However, the Executive Summary's editor(s) wasn't forthcoming on very serious problems found in two pages of the main report.

⁵⁸ The number given, 68, for operating piezometers, seems to be at odds with the numbers given in section 4.0 of the 2008 TSF report (see below), where only 60 are reported as operating, not 68.

Section 4.0 of the report concludes that 32 of the 92 piezometers installed throughout the TSF structure, or 35 percent, were no longer functioning, with a total of **65** located in the Main Embankment, **17** in the Perimeter Embankment, and **10** in the South Embankment. (See Appendix F for the list of the piezometers) It also states one of the five inclinometers was no longer functioning:

- only 11 out of 19 Tailings Piezometers installed throughout the "tailings mass" to measure pore pressure regimes are "in operation;"
- only 12 out of 21 Embankment Foundation Piezometers installed in the three embankment foundations "remain in operation;"
- only 22 out of 32 Embankment Fill Piezometers installed in the fill materials of the three embankments "remain in operation;"
- only 15 out of 20 Drain Piezometers installed in the drains of the three embankments "remain in operation."


Print Feb/24/09 11 23:41 Sept 2008 Pressure Sept 2008 Artesian **Piezometer Elevation** Piezometer Surface Elevation Elevation Pressure (m) (m) (m) (m) A2-PE2-01 903.68 912.67 No Longer Functioning . A2-PE2-02 909 77 912.67 No Longer Functioning 4 A2-PE2-06 898.01 912.91 No Longer Functioning A2-PE2-07 902.81 912.91 915.91 3.00 A2-PE2-08 907.56 913.36 912.49 -0.87 B2-PE1-03 914.05 915.55 915.55 0.00 B2-PE2-01 901.98 916.98 No Longer Functioning -B2-PE2-02 909.51 916.98 3.37 920,35 B2-PE2-06 914.59 916.89 No Longer Functioning -912.59 C2-PE1-03 . No Longer Functioning C2-PE2-02 910.53 915.71 916.64 0.93 C2-PE2-06 906.84 915.99 914.82 -1.17 C2-PE2-07 912.29 915.99 No Longer Functioning -C2-PE2-08 914.03 915.99 914.37 -1.62 D2-PF2-02 927.32 930.92 931_15 0.23 E2-PE2-01 914.21 918.81 917.19 -1.62 E2-PE2-02 909.66 918.81 916.48 -2.33

Of the 32 non-functioning piezometers, only <u>seven</u> of them were specifically identified in Table 4.1, *Maximum Artesian Head Values for Embankment Foundation Piezometers*, shown below.

M110100001/24/AlReportTables/[Section 4 Tables1 xis]Table 4 1

The names and data for the remaining 25 non-functioning piezometers were not identified.

Another disturbing revelation contained in Figures 3.1 (*Foundation Drain Flows*) and 3.2 (*Upstream Toe Drain Flows*) was that for a period of 3 and a half years no measurements of piezometers installed to monitor the foundation drain flows and the upstream toe drain flows were taken from 2001 to 2005, "due to Mine Shut Down". The document fails to state why those measurements were not taken, or who was responsible for not doing so.

Page 1148 of 1157 INVESTIGATION KP 1-9 151 of 500

63

The 2008 TSF inspection report failed to properly contextualize or adequately describe in a devoted section of that report the instrumentation recording oversights and problems which had evidently been accumulating and occurring on Mount Polley's TSF from 2001 through to 2008, as they are only noted in isolated and disjointed sections of the annual report.

More of these accumulating problems were stated in Appendix C, Knight Piésold's *Overview of 2006 Dam Safety Review*, a formal dam review conducted by AMEC, the international professional engineering and design company:

A Dam Safety Review (DSR) for the Tailings Storage Facility at Mount Polley Mine was completed by AMEC in October 2006. The results of the DSR were issued in a report to Imperial Metals Corporation in December 2006.

1. Operating criteria for pond and beach management are presently at odds with the optimal dam seepage performance and stated closure objectives, with the latter issue being of greatest concern.

A beach width of at least 20 m is to be maintained along the abutments of the embankments (where the embankment contacts natural ground) and at least 10 m width elsewhere to keep the pond away from the embankments. Knight Piésold has recommended that MPMC develop a plan and schedule to enable the minimum target beach widths to be re-established within a 2 week period should they be infringed upon. MPMC shall increase the frequency of measurements to at least once per week for embankment instrumentation systems (piezometers and foundation drains - flow rate and turbidity) during any periods that ponded water encroaches within the minimum target beach widths.

5. There were "about the right" number of piezometers installed in the embankment dams, however there is nothing in the way of much redundancy and any lost instrument locations need to be re-established with a new installation.

A total of 57 vibrating wire piezometers have been installed at the TSF as of the end of the Stage 4 construction program. The piezometers are grouped into tailings, foundation, embankment fill and drain piezometers. A total of 22 piezometers were accidentally destroyed during the Stage 4 construction program, and six additional piezometers have previously stopped functioning. MPMC and Knight Piésold attempted to locate and splice the damaged piezometers and successfully repaired five of them. The number of functioning piezometers at the end of the Stage 4 construction program was 34. Additional piezometers will be installed in the tailings and embankment fill materials and tailings during the Stage 5 construction program, which is currently in progress.

Although a number of piezometers are no longer functioning at the TSF, replacing all of them is not practical nor considered necessary at this time as there are functioning piezometers in the vicinity of most that were damaged. However, five of the damaged piezometers were foundation piezometers at the Main Embankment, where there are slight artesian conditions (less than 3.0 m). Additional piezometers will be installed in the Main Embankment foundation materials during Stage 6 to offset those that are no longer functioning. The foundation piezometers at the Main Embankment will have a trigger level of 15 m above ground, which corresponds to the elevated pore pressure that reduces the factor of safety to 1.1. [Bold emphases]

64

installed in the embankment dams", but also noted that there was little redundancy with respect to the piezometers and lost instrument locations should be re-established with new installations. An instrumentation installation program has been proposed to MPMC to replace the lost instrumentation. ⁶¹ This program is expected to be carried out toward the end of 2010.

The function and strategic placement of piezometers in a TSF play a critical role, as stated, for instance, in a 2002 paper by T.E. Martin:

Pressure piezometers, installed at various depths within the tailings deposit, are used to measure pore pressures and seepage gradients (horizontal and vertical components). These piezometers can also be used to assess the relative degrees of consolidation within the deposit profile, and to whether or not the deposit is responding in a drained or undrained manner to ongoing raising. This is a key consideration when considering ESA versus USA approaches to the stability analysis of the dam. ⁶²

Knight Piésold reported that "there are currently 10 functioning tailings piezometers." In its 2008 report, the consultants stated that 11 out of 19 of these piezos were in operation, now one less in 2010.

The tailings piezometers are typically installed close to the embankments and the pore pressures are sensitive to the location of the tailings pond in relation to the embankments. The pore pressures observed in the tailings piezometers at the Main Embankment have shown slight fluctuations during the Stage 6b construction program in response to the development of the tailings beach and the subsequent re-location of the tailings pond away from the embankment.

The "Stage 6b construction program," completed by August 2010, was the lifting of the TSF impoundment from elevation 954 meters to 958 meters. When the construction occurred, Knight Piésold also stated on page '8 of 16' that by June 2010, MPMC had somehow decreased the annual accumulation of supernatant water in the TSF - which had been constantly increasing by an average of 1.4 million cubic meters per year - down to a standing volume of 650,000 cubic meters.

Knight Piésold reported that there were four fewer Embankment Foundation piezometers in operation than there were in 2008. Now only 8 out of the 19 were functioning.

There are currently no functioning piezometers located in the Plane A foundation at the Main Embankment. Additional piezometers are planned for installation in this location in the upcoming piezometer installation program.

It is recommended that no additional raises be completed on the TSF until the lost instrumentation has been established.

⁶¹ Knight Piésold Letter – Mount Polley Tailings Storage Facility – Instrumentation Repair, Productivity Upgrade and remote Monitoring Capacity. Ref VA10-01175. July 22, 2010.

⁶² Page 10, Characterization of pore pressure conditions in upstream tailings dams, by T.E. Martin, February 2002.

Knight Piésold reported that there were now 23 out of 32 Embankment Fill Piezometers functioning. In 2008 there were 22 that were functioning.

Piezometer A2-PE2-03, located at the Main Embankment, showed a slight increase in pore pressures corresponding to fill placement during the Stage 6b construction program. This trend has been observed in the past with this piezometer and it is anticipated that the slightly elevated pore pressures will dissipate following the construction programs as they have previously.

Knight Piésold reported that there were 15 out of 20 functioning Drain Piezometers, the same amount cited in its 2008 report.

Without having access to descriptive information found in Knight Piésold's initial two-volume, 1995 *Tailings Storage Facility Design Report*, and/or its updated revisionary March 2005 *Design of the Tailings Storage Facility to Ultimate Elevation*, ⁶³ where criteria are no doubt provided on the limited physical design integrity of Mount Polley's TSF, the placement of 65 out of 92 piezometers in the Main Embankment denotes the importance and added emphasis that Knight Piésold had made on that section of the impoundment's structure. The engineers' attentive concern to the greatest number of piezometers on the Main Embankment was due to the Embankment at 913 meters. With Knight Piésold's design for a maximum TSF height at 965 meters, a final holding wall of the Main Embankment was to be **52 meters in total height**!

For most likely the same engineering design criteria, only 17 piezometers (74 percent fewer) were placed throughout three Planes within and alongside a much longer Perimeter Embankment. It's lowest construction base, where the August 4, 2014 breach occurred, began at elevation 931 meters with full build out to elevation 965 meters, a final holding wall of **34 meters in total height**.

The geotechnical engineers placed less piezometer attention and required less physical foundational strength (through the "modified centreline construction method") on the Perimeter Embankment section of the TSF because the engineers considered the Main Embankment as the most vulnerable over time due to its overall height. However, the engineers no doubt acutely understood the structural vulnerability of the Perimeter Embankment should the dam's crest rise beyond what they referred to as "the ultimate embankment crest elevation of 965 meters."

A preliminary design of the TSF, completed by Knight Piésold in 2005, considered an ultimate embankment crest elevation of 965 m and provided storage for approximately 85 Mt of tailings. The MPMC mine plan is evolving as new resources are discovered and it is possible that the ultimate mineable resource will exceed the ultimate storage capacity of the TSF as defined in the 2005 study. It is recommended that the tailings storage requirements be re-evaluated to assess whether modifications are required to the TSF layout. [Bold emphasis] Additionally, the closure and reclamation plan for the TSF should be updated to reflect the increased resource and tailings storage requirements. The TSF should be designed for closure and defining the ultimate storage requirements along with the closure and reclamation plan for the TSF are key considerations for future design phases.

⁶³ See Appendix B.

Apparently, concerns about the Perimeter Embankment's structural integrity first became evident in 2010. When engineer Les Galbraith arrived for the annual TSF inspection on October 7, 2010, MPMC informed him of a "tension crack," which had initially been discovered by a grader operator two months previous. The tension crack was located on the crest of the eastern section of the Perimeter Embankment near corner "S6." When observed and reported by the grader operator to management in August 2010, management failed to report the disconcerting finding to its geotechnical engineers, and is therefore why Knight Piésold states in its report:

It should also be noted that the identification of a tension crack, or any other abnormal observation at the tailings dam, should be reported to the design engineer immediately and prior to any remedial action being taken. [Bold emphasis]

71

Page 1153 of 1157 INVESTIGATION KP 1-9 156 of 500

Pres 01-18-01 10:04-24 um, F_09 - Tel Conversation, delPhone Revid 12/20/00 Knight Piésold **RECORD OF TELEPHONE CONVERSATION** BETWEEN: JRK APRIL 19/0 DATE: 8:45a TIME: AND: ERIC LEWEVE 11162 FILE No .: 4 RE: C GARM 20 -MPMC MPMC buildias US CYC sa 40 inh now Smyth 400 10 200 m requireme 94 Enic onstr 942.25 ri's 942 5 SUPPOSItion 1. inote Pa Jest. (2). the Con 1 wid ressille nanavert 942.25 m this Brie Jau orl 19 SAP email respon Note Cul. AR fell Signed: Copy to:

FORM F - 09 Rev 0

Page 1154 of 1157 INVESTIGATION KP 1-9 157 of 500

Knight Piésold	RECORD OF TELEPHONE CONVERSATION
BETWEEN: JRK	DATE: 08-May-01 TIME: 1:50 PM
AND: Eric LeNeve, MPMC	FILE No.: 11162/14.01 RE: Tailings operations and closure
EL: MPMC has painted themselves into a corner with ta	
- Filling up the NE corner at the du - Getting pipe fused late	nub vaive
- Operator problems - Mine life scenario is looking grim at this point (poss	ible closure in Fall 2001)
 Don Parsons wants to know if they can continue dis build up the Perimeter Embankment as needed. i.e 	
supernatant pond?	
 Don wants Eric to put together a salvage closure pla must take to control the supernatant pond. 	an - what are the minimum steps that they
- Plan may include not raising the Main Embankment.	
 Eric also pointed out that they may have difficulty in at any rate, because they must discharge from the N 	
JRK: Several advantages to maintaining a beach, partic	cularly with an upstream toe drain.
 Also facilitates closure and reclamation. Floating spigots have been used on other projects a 	and may provide temporary relief from the
deposition problem during construction.	
EL: This is all brainstorming at this point, but he would I developments. He will call to discuss further in the	
101/	
Simuli	
Signed:	

1116414.01 Q cm. Knight Piésold Ltd. CONSULTING ENGINEERS Project: Mt. Polley Calculations for: Phone Concerned 1162/14. Project No .: with G. Smithe Date: 33- Aux -01 Calculations by: _ Sheet ____ Checked by:_ Date: and told GS concerns that KP has over current form of DM 75 Manual. KP feels that it is not necessary to update this manual at this time. an suggested that KP write a fax with an suther MPMC to write the manual. Will save asts period . and sharpen focus. GS agreeable to suggestia. GS to talk over with Don Parsons. D Parsons discussed current situation with George Headley. MPMK told Headery that MPMK plans to pump tailings water into pit in fall, will keep pumps at TST operational through winter and pump trested water into pit. Discussions with KP Re: spilling design to care and mantenance period are ongoing. Page 1156 of 1157

Knight Piésold

Area: Phone Call b	etreen F. Lellere ? a	
Calculations for:		Date: 1505 5/01.
Calculations by:	Reviewed by:	Calculation File No.:
Input from:	Date of review:	Sheet:/ of _/
· Elever	e to provide	JA quartities
57		C
exc	ept PE.	
· KP 10	produce 3B	Whenes and
		and a substantian and the second second
AC	from PE.	
@ KP to	provide table s	of Volues bedrace
94	2.5 and 945.	
O VP to	mention that as	- hults to 542.5
but	that design good	- builts to 942.5
e Marti	to provide sord	s of mus
· MPMC	to install SM's	of PE ISE, and
ons	surveyor on site	at PE 7 SE, - My
		ptable to KP, but is
accept	able to Ministry.	E Lenlese not hope
		needest tweaking.
MPMC	promised 2475	to ministry, bust done
e mine u	ants spy of	oth 35 As is. They
· MPML way	ts to produce se	perete @ < 3M
manual	which to provide	perde o < 3M Dutline only, then
1 en en	min count.	

INVESTIGATION KP 1-9 160 of 500

MEMORANDUM

To:	Mr. Ron Martel	Date:	April 23, 2010
Сору То:	Greg Johnston	File No.:	VA101-1/29-A.01
From:	Mark Smith	Cont. No.:	VA10-00687
Re:	Monitoring of Inclinometers		

This memorandum summarizes the most recent inclinometer information at the tailings storage facility. Inclinometer data is collected at four locations shown on Drawing 210R0 by Knight Piésold (KP) and Mount Polley Mining Corporation (MPMC). The recent inclinometer data survey was completed on April 14, 2010. Displacements have been observed in one of the inclinometers, SI01–02. Experience gained over the past three years has indicated that inclinometer SI01-02 displacements increase during construction. This is likely due to temporary reduction in strength due rapid loading of a low permeability soil. Inclinometer SI01-02 has been monitored weekly during the Stage 6b construction program (March 4 to April 14). The cumulative displacement since installation are shown on Figure 1. Figures 2 to 4 show the cumulative displacements for the remaining three inclinometers.

The largest displacement recorded is at inclinometer SI01-02. The displacement is isolated to a zone located 10m below original ground. The inclinometer survey on April 14 was completed while the haul road beside the survey site was in use. Haul road activity during the survey may have impacted the results. The inclinometer SI01-02 cumulative displacement at 10m depth is 2.8mm. Cumulative displacement has continuously increased since inclinometer installation. However, the five reading prior to the April 14 survey do not show movement. The inclinometer readings from April 14 should be revaluated when more data is available from the scheduled survey in the week of 19 April.

The data from the inclinometer survey shown on Figures 1 to 4 is generally consistent. Data from a survey conducted on January 11 has been removed from the data set. This January 11 survey data has been removed as it showed excessive displacements that are not seen in subsequent surveys.

The cumulative displacement for the zone of interest in inclinometer SI01-02 at 10m depth is shown on Figure 5. Figure 5 includes notes showing the time period of embankment construction and buttress construction. The available data indicate that embankment construction and increased displacement rates are correlated. The displacements are summarized as follows:

- The average displacement rate during the Stage 5 construction was 0.07mm/month.
- The average displacement rate between Stage 5 and Stage 6a was 0.01mm/month.
- The average displacement rate during Stage 6a construction was 0.2mm/month.
- The average displacement rate between Stage 6a and Stage 6b was 0.05mm/month.
- The average displacement rate during the Stage 6b construction is 0.01mm/mo (disregarding the April 14 survey).

The displacement rate is likely correlated to increased loading. This loading change may be rapid during embankment construction. Similarly the accreting tailings surface results in a slower increased loading condition. It is noted that the increases in displacement rate exhibited during the Stage 5 and Stage 6a construction have not been seen in Stage 6b. This is most likely due to the increased resistance provided by the buttress.

The one inclinometer SI01-02 indicates that embankment foundation deformation continues. The inclinometer survey to date show that the displacement rate is slowing. The expected increase in displacement rates during the Stage 6b construction program has not occurred. Knight Piésold recommends continued weekly surveys of the inclinometers during construction and biweekly surveys for the first month after construction. Monitoring frequency may be reduced to monthly, if the first month post construction data show the embankment displacement rate is stable and acceptable. A review of data from inclinometers SI06-01, SI06-02 and SI06-03 indicates that there have been no displacements measured in these inclinometers.

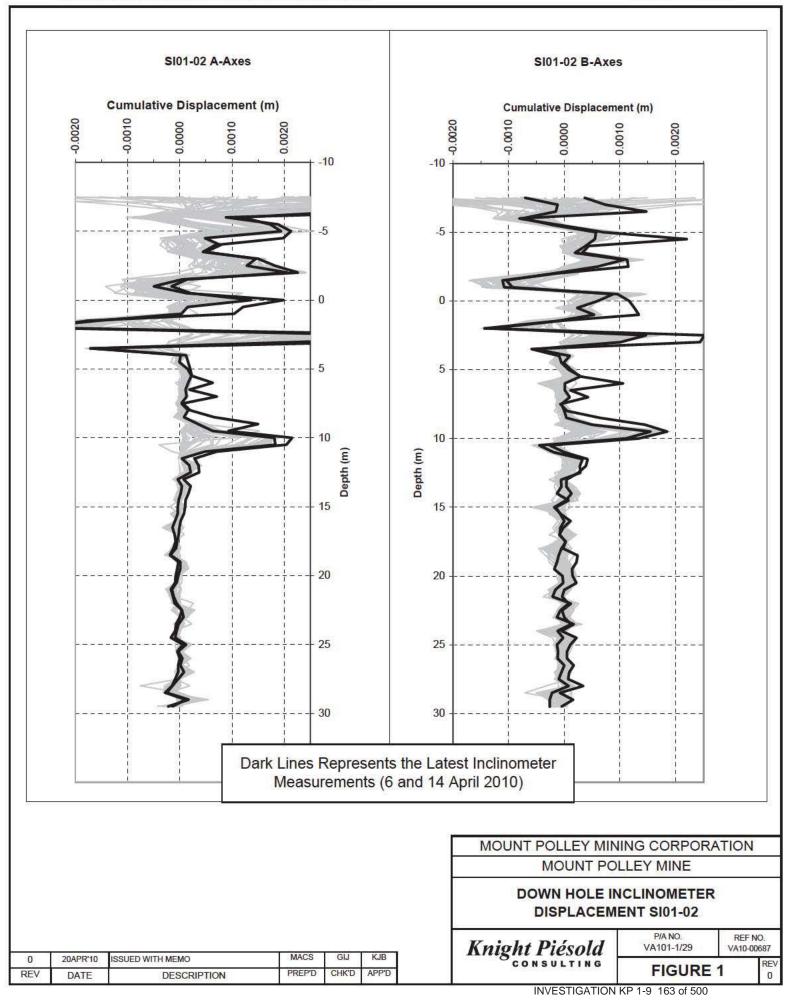
Signed:

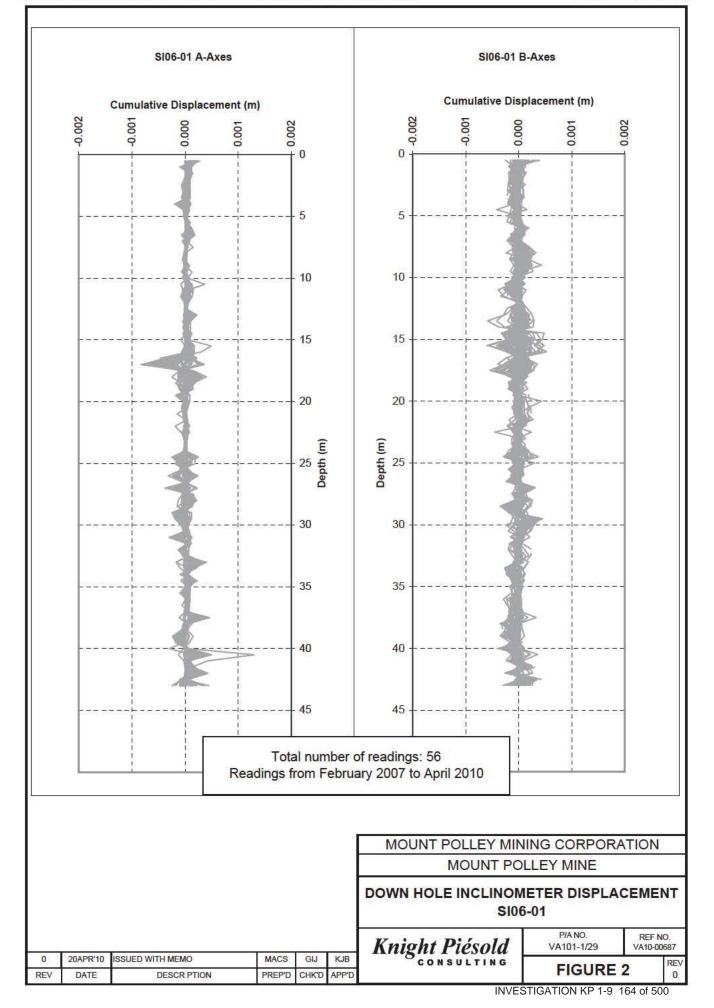
Mark A C Smith, E.I.T – Staff Engineer

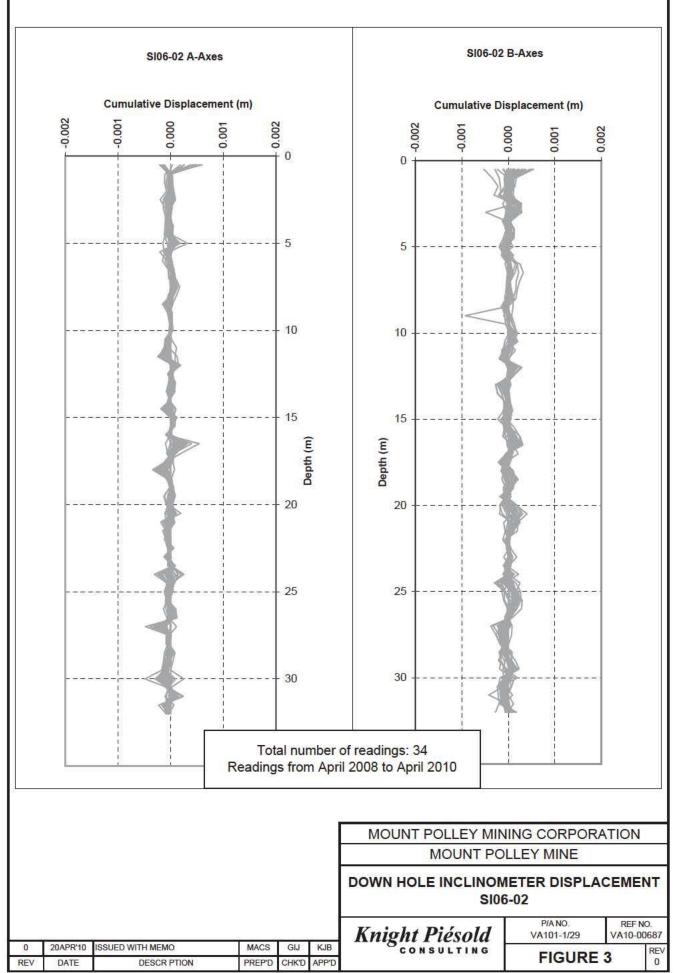
Approved:

Ken Brouwer, P.Eng. - Managing Director

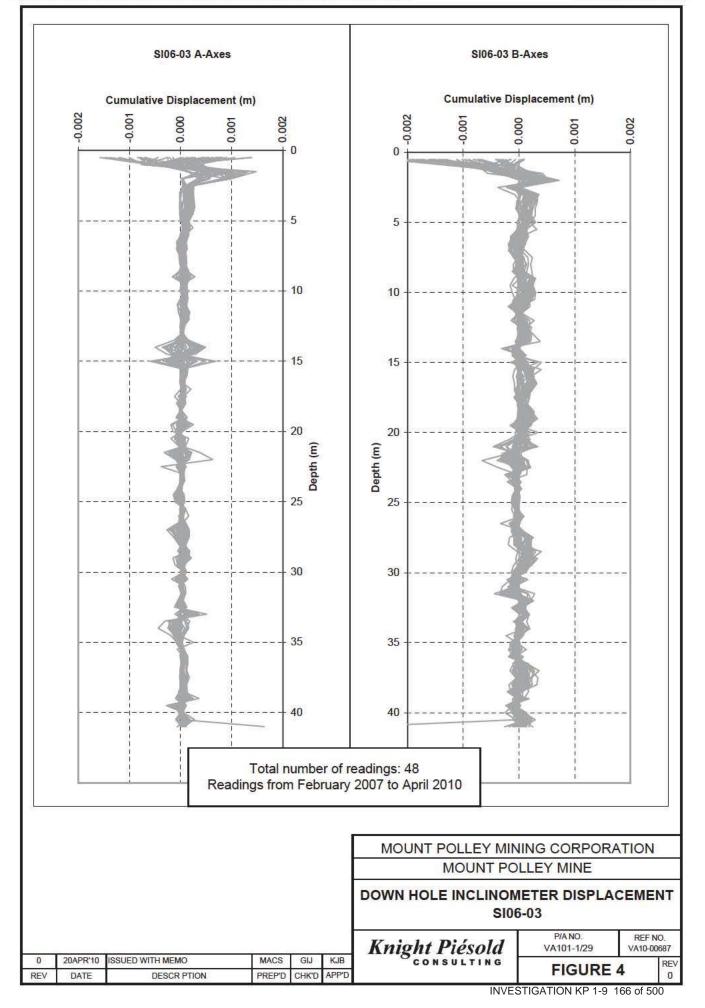
Attachments:

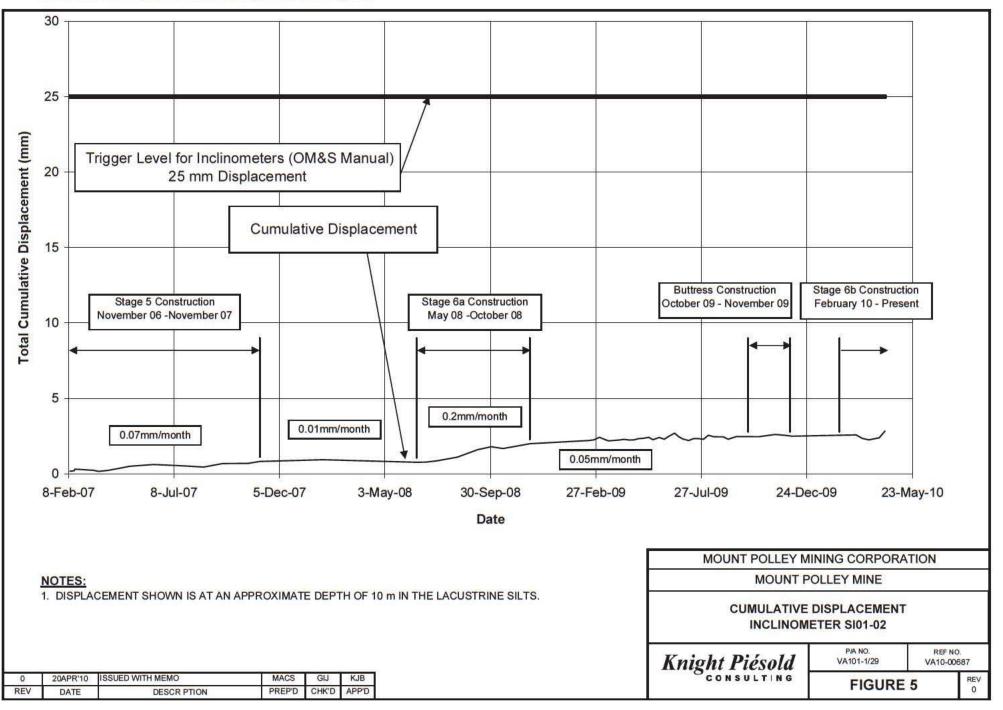

Figure 1 Rev 0	Down Hole Inclinometer Displacement SI01-02
Figure 2 Rev 0	Down Hole Inclinometer Displacement SI06-01
Figure 3 Rev 0	Down Hole Inclinometer Displacement SI06-02
Figure 4 Rev 0	Down Hole Inclinometer Displacement SI06-03
Figure 5 Rev 0	Cumulative Displacement Inclinometer SI01-02

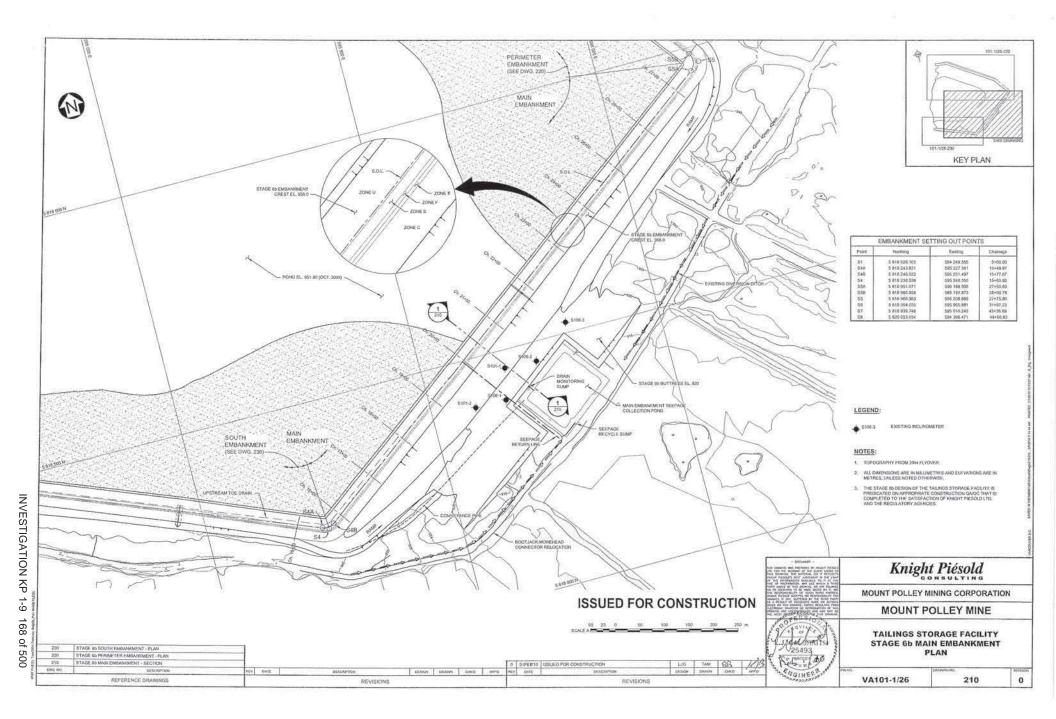

Drawing 210 Rev 0


Tailings Storage Facility – Stage 6b Main Embankment Plan

/macs


Print: 4/22/2010 3 55 PM





INVESTIGATION KP 1-9 165 of 500

M:\1\01\00001\29\A\Data\Inclinometers\SI01_02 Disp at 10mFigure 2

MEMORANDUM

To:	Mr. Greg Johnston	Date:	April 27, 2010
Сору То:	Mr. Les Galbraith	File No.:	VA101-1/29-A.01
From:	Mark Smith	Cont. No.:	VA10-00389
Re:	Mt. Polley TSF - Snow and ice in the Perimeter Emb	ankment	

A large quantity of snow and ice was found in the Perimeter Embankment in early 2010. Snow was initially noticed on February 12 between Zone S and Zone U near to corner 2 (see attached sketches). The site engineer recommended the snow be removed, and later the same day the snow was removed with a hoe. As a result of the excavation the snow was observed to be between 0.1-0.2m thick, extended approximately 10-15m along the embankment and the full depth of the till - sand interface. Ice was discovered at the bottom of this excavation. A 12m trench was excavated perpendicular to the embankment to ascertain the extents of the ice. The ice was found to be a horizontal layer between the Stage 5 and Stage 6a sand cells; variable in thickness up to 1m, the ice was in contact with the till and extended beyond the test trench. After discussions with Mount Polley staff that stressed the importance of removing the ice it was decided to excavate the Zone U and attempt to find the boundaries of the ice.

Excavations started at the site of the original test trench and proceeded towards corner 1. The final excavation extended approximately from chainage 27+00 to chainage 31+00 and a minimum of 13m upstream from the setting out line. The excavation required 6 days to complete, all ice was removed and the hole was filled with waste rock over 2 days. The excavated sand was spread over the top of the hole and will now form the Stage 6b Zone U. The excavation did not remove all of the ice, the remaining ice is 13m or more upstream of the SOL and is therefore part of the tailings pond. Mount Polley has excavated additional test trenches at the approximate centre of all the sand cells constructed after freeze up, no snow or ice was found.

The ice is likely the result of pond water seeping into a low point in the Zone U. It was observed during the October construction that Zone U near corner 2 was lower that the surrounding tailings beach. This area of lower Zone U was limited to the area where ice has now been removed. Water was able to accumulate in this low area and come to rest against the Zone S till. The water eventually froze, and was then covered by snowfall. The ice and snow were then covered by rock to form the base of the sand cell. The rock provided insulation and prevented the ice from melting when the warmer tailings water was flowing into the sand cell. The Knight Piésold site engineer has discussed the origins of the snow and ice with both Mount Polley operators and management, all future sand cells will be cleared to competent material prior to rock or sand placement.

Signed:

Mark Smith, E.I.T. - Staff Engineer

Approved: Ken Brouwer, P.Eng. -Managing Director

Attachments:

 Drawing 220 Rev0
 Tailings storage Facility – Stage 6b Perimeter Embankment – Plan (modified by hand)

 Drawing 226 Rev0
 Tailings storage Facility – Stage 6b Perimeter Embankment – Detail (modified by hand)

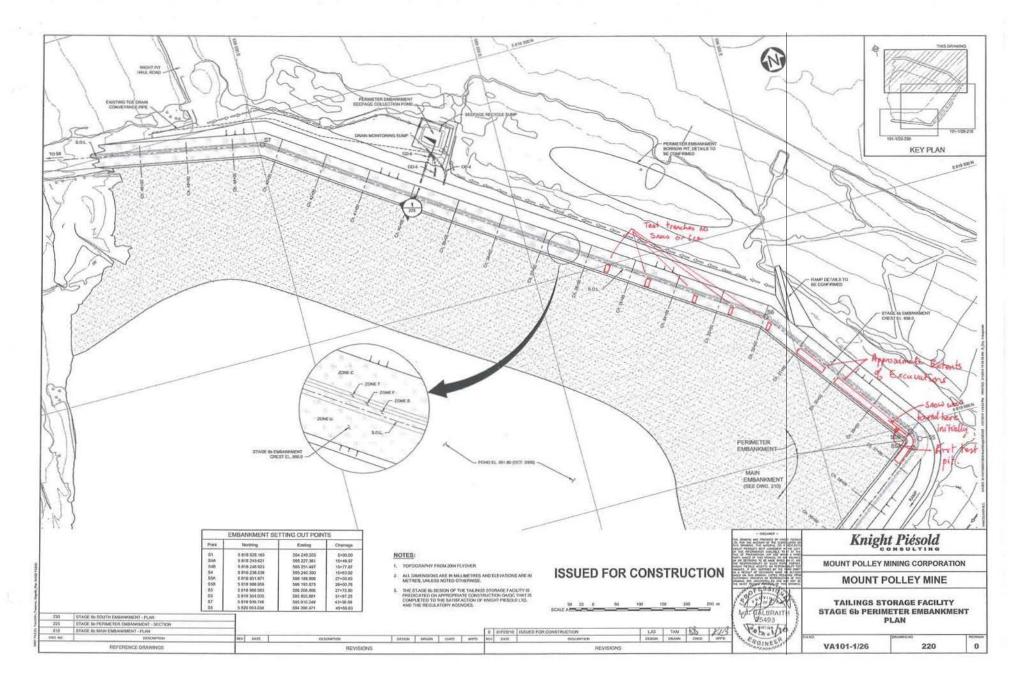

Photo 1 Snow in Perimeter Embankment

Photo 2 Ice in Perimeter Embankment

Photo 3 Perimeter Embankment Excavation

/macs

INVESTIGATION KP 1-9 170 of 500

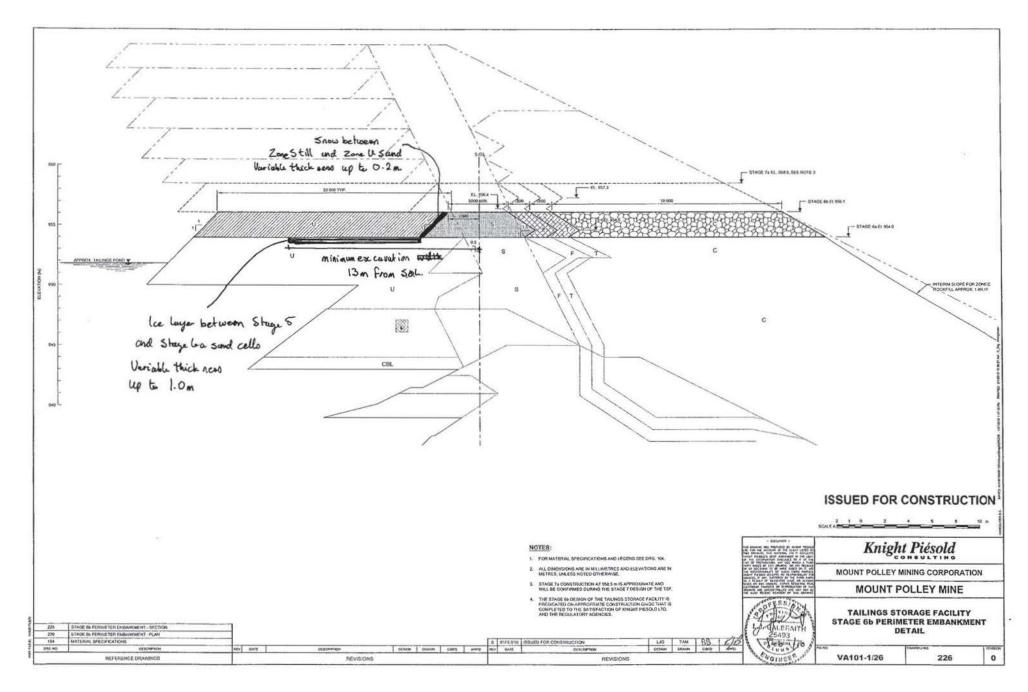


PHOTO 1 - Snow in Perimeter Embankment

PHOTO 2 – Ice in Perimeter Embankment

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

VA10-00389 April 27, 2010

PHOTO 3 – Perimeter Embankment Excavation

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY MINE

VA10-00389 April 27, 2010

File No.:VA101-1/29-A.01 Cont. No.:VA10-01175 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 *Fax:* 604.685.0147 *www.knightpiesold.com*

July 22, 2010

Mr. Ron Martel Environmental Superintendent Mount Polley Mining Corporation P.O. Box 12 Likely, BC V0L 1N0

Dear Ron,

Re: Mount Polley Tailings Storage Facility Instrumentation Repair, Productivity Upgrade and Remote Monitoring Capacity

Introduction

The Mount Polley Mine Tailings Storage Facility is a large earth and rock fill embankment located in central British Columbia. The Tailings Storage Facility is monitored on a regular basis to ensure safety, as an early warning of undesirable conditions and to confirm the structure meets or exceeds regulatory requirements. The regulatory requirements include regular dam safety reviews by a suitably qualified and experienced engineer. The most recent dam safety review was completed by AMEC in late 2006. This review indicated that there is "about the right" amount of instrumentation in the embankment but there is little redundancy. The dam safety review recommended that lost instrumentation be re-established, Knight Piésold (KP) agrees with this recommendation.

The two major types of instrumentation in the Tailings Storage Facility (TSF) are piezometers and inclinometers. The piezometers provide information on the internal water pressure in various parts of the embankment and foundation. The piezometers are all vibrating wire (VW) type instruments. VW piezometers are widely used in geotechnical instrumentation, are generally robust and have a long life span. However, over time there have been failures of instrumentation and damage to data cables resulting in non-functional instrumentation. The inclinometers are industry standard slotted pipe that is read by a manually operated probe.

This letter summarizes the replacement of instrumentation and highlights two options for improving the TSF instrumentation, as follows:

- A **Base Case** to replace non-functional instrumentation to develop a satisfactory level of TSF instrumentation
- A **Productivity Improvement** to significantly reduce the amount of time required to complete routine monitoring of the TSF instrumentation, and
- The installation of **Remote Monitoring** capability for instrumentation on the TSF.

An estimated cost has been developed for the replacement and modifications to the TSF instrumentation. The estimated cost for instrumentation includes input from sole sourced suppliers for the major expense items. The cost estimate is to establish the approximate cost of each option and some efficiencies may be achieved by a soliciting a more detailed bid of the work required.

Current TSF Instrumentation Status

The installed instrumentation in the TSF includes a total of 91 piezometers and 5 inclinometers. Of these 48 piezometers are functional and 43 piezometers are not functional, 4 inclinometers are functional and 1 is not functional. The inclinometers are all installed in the main embankment. The functional inclinometers include 3 that are generally showing minimal movement and 1 inclinometer that shows localized movement.

The distribution of non-functioning piezometers is not random and a large portion of the Main Embankment foundation instruments have stopped functioning. In total 20 piezometers have been installed in the Main embankment foundation and 7 (35%) are functional. All 6 of the foundation piezometers in the A instrumentation plane have been damaged, 2 piezometers remain functional in the B instrumentation plane. This is the main area of concern due to a low strength glaciolacustrine unit that underlies a portion of the Main Embankment including the A and B instrumentation planes. The inclinometers and Main Embankment foundation piezometers are installed to monitor this glaciolacustrine unit. The TSF monitoring program is in part to confirm that the displacement and pore pressure in the glaciolacustrine unit are within acceptable limits.

The Ministry of Energy Resources, Petroleum and Mines (MEMPR) have previously expressed concerns about the characterization and behavior of the glaciolacustrine unit under the Main Embankment. A point of concern that has been raised by MEMPR is the amount of laboratory testing available to define the strength of the glaciolacustrine unit.

Base Case

The base case is to replace non-function VW piezometer instrumentation and install a level of redundancy in the VW piezometers. The collection of samples for laboratory testing can be completed at the same time as drilling the new instrumentation holes. This base case is a minimum level of replacement TSF instrumentation required. The base case includes the following:

- 5 holes in the TSF main embankment for replacement instrumentation. Of these drill holes, 2 holes 60 m deep will be drilled from the crest of the dam and 3 holes 25 m deep will be drilled from the dam buttress. A total drilling length of approximately 200 m is estimated.
- Install inclinometer casing in all holes.
- Install 4 VW piezometers in each hole (3 as replacement instruments and 1 for redundancy).
- Recovery of samples of the glaciolacustrine unit for laboratory testing.
- Laboratory testing of samples from the glaciolacustrine unit.

The drilling costs are based on a cost estimate by Geotech Drilling attached in Appendix A. The drilling cost estimate includes for inclinometer supply and installation, VW piezometer installation and soil sampling. The drilling cost estimate should be considered as an approximate cost as adjustments to the program are likely required. The KP costs and laboratory testing costs have been estimated by Knight Piésold.

Productivity Improvement

The productivity upgrade includes everything described in the Base Case and additional items to significantly reduce the time and complexity of instrumentation monitoring. The goal is to reduce the work

load and time taken monitoring the TSF. An additional benefit is automation is expected to improve the accuracy of the data. Two additional items are proposed:

- 1. Centralize the location of VW piezometer reading points. This will include developing an upstream and downstream readout location on each embankment. The readout locations would collate the data collection for the instrumentation planes and provide a common interface. The piezometer cables would be extended and routed to the appropriate readout location. For example, on the Perimeter Embankment a downstream readout location would be installed in the vicinity of the seepage collection pumps house. The VW piezometer cables from the 3 instrumentation planes in the perimeter embankment would be routed to the readout location. The cost for establishing centralized readout locations has been estimated by KP.
- 2. Install a fixed inclinometer consisting of a ShapeAccelArray from Measurand in the existing inclinometer that is showing deflections. A ShapeAccelArray (SAA) is a comparatively new method in geotechnical engineering for monitoring deflections in inclinometers. The SAA is significantly faster and easier to read using a laptop computer. A SAA is cheaper to automate compared with traditional inclinometers. A brochure for the ShapeAccelArray is attached.

The installation of an SAA will allow automation of the inclinometer. Automation will facilitate regular inclinometer readings collected remotely from the Mount Polley site office. The readings from a fixed inclinometer can be completed very rapidly in a small fraction of the time currently required to complete an inclinometer survey. A cost estimate for an inclinometer SAA and remote retrieval package from Measurand is attached. The cost of automation is approximately 60% of the quoted cost and savings could be made by electing to complete manual readings using a laptop. This cost estimate is approximate and may be adjusted based on the data retrieval method selected by Mount Polley Mine.

Remote Monitoring

The remote monitoring of all of the geotechnical instrumentation is possible. The remote monitoring would require the work described in the Base Case and Improved Productivity. In addition the VW piezometers would be monitored by a remote solar powered system and radio communications system. The current inclinometers would all have arrays installed and would be able to be remotely read. A cost estimate for the VW piezometer readout system has been provided by Measurand and is attached.

Summary

The instrumentation at the Mount Polley TSF has experienced damage over time. The replacement of some of the non-functional instrumentation is now necessary. This letter details the base cost to replace non-functional instrumentation and summarizes opportunities for reduced the difficulty and time required for TSF monitoring. The monitoring of the TSF instrumentation requires a reasonable time investment by Mount Polley Mine staff and/or KP staff. Two systems to reduce the time required to monitor the TSF and the setup cost to implement the systems are summarized.

It is recommended that the TSF instrumentation replacement be completed this year. To help satisfy concerns previously raised by MEMPR it is recommended that the replacement instrumentation should be either installed or at an advanced planning stage in time for the annual inspection of the Mount Polley TSF.

The estimated cost for the replacement of non-functional piezometers and installation of additional slope inclinometers is in total \$195,000, the total cost for the alternative option to simplify the monitoring of the TSF is estimated to be \$230,000. The total cost for a second alternative for remote monitoring of the TSF geotechnical instrumentation is estimated to be \$310,000. A breakdown of the estimated costs is included on Table 1. We trust this information will assist you in planning for the TSF. Please contact us if you have any questions or would like additional information on the described systems.

Yours truly, KNIGHT PIESOLD LTD.

Prepared by: Greg Johnston, M.Sc. Engineering Geology and Geotechnical Specialist

Attachments: Table 1 Rev A Cost Estimate

Geotech Drilling – Cost Estimate Measurand – ShapeAccelArray (SAA) Brochure Measurand – Quote 38 – Fixed Inclinometer Measurand – Quote 40 – Remote Monitoring of VW Piezometers

kir.

Approved: Ken Brouwer, P.Eng. Managing Director

/gj

TABLE 1

MOUNT POLLEY MINING CORPORATION TAILINGS STORAGE FACILITY

INSTRUMENTATION REPLACEMENT COST ESTIMATE

Option	Item		Item Cost	Total
Base Cost	Drilling		\$130,000	
	Replacement VW Piezometers		\$15,000	
	Laboratory testing		\$20,000	
	Knight Piesold site and office support		\$30,000	
		Total		\$195,000
Productivity Im	roductivity Improvements			
	Base Cost plus the following		\$195,000	
	Mount Polley Excavator for 3 days (NOTE 1)		^	
	VW piezometer cable and readout locations		\$7,000	
	Fixed Inclinometer		\$23,000 \$5,000	
	Knight Piesold site support		\$5,000	
		Total		\$230,000
Remote Monito	-			
	Productivity Improvements plus the following		\$230,000	
	Additional fixed inclinometers		\$28,000	
	Remote monitoring for VW Piezometers		\$44,000	
	Knight Piesold site support		\$8,000	
		Total		\$310,000

M:\1\01\00001\29\A\Correspondence\VA10-01175 - Instrumentation Replacement\Tables\[Table 1 - Cost Est.xlsx]Sheet1

NOTES:

1. MOUNT POLLEY MINE EXCAVATOR TIME NOT INCLUDED

A	22JUL'10	ISSUED WITH LETTER VA10-01175	GL	GIJ	KJB
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

Bill to: Knight Piesold Ltd.

Care	of:	Knight Piesold I 1400 750 West	Knight Piesold Ltd. 1400 750 West Pender Street			
		Vancouver, BC	V6C 2T8			

Tel: 1-604-685-6543

ATTN: Mark Smith/Greg Lewsley

Email: msmith2@knightpiesold.com

5-Jul-10
Ryan Samis
1KRS10-0043
Odex/Mud Rotary Drill
Mount Polley
BC

Date: Tuesday, October 27, 2009

Scope: This cost estimate is for 5 boreholes to 40 meters (130 ft) with 2 vibrating Wire installs per hole. 4 boreholes to 30 meters (100 ft) with 2.75" SI casing installed, and 3 boreholes to 30 meters (100 ft) with 2" monitoring wells installed. Soil coring (HQ3) will be required in the last 40 ft of the vibrating well installs, and the last 75 ft of the inclinometer holes. No sampling required in monitoring well holes.

ltm	Qty	Unit	Description	Price	Extended
1	190	hrs	Odex Drilling / Soil Coring	275.00	52,250.00
2	70	hrs	Overtime (after 8 hours, weekends, stats/two man crew)	65.00	4,550.00
3	1	L/S	Mob / Demob to Mount Polley	2750.00	2,750.00
4	54	hrs	Crew travel	149.00	8,046.00
5	19	shift	Support vehicle(truck mount)	249.00	4,731.00
6	19	shift	Crew subsistence (two man crew)	279.00	5,301.00
7	19	shift	Air compressor (300/200)	425.00	8,075.00
8	19	shif.	rout pump /Mud Pump Rental	199.00	3,781.00
9	9	hrs	Safety meeting	149.00	1,341.00
10	500	ft	Diamond Bit Wear Consumption	19.50	9,750.00
11	850	ft	Odex bit wear consumption	5.75	4,887.50
12	16	shift	High Pressure Diamond Pump Rental	249.00	3,984.00
13					10 I
14					
15	27	10 ft	P - Solid 1", 1.5" or 2" p.v.c. well casing	36.87	995.49
16	3	10 ft	P - Slotted 1", 1.5" or 2" p.v.c. well casing	49.45	148.35
17	6	ea	P - 1", 1.5" or 2" slip caps	3.45	20.70
18	650	ft	P - 1" PVC (for Vibrating wire installs)	1.87	1,215.50
19	40	10 ft	P - 2.75" Slope Inclinometer	148.35	5,934.00
20	3	ea	P - 2.75" Slope Inclinometer Top Cap	6.90	20.70
21	3	ea	P -2.75" Slope Inclinometer Grout Anchor	417.00	1,251.00
22	60	bags	P - Bentonite Chips (Possible Option)	28.55	1,713.00
23	22	bags	P - Sand	15.52	341.44
24	105	5 ft	P - Acrylic Liners for Soil Coring	20.40	2,142.00
25	15	bags	P - Premix grout	34.44	516.60
26	12	bags	P - Fast Set Concrete	17.25	207.00
27	36	bags	P - Portland Cement	23.75	855.00
28	12	ea	P - Stand up casing protectors	109.25	1,311.00
29					178
Terms & Conditions: E. & O.E. Cost Estimate valid for 60 days. Underground / Overhead utilities are the sole responsibility of the client. Lost, broken or unrecoverable looling will be charged at cost plus 15%. Gancellation fees & reslocking charges may apply if less than 40 hours notice. Invoice Payment terms: Upon Receipt. 2% interest charges will apply on past due accounts. Invoice considered accepted and approved 15 days after			Subtotal	\$ 126,118.28	
rees a residuant charges may apply tress than 40 nours noice. Invoice rayment terms Opon receipt 2 withen notification is received. **Overfime is applicable after 8 hours, weekends, and statutory holidays**			P.S.T.	\$ 1,167.02	
Line items beginning with P denote PST chargeable items			G.S.T.	\$ 6,305.91	
British Columbia		TOTAL DUE	\$ 133,591.22		

5052 Hartway Drive • Prince George • British Columbia • Canada • V2K 5B7

Tel: (250)962-9041 • Fax: (250)962-9046 • Web: geotechdrilling.com

Promotion Code:

Thank You for Your Business! INVESTIGATION KP 1-9 180 of 500

Frequently Asked Questions

How long is a typical SAA?

Most Field SAAs are near 32 m (104'). Most Research SAAs are 7.32m (24') long. Lengths up to 100m (300') are possible.

How long are the rigid segments in an array?

Standard joint-center to joint-center lengths are 305 mm (12") and 500 mm (19.7").

Do I need a casing for SAAs?

SAA should be installed in 27mm (1.05") ID casing (inexpensive PVC electrical conduit). The array and casing are flexible enough to survive deformations of tens of cm (feet). The 27 mm casing will fit into inclinometer casing, enabling ecovery of some defunct SI sites.

Can I re-use an SAA?

of 500

After typical deformations, SAA may be removed from the casing and installed elsewhere. For more information on Shape-AccelArray and other Measurand products:

ShapeAccelArray (SAA)

2111 Hanwell Rd Fredericton, NB CANADA E3C 1M7 (ph)506.462-9119 (fax)506.462-9095 www.MeasurandGeotechnical.com www.measurand.com

Introduction

SAAF (Field Arrays)

SAAR (Hi-Bandwidth Research Arrays)

SAA is an array of rigid segments separated by special joints. Triaxial MEMS gravity sensors in the segments measure tilt. SAA produces data equivalent to inclinometer data but over much larger deformations. SAA may be used vertically to track magnitude and direction of lateral deformation, and horizontally to track vertical deformation. In any pose, 3D vibration data are available from selected locations along the array.

There are two basic types: Field and Research. Each is available in increments of 8 segments, where standard segment lengths include 305 mm (12") and 500 mm (19.7").

The main distinctions are speed, Bumber of segments, and power Consumption. SAAF is designed for solarpowered installations with wireless communication. SAAF may be up to 100 m long. Long-term accuracy for 30 m (96') SAAFs is 1.5 mm (0.06").

Vibration data are available from up to 3 segments along the array at 40 Hz sampling, and at 35 Hz from 4 segments.

All communication in the array is digital. Data are carried in a small cable to a digital logger. Most installations use solar power and provide wireless data over the internet.

SAAR is designed to collect high frequency data from all sensors continuously.

Each microprocessor in an SAAR (1 microprocessor per 8 segments) has a dedicated communication line.

SAAR can be supplied with up to 24 high-speed segments.

Quotation

Quote	Greg Lewsley	Quete Data	Jun-24-2010	
Prepared	Knight Piesold	Quote Date		
For	750 West Pender Street	Quote Number	38	
	Suite 1400	Sales Contact:	DJ Snodgrass	
	Vancouver, BC V6C 2T8 CAN			
	(604) 685-0543 Fax: (604) 685-0147			

Quote for 2 holes with remote data retrieval

Item	Description	Qty	Price	DD	Extended Price
SAAF500	SAA Field Octet (0.5 m segments)	4	\$1,673.30		\$6,693.20
Enclosure	Earth Station Enclosure	1	\$993.25		\$993.25
SAAReg	SAA Charge Regulator	1	\$269.10		\$269.10
SAA232	RS485 to RS232 converter w/Power switching	2	\$450.15		\$900.30
¶*ProSupport	Project Support Time Installation assistance cost (Inclusive)	1	\$5,000.00		\$5,000.00
Custom	Radio package for retreival of data (Includes Radios, Antennas and mounting Hardware)	1	\$3,700.00		\$3,700.00
SAAUSB	RS485 to USB PC connection kit for SAA	1	\$596.90		\$596.90
*CR1000	Campbell Scientific CR1000 Datalogger	1	\$2,397.45		\$2,397.45
CR1000IntPack	SAA-CR1000 Integration Package	1	\$978.55		\$978.55
Solar20W	20 Watt Solar Panel	1	\$391.40		\$391.40
SolarBracket	Solar Panel Bracket	1	\$97.85		\$97.85

Total Quote	\$22,018.00
Harmonized Sales Tax Exempt	\$0.00
Labor / Shipping	\$0.00
Total Items	\$22,018.00

All Quotes are valid for 60 Days. All Pricing are in USD unless otherwise specified. * Denotes Distributor discounts do not apply ¶ Please contact Measurand Inc. Prior to ordering

NOTES:

(1) a) Unless otherwise specified, SAAs have no unsensorized segment at the far end;

b) Unless otherwise specified, SAAs have one unsensorized segment at the near end that provides an attachment point and junction to the cable. This segment and a stiffer portion of the cable occupy approximately 30 cm (1') "extra" beyond the length of sensorized segments. The cable can

Sales@measurand.com http://www.measurand.com

2111 Hanwell Road, Fredericton NB E3C 1M7 Tel: (506) 462-9119 Fax: (506) 462-9095

Licensed To: Measurand Inc

1/2

Item	Description	Qty	Price	DD	Extended Price				
	be turned 90 degrees within this dimension. When planning installation depth, this "extra" length must be accounted for;								
c) SAAF	s are built in groups of 8 segments called octets. A SAAF may be ordered wit	h a partial oc	tet						
(exan	nple: 14 segments instead of the standard 2 x 8 = 16 segments). Because thi	s entails a sp	ecial						
	iction run, pricing is per fully populated octet. For the example above, this e s (16 segments instead of 14).	entails pricing	for 2						
(2)Payment T	erms: Net 30 days from time of shipping. Overdue accounts will be subject t	o interest and	d penalties;						
., .	(3)Freight charges not included in total prices unless otherwise specified. Please indicate preferred shipping method on purchase order. Freight charges will be added at time of sale:								
(4)Applicable	taxes will be calculated and added at time of sale								
Components	Description:								
	ation/Ordering List" and "Ordering Guide" at www.MeasurandGeotechncial dimensions, and installation variables.	.com/downlo	oads" for assistar	nce in interp	reting the quoted				

Not included in the above: Drilling Casing Excavation Backfilling Lift equipment Security fencing Electrical supply Lightning protection

All quoted items are FOB Fredericton, New Brunswick, Canada. Any shipping and taxes due will be the responsibility of the customer Prices: Prices are subject to change without notice.

Terms & Conditions Concerning Delivered Products

1. Warranty: Measurand Inc. Warrants that its products are free from defects in material and workmanship for a period of one (1) year from date of delivery unless otherwise specified by Measurand Inc. In writing. This warranty applies only if the products have not been opened and have not been subjected to misuse, neglect, accident or improper installation or care. Said improper care includes but is not limited to supply of power not as specified by Measurand Inc. If Measurand Inc. Products fail due to no fault of the Buyer, Measurand Inc. Will, at its option, either repair the defective product and restore it to normal operation without charge for parts and labor or will provide a new replacement product in exchange for the defective product. Repair work shall be warranted for the remainder of the original warranty period or for a period of 60 days, whichever is longer. Measurand Inc. Hereby disclaims any implied warranty of merchantability.

2. Limitations of Liability: In no event will Measurand Inc. Be liable for any indirect, incidental or consequential damages or any lost profits or like expectancy damages arising out of the delivery of its products. Measurand Inc.'s liability for personal injury and/or property damage shall not exceed its general liability insurance policy limitations.

3. Inspection and Rejection of Products: Buyer shall notify Measurand, Inc., within seven (7) business days after receipt, of the discovery of any defects in delivered products and/or its acceptance/non acceptance thereof; otherwise, it shall be deemed to have accepted the products.

4. Return Goods Authorization: Measurand Inc. Shall not accept returned or rejected products/parts unless first authorized with a return merchandise authorization (RMA) number. The Buyer is responsible for handling, insurance and transportation of unit to Measurand Inc. Measurand Inc. Shall be responsible for inspecting the unit and repair as necessary. Measurand Inc. Shall pay for the return of the repaired/new unit to the Buyer via Ground Transportation only.

5. Title & Delivery: Title/risk of loss or damaged goods shall pass to the Buyer upon Measurand Inc. Delivery of products. Measurand Inc. Shall retain a security interest with repossession rights for products shipped on open account until all obligations are met. The delivery date is an estimate only, based on a best forecast of conditions at time of order entry. Neither party shall be liable to the other party for any failure to perform any of its obligations under this Agreement during any period in which such performance is delayed by circumstances beyond its reasonable control including, but not limited to fire, flood, war, terrorism, embargo, strike, constrained markets, riot or the intervention of any governmental authority ("Force Majeure"). In such event, however, the delayed party must promptly provide the other party with written notice of the Force Majeure. The delayed party's time for performance will be excused for the duration of the Force Majeure, but, if the Force Majeure event lasts longer than thirty (30) days, the other party may immediately terminate the Agreement by giving written notice to the delayed party.

6. Delivery Times/Expedited Delivery: Standard Delivery time is 3 4 weeks ARPO. In some cases, expedited delivery may be possible. Measurand Inc. Reserves the right to apply

an expedite fee of 10% of the total cost of the equipment purchased or a minimum charge of \$200.00 USD, whichever is greater.

7. BIS: The US Bureau of Industry and Security (BIS) may limit exports of USA made goods to certain individuals and organizations. A license application may need to be completed and submitted to Measurand before equipment may be shipped.

Sales@measurand.com http://www.measurand.com

2111 Hanwell Road, Fredericton NB E3C 1M7 Tel: (506) 462-9119 Fax: (506) 462-9095

Licensed To: Measurand Inc

2/2

Quote	Greg Lewsley	Quete Data	Jun-28-2010
Prepared	Knight Piesold	Quote Date	Juli-28-2010
For	750 West Pender Street	Quote Number	40
	Suite 1400	Sales Contact:	DJ Snodgrass
	Vancouver, BC V6C 2T8 CAN		
	(604) 685-0543 Fax: (604) 685-0147		

Quote for datalogging equipment for monitoring Peizometers around site.

Item	Description	Qty	Price	DD	Extended Price
Custom	10 installations for monitoring Peisometers. Can monitor multiple probes on each station	1	\$38,733.0 0		\$38,733.00
	Item includes logging equipment as well as radio commu radio.	inications to allo	w for one collection	n point via	
Solar20W	20 Watt Solar Panel	11	\$391.40		\$4,305.40
SolarBracket	Solar Panel Bracket	11	\$97.85		\$1,076.35
		Total Ite	ems		\$44,114.75
		Labor / S	hipping		\$0.00
		Harmonized Sales Tax Exempt Total Quote		\$0.00	
				\$44,114.75	

All Quotes are valid for 60 Days. All Pricing are in USD unless otherwise specified.

* Denotes Distributor discounts do not apply

¶ Please contact Measurand Inc. Prior to ordering

NOTES:

(1) a) Unless otherwise specified, SAAs have no unsensorized segment at the far end;

- b) Unless otherwise specified, SAAs have one unsensorized segment at the near end that provides an attachment point and junction to the cable. This segment and a stiffer portion of the cable occupy approximately 30 cm (1') "extra" beyond the length of sensorized segments. The cable can be turned 90 degrees within this dimension. When planning installation depth, this "extra" length must be accounted for;
- c) SAAFs are built in groups of 8 segments called octets. A SAAF may be ordered with a partial octet (example: 14 segments instead of the standard 2 x 8 = 16 segments). Because this entails a special production run, pricing is per fully populated octet. For the example above, this entails pricing for 2 octets (16 segments instead of 14).

(2)Payment Terms: Net 30 days from time of shipping. Overdue accounts will be subject to interest and penalties;
 (3)Freight charges not included in total prices unless otherwise specified. Please indicate preferred shipping method on purchase order. Freight charges will

be added at time of sale;

(4)Applicable taxes will be calculated and added at time of sale

Components Description: See "Specification/Ordering List" and "Ordering Guide" at www.MeasurandGeotechncial.com/downloads" for assistance in interpreting the quoted

Sales@measurand.com http://www.measurand.com

2111 Hanwell Road, Fredericton NB E3C 1M7 Tel: (506) 462-9119 Fax: (506) 462-9095

Licensed To: Measurand Inc

1/2

Item

components, dimensions, and installation variables.

Not included in the above: Drilling Casing Excavation Backfilling Lift equipment Security fencing Electrical supply Lightning protection

All quoted items are FOB Fredericton, New Brunswick, Canada. Any shipping and taxes due will be the responsibility of the customer Prices: Prices are subject to change without notice.

Terms & Conditions Concerning Delivered Products

1. Warranty: Measurand Inc. Warrants that its products are free from defects in material and workmanship for a period of one (1) year from date of delivery unless otherwise specified by Measurand Inc. In writing. This warranty applies only if the products have not been opened and have not been subjected to misuse, neglect, accident or improper installation or care. Said improper care includes but is not limited to supply of power not as specified by Measurand Inc. If Measurand Inc. Products fail due to no fault of the Buyer, Measurand Inc. Will, at its option, either repair the defective product and restore it to normal operation without charge for parts and labor or will provide a new replacement product in exchange for the defective product. Repair work shall be warranted for the remainder of the original warranty period or for a period of 60 days, whichever is longer. Measurand Inc. Hereby disclaims any implied warranty of merchantability.

2. Limitations of Liability: In no event will Measurand Inc. Be liable for any indirect, incidental or consequential damages or any lost profits or like expectancy damages arising out of the delivery of its products. Measurand Inc.'s liability for personal injury and/or property damage shall not exceed its general liability insurance policy limitations.

3. Inspection and Rejection of Products: Buyer shall notify Measurand, Inc., within seven (7) business days after receipt, of the discovery of any defects in delivered products and/or its acceptance/non acceptance thereof; otherwise, it shall be deemed to have accepted the products.

4. Return Goods Authorization: Measurand Inc. Shall not accept returned or rejected products/parts unless first authorized with a return merchandise authorization (RMA) number. The Buyer is responsible for handling, insurance and transportation of unit to Measurand Inc. Measurand Inc. Shall be responsible for inspecting the unit and repair as necessary. Measurand Inc. Shall pay for the return of the repaired/new unit to the Buyer via Ground Transportation only.

5. Title & Delivery: Title/risk of loss or damaged goods shall pass to the Buyer upon Measurand Inc. Delivery of products. Measurand Inc. Shall retain a security interest with repossession rights for products shipped on open account until all obligations are met. The delivery date is an estimate only, based on a best forecast of conditions at time of order entry. Neither party shall be liable to the other party for any failure to perform any of its obligations under this Agreement during any period in which such performance is delayed by circumstances beyond its reasonable control including, but not limited to fire, flood, war, terrorism, embargo, strike, constrained markets, riot or the intervention of any governmental authority ("Force Majeure"). In such event, however, the delayed party must promptly provide the other party with written notice of the Force Majeure. The delayed party's time for performance will be excused for the duration of the Force Majeure, but, if the Force Majeure event lasts longer than thirty (30) days, the other party may immediately terminate the Agreement by giving written notice to the delayed party.

6. Delivery Times/Expedited Delivery: Standard Delivery time is 3 4 weeks ARPO. In some cases, expedited delivery may be possible. Measurand Inc. Reserves the right to apply

an expedite fee of 10% of the total cost of the equipment purchased or a minimum charge of \$200.00 USD, whichever is greater.

7. BIS: The US Bureau of Industry and Security (BIS) may limit exports of USA made goods to certain individuals and organizations. A license application may need to be completed and submitted to Measurand before equipment may be shipped.

2111 Hanwell Road, Fredericton NB E3C 1M7 Tel: (506) 462-9119 Fax: (506) 462-9095

Licensed To: Measurand Inc

File No.:VA101-1/29-A.01 Cont. No.:VA10-01620 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 *Fax:* 604.685.0147 *www.knightpiesold.com*

November 23, 2010

Mr. Ron Martel Environmental Superintendent Mount Polley Mining Corporation P.O. Box 12 Likely, BC V0L 1N0

Dear Ron,

Re: Tailings Storage Facility Instrumentation Replacement Program, Drilling Cost Estimates

Introduction

The Mount Polley Mine has several options for the instrumentation replacement program required at the Tailings Storage Facility. These options are described in the Knight Piésold Letter VA10-01175. The installation of the replacement instrumentation will include a drilling program; this drilling program is the largest cost item in the instrumentation replacement program. Mr. Ron Martel of Mount Polley Mine has requested Knight Piésold assist with the selection of a suitably qualified drilling contractor.

To assist Mount Polley in managing the drilling costs Knight Piésold has obtained three competitive quotes from qualified drilling contractors. Knight Piésold has experience working with all three contractors on similar programs and based on our experience, we believe that all are capable of completing the work.

Drilling Program

The drilling contractors were requested to provide cost estimates and comment on drill availability. The drilling program is summarized as:

- 5 drill holes in total, 2 drill holes to 60m and 3 drill holes to 25m
- Supply and install slope indicator casing in each drill hole
- Install 4 vibrating wire piezometers in each drill hole, (supply by others)
- Collect soil samples and evaluate geotechnical conditions encountered in the foundation soils, and
- All drill sites will be truck accessible (Mount Polley to provide suitable drill site access)

Cost Estimate

Three drilling contractors were requested to provide cost estimates. A copy of the cost estimates provided by each of the drilling contractors is attached. The cost estimate provided by Foundex Explorations Ltd. included for the supply of vibrating wire piezometers. To facilitate a cost comparison between the potential contractors the HST has been excluded and the Foundex Explorations Ltd. cost estimate has been adjusted to exclude supply of vibrating wire piezometer and cable. The summarized cost estimates excluding HST are:

Knight Piésold

CONSULTING

- 1. Mud Bay Drilling Co. Ltd. \$63,700
- 2. Geotech Drilling \$69,700
- 3. Foundex Explorations Ltd. \$81,300

All three contractors have verbally confirmed they have a drill available before the end of the year.

Summary

The selection of a drilling contractor from this short list is required by Mount Polley Mine. It is recommended that Mount Polley directly contract the drilling contractor in order to avoid any mark-ups that would be applied by Knight Piésold. Knight Piésold is available to assist Mount Polley with the drilling contract document review.

In addition to the drilling costs, the specified instrumentation will also need to be purchased. Knight Piésold is expecting cost estimates for the instrumentation purchase later this week, and will be reported in a separate letter.

We trust this will help your selection of a drilling contractor. This instrumentation replacement program is overdue and we recommend that it be initiated as soon as possible. Please call Greg or Ken if you have any questions.

Yours truly, KNIGHT PIESOLD LTD.

Signed: Greg Johnston, M.Sc. Engineering Geology and Geotechnical Specialist

Attachments: Cost Estimates by: Geotech Drilling (1 page) Mud Bay Drilling Co. Ltd. (1 page) Foundex Explorations Ltd. (3 pages)

Copy To: Luke Moger

/gj

Approved: Ken Brouwer, P.Eng. Managing Director

Bill to: Knight Piesold Ltd.

Care of: Knight Piesold Ltd. 1400 750 West Pender Street Vancouver, BC V6C 2T8

Email: msmith2@knightpiesold.com

ATTN: Mark Smith

Tel:

Cost Estimate

Date: October 27, 2009

	Revised No./Date:	04-Nov-10	
	Project Manager:	Ryan Samis	
	Cost Estimate No .:	1KRS10-0043	
	Unit No. (Drill Rig):	Odex/Mud Rotary Drill	
	Location:	Mount Polley Mine	
ì	Province:		

Scope: This cost estimate is for 2 boreholes to 60 meters (200 ft) with 4 Vibrating Wire Installs per hole and 3 boreholes to 25 meters (s (100 ft) with 2.75" Casing installed and 4 Vbrating Wires per hole,. Soil coring(HQ3) will be required in the last 65 ft of each hole.

ltm	Qty	Unit	Description	Price	Extended
1	96	hrs	Odex Drilling / Soil Coring	249.00	23,904.00
2	52	hrs	Overtime (after 8 hours, weekends, stats)(two man crew)	65.00	3,380.00
3	1	L/S	Mob/Demob to Mount Polley	2750.00	2,750.00
4	30	hrs	Crew travel	150.00	4,500.00
5	12	shift	Support vehicle(truck mount)	249.00	2,988.00
6	12	shift	Crew subsistence (two man crew)	279.00	3,348.00
7	12	shift	Air compressor rental (300/200)	425.00	5,100.00
8	12	shift	Grout/Mud pump rental	199.00	2,388.00
9	5	hrs	Safety meeting	149.00	745.00
10	311	ft	Diamond Bit Wear Consumption	19.75	6,142.25
11	590	ft	Odex bit wear consumption (Vibrating Wire BH's, Inclinometers and Monitoring Wells)	5.75	3,392.50
12	12	shift	High Pressure Diamond Pump Rental	175.00	2,100.00
13					
14					-
15					
16				1	-
17				No. Sector Sector	
18	400	ft	1" PVC (for Vibrating wire installs)	1.87	748.00
19	25	10 ft	2.75" Slope Inclinometer Pipe	148.35	3,708.75
20	3	ea	2.75" Slope Inclinometer Top Cap	6.90	20.70
21	3	ea	2.75" Slope Inclinometer Grout Anchor	58.69	176.07
22	40	bags	Bentonite chips (If grouting does not work, chips will be used as backfill material in rock fill)	21.84	873.60
23	12	bags	Sand (Vibrating Wire Installs if required)	15.52	186.24
24	5	ea	Stand up casing protectors	109.25	546.25
25	5	bags	Fast set pre-mix concrete	17.25	86.25
26	65	5 ft	Acrylic Liners for Soil Coring	28.75	1,868.75
27	7	bags	Premix Grout	34.44	241.08
28 29	21	bags	Portland cement	23.75	498.75
fees & rest	locking charges	may apply if loss that	valit for 40 days. Underground / Overhead utilities are the sole responsibility of the client. Lost, broken or unrecoverable looling will be charged at cost plus 1915. Concellation n 48 hours notice. Invoice Payment terms: Upon Receipt. 255 interest charges will apply on past due accounts Invoice considered accounts of days after	Subtotal \$	69,692.19
receipt unit	ess written notil	loation is received.	"Overfime is applicable after 8 hours, weekends, and statutory holidays"	HST \$	8,363.06
Brit	ish C	olumbia		TOTAL DU \$	78,055.25

5052 Hartway Drive • Prince George • British Columbia • Canada • V2K 5B7

Tel: (250)962-9041 • Fax: (250)962-9046 • Web: geotechdrilling.com

Promotion Code:

Thank You for Your Business!

ししししし	DRILLING CO. LTD.
	Unit A, 18509 96th Avenue, Surrey, BC V4N-3P7

Cost Estimate

Date: August 13 2010

Revised No./Date:

Tel: (604) 888-2206 Fax: (604) 888-4206

Vancouver, B.C., V6C 2T8

Knight & Piesold Ltd. Suite 1400 - 750 West Pender St.

ATTN: Greg Johnston

Cost Estimate No.: 1 Unit No. (Drill Rig): Sonic Truck

Location: Mount Polley

45gal drums, if needed

Scope: 2 boreholes to 60m and 3 boreholes to 25m. Slope indicator casing to be installed in each hole. 4 VW piezometers in each hole. Piezometers to be supplied by client.

ltm	Qty	Unit	Description		Price	Extended
1	1	ls.	Mobilization (Surrey/Mount Polley/Surrey)	\$	6,500.00	\$ 6,500.00
2	60	hrs	Drilling, sampling and installation	\$	550.00	\$ 33,000.00
3		hrs	Crew overtime (1.5)			\$ -
4		hrs	Crew overtime (2.0)			\$ -
5	12	hrs	Crew Travel	\$	185.00	\$ 2,220.00
6	6	days	Living allowance	\$	525.00	\$ 3,150.00
7	195	m	Bit Wear	\$	35.00	\$ 6,825.00
8		in.	Concrete coring (10 in dia.)			\$ -
9	195	m	2.75"/70mm INCLINOMETER CASING SNAP SEAL	\$	37.00	\$ 7,215.00
10		ft.	(2)" PVC blank			\$ -
11	5	ea	INCLINOMETER TOP/BOTTOM CAP	\$	27.00	\$ 135.00
12		ea	DCPT tips	\$	20.00	\$ -
13		ea	Shelby tubes	\$	40.00	\$ -
14		sacks	Silica sand	\$	16.00	\$ -
15		sacks	Bentonite chips	\$	20.00	\$ -
16	5	sacks	Concrete	\$	16.00	\$ 80.00
17	195	m	Grouting of Boreholes	\$	11.00	\$ 2,145.00
18		sacks	Quik-gel bentonite drilling mud	\$	20.00	\$ -
19		sacks	Asphalt patch	\$	22.00	\$ -
20		sacks	Portland cement	\$	20.00	\$ -
21	6	days	Support /Decontamination Unit	\$	300.00	\$ 1,800.00
22		days	Compressor rental for ODEX	\$	450.00	\$ -
23		ea	45 gal. Drums with lids	\$	60.00	\$ -
24	5	ea	Well covers (flush mounted, cast iron, above ground)	\$	135.00	\$ 675.00
25		ea	Core boxes	\$	60.00	\$ -
26						\$ -
27						-
28						-
29						-
Note					Subtotal	\$ 63,745.00
		rig and o			H.S.T.	\$ 7,649.40
			an 8hrs onsite +\$75/hr e for contaminated soil/wast water removal	ТС	DTAL DUE	\$ 71,394.40
		s, if need				

\$60/ea

FOUND	ЭЕХ									Date.	Oct. 28, 201
Explorations Ltd.	_									Client Job#:	N/A
		Proposal #	4385							Equipment:	CSR-100
Fo: Knight Piesold Consultii Suite 1400 - 750 West F /ancouver, BC /6C 2T8 Fel: 604-			Project Details: Site: Attention: Single shif / double Estimate # of Shifts Estimate # of Days	Mount Polley Mark Smith Single Shift 15 15							
Hole #	Hole Depth (m)	Hole Depth (ft)	Move/Setup	Air Rotary Overburden (m)	Overburden (hrs)	Mud Rotary (m)	Mud Rotary (hrs)	Coring (m)	Coring (hrs)	Install/Backfill/G rout (hrs)	Total Hrs
60 60 25 25 25 QUANTITY: UNITS: RATE:	Meters	196.80 196.80 114.80 114.80 738.00 Feet					s.21				
TOTAL:			\$ 1,950.00		\$ 16,250.00		\$ 15,600.00		\$ 15,600.00		
^e DENOTES WEEKENI Moving Air Rotary Mud Rotary Travel Holes Work Week	O OR HOLIDAY									Sub Total: Mobilization: Materials: Contingency: Sub Total: HST @ 12%: Total:	\$58,760 \$8,500 \$26,080 \$8,484 \$101,83 \$12,219 \$114,050
Vork Days contingency lours Per Day upervisor xtra Helper rrew &B Rate / Man ig Rate				s.21							
Quantity		cription	Unit								
40 60 125 40	HQ3 Coring Mud Rotary Drilling Air Rotary Drilling - Cement	6' Symmetrix	Per Meter Per Meter Per Meter Bags	16.50 50.00 15.15	1,312.00 990.00 6,250.00 606.00						
10 5	X-Tra Gel Bentonite Bentonite Chips	e	Bags Bags		125.00						
	Time Release Pelle				97.50						
20 40 250	Piezo Sand	ets	Pails Bags Feet	10.17	2,076.00 406.80						
40 250 18	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10' linclind	ometer Casing	Bags Feet Each	10.17 0.55 98.50	2,076.00 406.80 137.50 1,773.00						
40 250	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10' linclino 2 3/4" Inclinometer	ometer Casing r Top Caps r Grout Bottom Caps	Bags Feet Each Each	10.17 0.55 98.50 5.53 129.20 550.00	2,076.00 406.80 137.50						
40 250 18 2 2 20	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10' linclino 2 3/4" Inclinometer 2 3/4" Inclinometer Vibrating Wire Piez	ometer Casing r Top Caps r Grout Bottom Caps	Bags Feet Each Each Each Each	10.17 0.55 98.50 5.53 129.20 550.00	2,076.00 406.80 137.50 1,773.00 11.06 258.40 11,000.00						
40 250 18 2 2 20 321	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10' linclino 2 3/4" Inclinometer 2 3/4" Inclinometer Vibrating Wire Piez	ometer Casing r Top Caps r Grout Bottom Caps	Bags Feet Each Each Each Each	10.17 0.55 98.50 5.53 129.20 550.00 3.25	2,076.00 406.80 137.50 1,773.00 11.06 258.40 11,000.00 1,043.25						
40 250 18 2 2 20 321 PROJECT DETAILS	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10' linclino 2 3/4" linclinometer Vibrating Wire Piez Cable for VW	ometer Casing r Top Caps r Grout Bottom Caps	Bags Feet Each Each Each Each	10.17 0.55 98.50 5.53 129.20 550.00 3.25	2,076.00 406.80 137.50 1,773.00 11.06 258.40 11,000.00 1,043.25	Installation	N/A				
40 250 18 2 2 20 321 PROJECT DETAILS Vater Availability	Piezo Sand 3/4" PVC Pipe 2 3/4" InClinotinc 2 3/4" Inclinometer 2 3/4" Inclinometer Vibrating Wire Piez Cable for VW	ometer Casing r Top Caps r Grout Bottom Caps zometer	Bags Feet Each Each Each Per Meter	10.17 0.55 98.50 5.53 129.20 550.00 3.25 TOTAL	2,076.00 406.80 137.50 11.06 258.40 11.000.00 1,043.25 26,086.51	Installation PVC Size	N/A N/A				
40 250 18 2 2 20 321 PROJECT DETAILS Water Availability Equipment Access Environmental Project	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10" linclino 2 3/4" Inclinometer 2 3/4" Inclinometer 2 3/4" Inclinometer Vibrating Wire Piez Cable for VW	ometer Casing r Top Caps r Grout Bottom Caps zometer Surface Casing Casing Size Drill Hole	Bags Feet Each Each Each Per Meter Yes Symmetrix 6" Yes	10.17 0.55 98.50 5.53 129.20 550.00 3.25 TOTAL Accommodations Fuel Insurance certificate	2,076.00 406.80 137.50 1,773.00 11.06 258.40 11,000.00 1,043.25 26,086.51 Williams Lake N/R	PVC Size Slot size	N/A N/A				
40 250 18 2 2 20 321 PROJECT DETAILS Water Availability Equipment Access Environmental Project Any Permitting	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10' linclinc 2 3/4" Inclinometer 2 3/4" Inclinometer Vibrating Wire Piez Cable for VW Unknown Truck No By Others	ometer Casing r Top Caps r Grout Bottom Caps zometer Surface Casing Casing Size Drill Hole Hole Size	Bags Feet Each Each Each Per Meter Ves Symmetrix 6" Yes Symmetrix 6"	10.17 0.55 98.50 5.53 129.20 550.00 3.25 TOTAL Accommodations Fuel Insurance certificate Shipping Quote	2,076.00 406.80 137.50 1,773.00 11.06 258.40 11,000.00 1,043.25 26,086.51 Williams Lake N/R N/R	PVC Size Slot size Flush/Standup	N/A N/A N/A				
40 250 18 2 2 20 321 PROJECT DETAILS Vater Availability Equipment Access Environmental Project Any Permitting Intended Driller	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10' linclinc 2 3/4" Inclinometer 2 3/4" Inclinometer Vibrating Wire Piez Cable for VW Unknown Truck No By Others Unknown	ometer Casing r Top Caps r Grout Bottom Caps zometer Surface Casing Casing Size Drill Hole Hole Size Drill Method	Bags Feet Each Each Each Per Meter Yes Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core	10.17 0.55 98.50 5.53 129.20 550.00 3.25 TOTAL Accommodations Fuel Insurance certificate Shipping Quote Maps Required	2,076.00 406.80 137.50 11.06 258.40 11.000.00 1,043.25 26,086.51 Williams Lake N/R N/R N/R Yes	PVC Size Slot size Flush/Standup Sand	N/A N/A N/A N/A				
40 250 18 2 2 20 321 PROJECT DETAILS Vater Availability Equipment Access Environmental Project Any Permiting Intended Driller Cutting Disposal	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10" linclinc 2 3/4" Inclinometer 2 3/4" Inclinometer Vibrating Wire Piez Cable for VW Unknown Truck No By Others Unknown Left on site	Surface Casing r Top Caps r Grout Bottom Caps zometer Surface Casing Casing Size Drill Hole Hole Size Drill Method Core Size	Bags Feet Each Each Each Per Meter Yes Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core HQ3	10.17 0.55 98.50 5.53 129.20 550.00 3.25 TOTAL Accommodations Fuel Insurance certificate Shipping Quote Maps Required Utility Locate Req.	2,076.00 406.80 137.50 11.06 258.40 11.000.00 1,043.25 26,086.51 Williams Lake N/R N/R N/R Yes By Others	PVC Size Slot size Flush/Standup Sand Pellets	N/A N/A N/A N/A N/A				
40 250 18 2 2 20 321 PROJECT DETAILS Water Availability Equipment Access Environmental Project Any Permitting Intended Driller Duting Disposal Drill Containment	Piezo Sand 3/4" PVC Pipe 2 3/4" x 10" linclino 2 3/4" Inclinomete 2 3/4" Inclinomete Vibrating Wire Piez Cable for VW Unknown Truck No By Others Unknown Left on site No	ometer Casing r Top Caps r Grout Bottom Caps zometer Surface Casing Casing Size Drill Hole Hole Size Drill Method Core Size SPT/Shelby	Bags Feet Each Each Per Meter Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core HQ3 SPT and Shelby	10.17 0.55 98.50 5.53 129.20 550.00 3.25 TOTAL Accommodations Fuel Insurance certificate Shipping Quote Maps Required Utility Locate Req. Terms Sent	2,076.00 406.80 137.50 1,773.00 11.06 258.40 11,000.00 1,043.25 26,086.51 26,086.51 Williams Lake N/R N/R N/R Yes By Others Yes	PVC Size Slot size Flush/Standup Sand Pellets Grout	N/A N/A N/A N/A N/A N/A				
40 250 18 2 2 20 321 PROJECT DETAILS Water Availability Equipment Access Environmental Project Any Permitting Intended Driller Cutting Disposal Drill Containment Rental Equipment	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10" linclino 2 3/4" Inclinometer 2 3/4" Inclinometer 3 3/4" Inclinometer	ometer Casing r Top Caps r Grout Bottom Caps cometer Surface Casing Casing Size Drill Hole Hole Size Drill Method Core Size SPT/Shelby Wireline Samples	Bags Feet Each Each Each Per Meter Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core HQ3 SPT and Shelby N/A	10.17 0.55 98.50 5.53 129.20 550.00 3.25 TOTAL Accommodations Fuel Insurance certificate Shipping Quote Maps Required Utility Locate Req.	2,076.00 406.80 137.50 11.06 258.40 11.000.00 1,043.25 26,086.51 Williams Lake N/R N/R N/R Yes By Others	PVC Size Slot size Flush/Standup Sand Pellets	N/A N/A N/A N/A N/A				
40 250 18 2 2 20 321 PROJECT DETAILS Nater Availability Equipment Access Environmental Project Any Permitting ntended Driller Cutting Disposal Drill Containment Rental Equipment Subcontractors	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10" linclino 2 3/4" Inclinometer 2 3/4" Inclinometer 3 3/4" Inclinometer	Surface Casing r Top Caps r Grout Bottom Caps cometer Surface Casing Casing Size Drill Hole Hole Size Drill Method Core Size SPT/Shelby Wireline Samples CPT / SCPT	Bags Feet Each Each Each Per Meter Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core HQ3 SPT and Shelby N/A N/A	10.17 0.55 98.50 5.53 129.20 550.00 3.25 TOTAL Accommodations Fuel Insurance certificate Shipping Quote Maps Required Utility Locate Req. Terms Sent	2,076.00 406.80 137.50 1,773.00 11.06 258.40 11,000.00 1,043.25 26,086.51 26,086.51 Williams Lake N/R N/R N/R Yes By Others Yes	PVC Size Slot size Flush/Standup Sand Pellets Grout	N/A N/A N/A N/A N/A N/A				
40 250 18 2 2 20 321 PROJECT DETAILS Water Availability Equipment Access Environmental Project Any Permitting Intended Driller Cutting Disposal Drill Containment Rental Equipment Subcontractors Service Vehicles	Piezo Sand 3/4" PVC Pipe 2 3/4"x 10" linclino 2 3/4" Inclinometer 2 3/4" Inclinometer 3 3/4" Inclinometer	Surface Casing r Top Caps r Grout Bottom Caps zometer Surface Casing Casing Size Drill Hole Hole Size Drill Method Core Size SPT/Shelby Wireline Samples CPT / SCPT Development	Bags Feet Each Each Each Per Meter Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core HQ3 SPT and Shelby N/A N/A	10.17 0.55 98.50 5.53 129.20 550.00 3.25 TOTAL Accommodations Fuel Insurance certificate Shipping Quote Maps Required Utility Locate Req. Terms Sent	2,076.00 406.80 137.50 1,773.00 11.06 258.40 11,000.00 1,043.25 26,086.51 26,086.51 Williams Lake N/R N/R N/R Yes By Others Yes	PVC Size Slot size Flush/Standup Sand Pellets Grout	N/A N/A N/A N/A N/A N/A				
40 250 18 2 2 20 321 PROJECT DETAILS Nater Availability Equipment Access Environmental Project Any Permitting ntended Driller Cutting Disposal Drill Containment Rental Equipment Subcontractors	Piezo Sand 3/4" PVC Pipe 2 3/4" x 10" linclino 2 3/4" Inclinometer 2 3/4" Inclinometer 2 3/4" Inclinometer Vibrating Wire Piez Cable for VW Unknown Truck No By Others Unknown Left on site No No Yes Yes	Surface Casing r Top Caps r Grout Bottom Caps cometer Surface Casing Casing Size Drill Hole Hole Size Drill Method Core Size SPT/Shelby Wireline Samples CPT / SCPT	Bags Feet Each Each Each Per Meter Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core HQ3 SPT and Shelby N/A N/A	10.17 0.55 98.50 5.53 129.20 550.00 3.25 TOTAL Accommodations Fuel Insurance certificate Shipping Quote Maps Required Utility Locate Req. Terms Sent	2,076.00 406.80 137.50 1,773.00 11.06 258.40 11,000.00 1,043.25 26,086.51 26,086.51 Williams Lake N/R N/R N/R Yes By Others Yes	PVC Size Slot size Flush/Standup Sand Pellets Grout	N/A N/A N/A N/A N/A N/A				

** THIS IS A COST ESTIMATE ONLY ** ACTUAL CHARGES WILL BE BASED ON FIELD LOGS AND OUR STANDARD TERMS AND CONDITIONS***

STANDARD TERMS & CONDITIONS OF FOUNDEX EXPLORATIONS LTD.

1. General

- 1.1. Prices include a 2 man crew and all necessary drilling and sampling equipment.
- 1.2. FWA, regulated or Union wage rates would be at an additional charge.
- 1.3. Survey and layout of all drill locations to be the responsibility of others.
- 1.4. Authorized utility clearance to be provided to Foundex prior to drilling.
- 1.5. Suitable access for our equipment would be provided by others to the satisfaction of Foundex.
- 1.6. Removal of and transport of contaminated drilling and decontamination spoils from the drill sites to be the responsibility of others.
- 1.7. Foundex's minimum work schedule is 10 hours per day and 5 days per week along with being a continuous operation until the work is complete. Overtime rate is in effect for all hours after 8 hrs per day, and after 40 hours per week, and on weekends and holidays. Work schedule revisions will be at the discretion of Foundex Explorations Ltd. based on project specific situations.
- 1.8. Client will provide site specific Health and Safety Plan for environmental projects. Equipment spill containment systems would be at an additional cost and only be provided at the specific request of the client. Pricing assumes Level "D" personnel protection unless specifically indicated otherwise.
- 1.9. Any or all traffic control to be provided by others.
- 1.10. Security for our equipment to be the responsibility of others.
- 1.11. Potable water supply, utility permits, misc. permits etc to be provided by others.

2. Marine Work and Marine Transportation

- 2.1. When contracting Marine vessels, Foundex will flow thru to the client all the terms and conditions of the supplier.
- 2.2. Standby will apply to all time that the barge and drill are unable to work due to tides, weather, permits or anything else that is beyond the control of the drill crew and/or barge operator.
- 2.3. When required by Foundex the Client will provide suitable moorage for barge and work boats.
- 2.4. All Marine vessels supplied by the client shall meet Foundex's minimum requirements for offshore drilling.
- 2.5. Minimum day for all rigs is 10 hours. Standby due to weather will be charged at agreed rates for 10 hours per day.
- 2.6. Cargo insurance for FEL's equipment while being transported by non-scheduled marine transportation will be charged on a cost plus basis or be provided by the client.

3. Heliportable Work

- 3.1. When requested, contracting helicopter services, Foundex will flow thru to the client all the terms and conditions of the supplier.
- 3.2. Suitable Helipads and work platforms when required will be provided for by others.
- 3.3. All Permitting when required will be provided by the client
- 3.4. When requested, Fuel will be supplied at cost plus 10% to the client.
- 3.5. Cargo insurance for FEL'S equipment while in flight is to be provided for by the client and hen Foundex provides cargo insurance it would be at Cost plus 10%.

4. Technical

- 4.1. Any artesian water flows will be dealt with on a cost plus basis.
- 4.2. Standby at 80 % of our unit rates includes but is not limited to, site orientation, safety meetings, engineering, health & safety plan protocols, personal protection equipment upgrades, water sampling, and lab analysis. Client will be invoiced for actual time consumed.
- 4.3. Materials are based on identified scope of work and include materials and supplies required to complete the work. Additional materials and supplies can be made available provided as mutually agreed.

Page 1 of 2

- 4.4. Estimate is subject to final scope of work, terms and conditions, health & safety plan and rig availability. Client will be invoiced for actual units consumed.
- 4.5. Reasonable drilling and sampling refusal based upon industry standard for applicable methodology. Refusal for Becker Drilling will be considered to be 200 blows per foot.
- 4.6. Foundex makes no guarantee desired maximum depths can be achieved. Potential for tool replacement if required by the client to drill or sample past the drill rig operators identified maximum safe depth. Potential for Becker pipe repair or replacement will be at cost plus 10% for any lost, damaged or bent pipe.

5. Financial

- 5.1. Any estimates offered by Foundex are for budgeting purposes only. Unless specifically indicated otherwise invoicing will be based upon actual time and quantities. Foundex does not guarantee that production rates used in the estimate will be achieved. Foundex reserves the right to modify our stated methodology to respond to differing site conditions. Should a not to exceed contract or footage rates be required Foundex requires this information prior to the bid date.
- 5.2. Sales tax or GST is not included in the above rates unless specifically indicated.
- 5.3. Upon prior approval of credit, payment terms are net 30 days from date of Invoice. All invoices issued by Foundex will be in digital format. All agreements that do not comply with these terms and conditions will be subject to a 5% mark-up on the total invoice. All invoices will also carry a 2% charge per month on any overdue balances.
- 5.4. Payment or performance bonds are not included in this proposal.
- 5.5. Any retention of funds due to Foundex shall be released in full within 30 days of completion of Foundex Explorations Ltd.'s Original scope of work.
- 5.6. Certificates of insurance will be submitted upon request only and any additional insurance requirements would be charged to the client at cost plus 10%.
- 5.7. When applicable a Fuel surcharge will be charged on Foundex projects.
- 5.8. Project cancellations after notice to proceed may incur costs payable by the client. Mobilization ends once the rig has arrived on site; set-up on the first borehole is per the terms of the proposal.
- 5.9. All proposals offered by Foundex are commercial in confidence and valid for 30 Days.
- 5.10. Upon Foundex receiving a purchase order or a verbal or written" notice to proceed", the client shall be deemed to have accepted and agreed to these terms and conditions unless specifically indicated otherwise and agreed to in writing prior to the commencement of the project. These terms and conditions incorporate the entire agreement between Foundex and the client, and supersede all prior understandings and agreements with respect to the project. If this document is a subcontract, then Foundex will not be bound by any term of the head contract unless specifically included in this document, or an amendment signed by Foundex and the client. No modification of this agreement will be effective unless made in writing and signed by Foundex and the client. There are no representations, warranties, terms, conditions, undertakings or collateral agreements express, implied or statutory, between Foundex and the client other than as expressly set forth in these terms and conditions.

Section" A" (Site specific terms)

To be Determined

Section "B" (Foundex Proposal and Scope of Work) See Attached

Section "C" (Miscellaneous attachments)

To be Determined

Foundex Explorations Ltd. End of Terms and Conditions

Page 2 of 2

File No.:VA101-1/29-A.01 Cont. No.:VA11-00252 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 *Fax:* 604.685.0147 *www.knightpiesold.com*

February 3, 2011

Mr. Ron Martel Environmental Superintendent Mount Polley Mining Corporation P.O. Box 12 Likely, BC V0L 1N0

Dear Ron,

Re: Mount Polley Mine – Site Water Management

Knight Piésold (KP) recently issued the 2010 annual inspection report for the Tailings Storage Facility (TSF) at the Mount Polley Mine. Although the primary focus of the annual inspection is to evaluate the performance of the TSF, the inspection also considers site water management practices, as these can have a significant impact on water accumulation at the mine and the storage requirements for the tailings impoundment.

KP previously assisted with assessing the operational water balance for the overall site. However, Mount Polley Mining Corporation (MPMC) has been managing the water balance in-house for the last two years and KP has had no involvement with it during this time. The water balance for the mine site was operating with a significant water surplus when KP last reviewed the information, with surplus water progressively accumulating within the TSF and the Cariboo and Wight Pits. KP understands that the quality of the water that is stored in the TSF and the pits is not suitable for discharge to the environment, and that MPMC does not yet have a permit to discharge excess water.

MPMC recently provided KP with a copy of an amendment (2009) to the mine operating permit that allows for the transfer of water from the TSF to the Cariboo Pit. This permit amendment allows for filling of the Cariboo Pit up to a designated maximum water level, and also stipulates that a minimum water cover be maintained over Potentially Acid Generating (PAG) waste rock that has been placed in the pit. KP has a general knowledge of the Cariboo Pit, but has not completed relevant geotechnical or hydrological studies for it. However, our overview assessment of the TSF operations, conducted as part of the 2010 Annual Inspection, suggests that a significant amount of water was transferred out of the TSF as the impounded supernatant water was considerably less than in previous years. MPMC site staff confirmed that tailings supernatant water had been transferred from the TSF to the Cariboo Pit to reduce the volume of water stored within the TSF.

The storage capacity for surplus water in the Cariboo Pit is limited by the geometry of the pit, the amount of PAG waste rock being stored in the pit, and the upper storage limit as defined in the operating mine permit. It is our opinion that the volume of water currently being stored in the Cariboo Pit is lower than would have been predicted by the site water balance, and it is possible that significant leakage may have occurred during filling of the Cariboo Pit, resulting in the discharge of poor quality water to adjacent water courses.

KP included a recommendation in the 2010 Annual Inspection report that the water balance and water management practices be reviewed to ensure compliance with the intent of the current permits. Our

concern is that some of the water transferred from the TSF to the Cariboo Pit is not being contained, but rather is being discharged as seepage and/or overflow to adjacent receiving waters. KP therefore recommends that MPMC adopt a pro-active approach and have an experienced reviewer examine the overall site water management system, with particular focus on the hydrogeological characteristics of the Cariboo and Wight Pits, to evaluate the current practices for managing site surplus water to confirm compliance with existing storage and discharge permits.

We trust that this information will be of assistance to MPMC in their continuing operation of the Mount Polley Mine. Please contact the undersigned if you have any questions or comments.

Yours truly, KNIGHT PIESOLD LTD.

GINE

Signed: Les Galbraith, P. Eng. Senior Engineer

Approved: Ken Brouwer, P.Eng. Managing Director

Copy To: Tim Fisch (MPMC), Bryan Kynoch (Imperial Metals Corporation)

/lg

Knight Piésold CONSULTING

File No.:VA101-1/29-A.01 Cont. No.:VA11-00298 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 Fax: 604.685.0147 www.knightpiesold.com

February 10, 2011

Mr. Brian Kynoch Mount Polley Mining Corporation Suite 200 - 580 Hornby Street Vancouver, BC V6C 3B6

Dear Brian,

Re: Mount Polley Tailings Storage Facility Engineer of Record

We have completed all assignments and on January 25, 2011 issued to Mount Polley Mining Corporation (MPMC) the final versions of the 'Tailings Storage Facility - Report on the 2010 Annual Inspection' and 'Tailings Storage Facility – Report on Stage 6B Construction'.

We are currently assuming that MPMC will be retaining the services of a separate individual or organization to take over as the Engineer of Record for the tailings storage facility, as a result of Knight Piésold's decision to opt out of the bidding process implemented by MPMC late last year. We would like to facilitate a formal handover to the new individual/group, as it is essential that it be recognized that Knight Piésold will not have any responsibility for any aspects of the on-going operations, or of any modifications to the facilities that are undertaken from now onwards. To date, the tailings impoundment has been developed using the observational approach, wherein the design is modified as appropriate depending on actual performance and conditions. It must be understood that Knight Piésold will no longer have any responsibility for the performance of the tailings storage facility.

The embankments and the overall tailings impoundment are getting large and it is extremely important that they be monitored, constructed and operated properly to prevent problems in the future. Knight Piésold would be happy to assist in the formal handover to the new Engineer of Record.

As we have a long relationship with the Mines Branch and the Ministry of Energy, Mines and Petroleum Resources, we consider that it is prudent to notify them of the change in status. Therefore, we have copied them on this correspondence.

We would like to thank you for our long and constructive association at the Mount Polley Mine and look forward to working together again in the future.

Signed: Ken Brouwer, P.Eng. Managing Director

Approved: Jeremy Haile, P.Eng. President

Copy To:

Don Parsons (IMC), Ron Martel (MPMC), Tim Fisch (MPMC) Al Hoffman, Chief Inspector of Mines /kjb

MOUNT POLLEY MINING CORPORATION

A DIVISION OF IMPERIAL METALS CORPORATION Box 12, Likely B.C. VOL 1N0 Phone (250)-790-2215, Fax (250)-790-2268

March 3rd, 2011

Mr. Les Galbraith Senior Engineer Knight Piésold Consulting #1400 – 750 West Pender Street Vancouver, BC V6C 2T8

Re: Mount Polley Mine - Site Water Management

Dear Les:

We confirm that significant water leakage from the Cariboo pit has not taken place, and that the water balance continues to accurately predict the water levels at all locations at the site including the Cariboo pit. The water balance continues to work well; the negative accounts are the result of drought conditions we experienced over the last twelve months.

We were quite concerned about the opinion you expressed in your letter of February 3, 2011, "that the volume of water stored in the Cariboo pit is lower than would have been predicted by the site water balance, and that it is possible that significant leakage may have occurred during the filling of the Cariboo pit, resulting in the discharge of poor quality water to adjacent water courses." Monitoring of ground water and surface water courses downstream confirm this is not the case, and as we noted above the water balance continues to accurately predict the level of water in the Cariboo pit.

Transfer of water between the open pits and the tailings impoundment facility was always contemplated, and each pit has a permitted water fill elevation. It is recommended in the operating plans that Knight Piesold helped develop that we fill the pits to these levels as quickly as possible to minimize the potential for mineral oxidation and metal leaching. The Cariboo pit was already filled to capacity once before, during the period of temporary suspension, the monitoring of wells and surface flows then also indicated that the water was well contained.

In your letter you acknowledge that you have not been involved in the management of the water balance at Mount Polley for the last two years. While we appreciate that you shared your concerns with us, it is important for you to ensure that such highly sensitive views take into account current information, such as in this case, recent drought conditions, together with all relevant historical data.

We at Mount Polley and Imperial Metals pay close attention and take our responsibility to manage water seriously. The water management plan is evaluated on a continual basis and adjustments made to avoid impacts to the environment. Mount Polley has taken a pro-active approach, working closely with engineers at head office as well as other consultants who provide an outside review of the water management practices at the site and ensure we are in compliance with our permits.

Yours truk Mount Polley/Mining Corporation Ron Martel Kynoch, Tim Fisch, Ken Brouwer

TRANSMITTAL

Suite 1400 - 750 West Pender Street Vancouver, BC V6C 2T8 Tel: 604.685.0543 Fax: 604.685.0147

то:	Mount Polley Mining Corporation P.O. Box 12	DATE:	March 15, 2011		
	Likely, British Columbia Canada, V0L 1N0	FILE NO.:	VA101-1/29-A.01		
ATTENTION:	Mr. Denis Bernardi	CONT. NO.:	VA11-00470		

RE: 2010 Engineering Support for Mount Polley Mine

ITEM NO.	DESCRIPTION
1.	Table 1 – Summary of Knight Piésold Letters to Mount Polley Mine for 2010 and 2011
2.	pdf copies of all letters in Table 1
3.	

REMARKS:

Signed:

Admin Staff

Approved:

Greg Johnston

Copy To: Ron Martel

TABLE 1

MONT POLLEY MINING CORP. MOUNT POLLEY MINE

SUMMARY OF KNIGHT PIESOLD LETTERS (2010 & 2011)

PA Number	Assignment	Date	Continuity No.	Regarding	Sent to	From (KP)
VA101-1/26	TSF Stage 6B Construction	05-Feb-10	VA10-00286	South Embankment Seepage Recycle Pond	Ron Martel	Mark Smith
VA101-1/28	2010 Environmental Services	05-May-10	VA10-00709	Hydrology Site Visit	Ron Martel	Cameron Butt
VA101-1/28	2010 Environmental Services	20-May-10	VA10-00866	Hazeltine Creek Weir Design	Ron Martel	Jeff FitzGerald
VA101-1/29	2010 Engineering Support	22-Jul-10	VA10-01175	Tailings Storage Facility Instrumentation Repair - Productivity Upgrade & Remote Monitoring Capacity	Ron Martel	Greg Johnston
VA101-1/29	2010 Engineering Support	23-Nov-10	VA10-01620	Tailings Storage Facility Instrumentation Replacement Program - Drilling Cost Estimates	Ron Martel	Greg Johnston
VA101-1/29	2010 Engineering Support	03-Feb-11	VA11-00252	Mount Polley Mine - Site Water Management	Ron Martel	Les Galbraith
VA101-1/29	2010 Engineering Support	10-Feb-11	VA11-00298	Mount Polley Tailings Storage Facility Engineer of Record	Brian Kynoch	Ken Brouwer

C:\Users\gjohnston\AppData\Roaming\Microsoft\Excel\[Summary Table for Report Letters Issued in 2010 (version 1).xlsb]Sheet1

Г	А	15MAR'11	ISSUED WITH VA11-00470	RW	GIJ	LJG
	REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

File No.:VA101-1/26-A.01 Cont. No.:VA10-00286 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 Fax: 604.685.0147 www.knightpiesold.com

February 5, 2010

Mr. Ron Martel Environmental Superintendent Mount Polley Mining Corporation P.O. Box 12 Likely, BC V0L 1N0

Dear Ron,

Re: South Embankment Seepage Recycle Pond

The Tailings Storage Facility (TSF) at Mount Polley Mine currently has seepage recycle ponds located downstream of the Main and Perimeter Embankments and a seepage collection sump located downstream of the South Embankment. Mount Polley is planning on developing a seepage recycle pond at the South Embankment in 2010 and has requested Knight Piésold provide estimated flows and an approximate size for the seepage pond. Water collected in the pond will be pumped into the TSF.

The South Embankment seepage recycle pond receives water from two sources: embankment seepage routed to the sump via the longitudinal drain, and runoff from the TSF embankment. The majority of the water entering the sump at the South Embankment is from embankment runoff, which does not meet discharge requirements and must be managed on site. Mount Polley requested the pond be sized to contain 24-hours of storage from embankment runoff during average freshet conditions, which corresponds to approximately 200 m³. A rectangular pond with approximate dimensions of 5 m x 20 m, with 2 m of live storage will provide storage for 24-hours of runoff from average freshet conditions. The actual daily runoff during the freshet varies and Mount Polley should therefore provide sufficient flexibility in the pumping system at the south dam to account for variations in runoff values as well as storm events.

Please do not hesitate to contact the undersigned if you have any questions on the seepage recycle pond at the South Embankment.

Yours truly, KNIGHT PIESOLD LTD.

Signed: Mark A C Smith, E.I.T. Staff Engineer

/macs

Approved: Ken Brouwer, P.Eng. Managing Director

INVESTIGATION KP 1-9 200 of 500

File No.:VA101-1/28-A.01 Cont. No.:VA10-00709 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 *Fax:* 604.685.0147 *www.knightpiesold.com*

May 5, 2010

Mr. Ron Martel Environmental Superintendent Mount Polley Mining Corporation P.O. Box 12 Likely, BC V0L 1N0

Dear Ron,

Re: Hydrology Site Visit

A site visit was undertaken to the Mount Polley Mine from April 13 to April 14, 2010, by Cameron Butt, Project Scientist with Knight Piésold Limited (KPL). The purpose of the site visit was to;

- Install new staff gauge bridge mount at Hazeltine Creek
- Survey staff gauge to original 1994 gauge datum, and
- Estimate design requirements for upgrade of weir at Hazeltine Creek.

In addition to the above tasks, Cameron was also requested to;

- Review existing gauge network at various locations around the mine site and provide recommendations, and
- Undertake general training in hydrometric monitoring.

Colleen Hughes provided invaluable support to Cameron while on site, and has continued to be an invaluable resource.

Staff Gauge Installation at Hazeltine Creek

The requirement for reinstallation of the staff gauge mount at Hazeltine Creek came about because of progressive lifting of the existing staff gauge out of the bed. This was presumably resulting from processes similar to frost-jacking and/or ice-loading as has been discussed in detail in KPL Letter Report VA09-00317- Assessment of Hazeltine Creek Flows, April 14, 2009.

The reinstallation of the staff gauge was undertaken on April 13, 2010, and the final bench mark survey (which completed the installation) was undertaken on April 14, 2010. The design of the staff gauge was kept intentionally simple and robust. A flat metal plate was hung vertically from a large bridge beam directly into the gauge pool, as shown on Photos 1 and 2, in contrast to the original installation, as shown on Photo 3. The new mounting plate was designed so as to minimize bending or sagging by use of further reinforcement, and was constructed so as to facilitate removal prior to winter freezing, by unbolting the bottom portion of the mount, as shown on Photo 2. This seasonal removal will help to prevent any ice damage.

A one meter staff gauge was secured to the bottom, removal portion of the mount, and a full bench mark survey was undertaken to correctly (re)set the site gauge datum to the original site installation datum, established by Water Survey of Canada in 1994. For simplicity, the WSC bench mark values have been

reduced by exactly 1.000 meter, such that bench mark 1 has a value of 0.981, not 1.981. This alteration was considered necessary and important for sustainable monitoring as the previous assigned values were not intuitive to field technicians. A full bench mark survey should be undertaken annually and/or whenever the staff gauge is removed and reinstalled, which is also consistent with permit conditions. The vertical positioning and stability of the staff gauge is of fundamental importance in maintaining a defensive dataset.

Site Survey for Weir Installation & Upgrade

A survey of the control cross-section was undertaken to determine construction requirements for the proposed weir upgrade. Site access for excavators was established to be possible while minimizing any environmental impact. A complete design and construction schedule for the installation of a new weir is to be provided to MPMC as soon as possible.

Hydrometric Network Review

Cameron and Colleen visited several of the site gauging stations, which included both recording (dataloggers) and non-recording (staff gauge only) stations. H8 includes a PT2X pressure transducer enclosed with an aluminum conduit and staff gauge. The station appeared to be in good working order. W4 and W4DS were also visited. The choice of instrumentation that should be adopted at these sites (whether recording or non-recording), is largely dependant on the resolution and accuracy required. If continual flow data are required at both of these sites, then recording instruments and construction of small weirs at both of these locations should be considered as both would greatly assist in the acquisition of accurate flow data. Conversely, if relative water levels are all that is required at these stations, then the existing non-recording instruments may be adequate. However, both are situated on mobile beds and as such relative water levels, over an extended period of data collection, may become less relevant as the bed alters.

General Training

Hydrometric data collection can be complicated and Hazeltine Creek is no exception. Cameron undertook training for Colleen on the fundamentals of hydrometric monitoring, and specifically discussed the history of the Hazeltine Creek gauging station. This was presented as a combination of on-site and office training, over the two day site visit.

Summary & Recommendations

The site staff gauge, from which all gauge height and instrumentation data is to be corrected, has been restored to its originally installed height above the gauge datum (less 1 meter), as established in 1994. Bench mark values are given below.

Name	Description	WSC Value	Current Value
Bench mark 1	Lag Bolt on bridge piling on Right Bank opposite Recorder	1.981	0.981
Bench mark 2	Carriage bolt on 1/2" redi-rod, 11 m d/s & 2 m in-shore on R.B.	1.976	0.976
Bench mark 3	Carriage bolt on 1/2" redi-rod, 5 m d/s & 30 m in-shore on R.B.	3.419	2.419

It is recommended that these bench marks be located and tagged with the **ID** and **Value**, for future hydrometric bench mark surveying. Tagging could involve a simple aluminum tag, stamped with the aforementioned values, and stapled adjacent to the bench mark for rapid identification.

Should you have any questions or concerns about the work undertaken on site, please do not hesitate to contact the undersigned.

Yours truly, KNIGHT PIESOLD LTD.

Signed: Cameron Butt, P.Geo., PMP Project Scientist

Reviewed: Greg Smyth Senior Project Manager

Approved Ken Brouwer, P.Eng. Managing Director

Attachments:

Photo 1	Hazeltine Creek Gauging Station Chart Recorder and New Staff Gauge
Photo 2	Hazeltine Creek Gauging Station, New Staff Gauge Installation Showing Removable Lower Portion
Photo 3	Hazeltine Creek Gauging Station Chart Recorder and Original Staff Gauge.

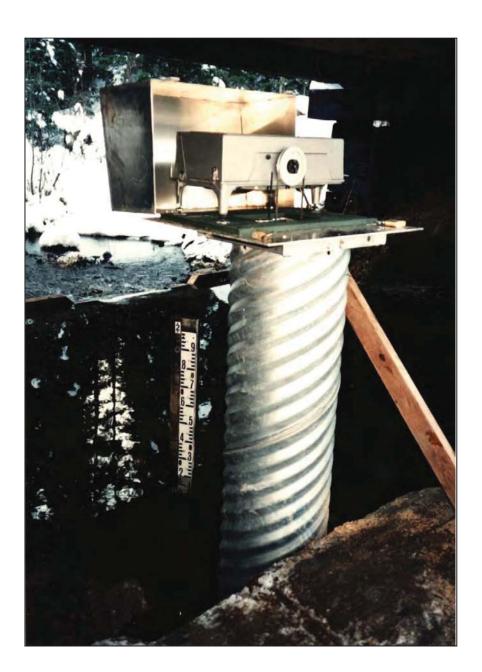
/cmb

PHOTO 1 – Hazeltine Creek Gauging Station Chart Recorder and New Staff Gauge. Photo taken in April 2010 following installation of new staff gauge support. Notice that the gauge Height is ~0.300, and water level is at the weir crest.

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY PROJECT

1 of 3 M:\1\01\00001\28\A\Correspondence\Outgoing\VA10-00709 - Hydrology Site Visit\Photos\PHOTO 1.Doc VA10-00709 May 5, 2010

INVESTIGATION KP 1-9 204 of 500


PHOTO 2 – Hazeltine Creek Gauging Station, new staff gauge installation showing removable lower portion

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY PROJECT

2 of 3 M:\1\01\00001\28\A\Correspondence\Outgoing\VA10-00709 - Hydrology Site Visit\Photos\PHOTO 1.Doc VA10-00709 May 5, 2010

INVESTIGATION KP 1-9 205 of 500

PHOTO 3 – Hazeltine Creek Gauging Station Chart Recorder and Original Staff Gauge. Photo taken in 1994. Notice that the gauge Height is ~0.200, and water level is ~0.1 m below weir crest

MOUNT POLLEY MINING CORPORATION MOUNT POLLEY PROJECT

 VA10-00709 May 5, 2010

INVESTIGATION KP 1-9 206 of 500

File No.:VA101-1/28-A.01 Cont. No.:VA10-00866 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 *Fax:* 604.685.0147 *www.knightpiesold.com*

May 20, 2010

Mr. Ron Martel Environmental Superintendent Mount Polley Mining Corporation P.O. Box 12 Likely, BC V0L 1N0

Dear Ron,

Re: Hazeltine Creek Weir Design

Mount Polley Mining Corporation (MPMC) requested that Knight Piesold Ltd (KPL) redesign the existing weir structure at the Hazeltine Creek gauging station. The purpose of the weir redesign was to fulfill requirements for a water release permit.

The following letter provides a brief overview of the existing weir, the conceptual details of the proposed new weir design, and an approximate construction schedule. Construction of the new weir is tentatively scheduled for mid to late 2010.

EXISTING WEIR DESIGN

A detailed hydrological analysis of Hazeltine Creek and a description of the problems associated with the existing control weir are presented in KPL Letter VA09-00317 (April 14, 2009).

The Hazeltine Creek Gauging Station (H7) was installed by Environment Canada in 1994. The control structure consists of a low, broad-crested, compound weir constructed of 4" by 4" lumber. The notch of the weir is rectangular, sitting approximately 0.1 m above the downstream bed of the creek. A cross-section of the existing weir is shown on Figure 1 and pictures looking upstream are shown in Photo 1 and Photo 2.

A number of problems have been identified that adversely affect the accuracy of measuring discharge with this weir. These problems are outlined below;

- **Backwater:** During medium and high flow events, downstream water levels rise above the existing weir crest. This has been attributed to several factors including the low control notch in the weir sitting very close to the creek bed, the uncontrolled growth of downstream vegetation that encroaches on the stream channel, and the shallow channel slope of the creek.
- **Structural instability:** The existing compound weir structure is deforming and leaking. Ice-loading in the winter is causing the weir to deform downstream, creating gaps between the lumber and causing leaks.
- Low flow accuracy: The low flow control is inaccurate as a result of flow over the rough timber broad-crested surface, in conjunction with leaks and deformation as outlined above.

Knight Piésold

PROPOSED NEW WEIR DESIGN

The proposed new weir is shown on Figure 1 and an approximate outline is shown in Photo 2. The weir consists primarily of a reinforced concrete structure that would tie into the existing bridge abutments on either side of the creek. Discharge would occur in a series of three stages, with two lower thin plate overflow sections and one higher concrete broad-crested section. Aluminum plates will be bolted to the face of the concrete structure to form the low and mid levels of the compound weir.

Stage 1 – Low Flow Control

The lowest stage of the weir utilizes a thin aluminum plate to increase measurement accuracy, as shown on Figure 1. The thin plate section consists of a 5 mm aluminum plate bolted and sealed to the upstream face of the concrete structure. The overflow edges of the plate would be chamfered to at least 45 degrees below a 2 mm flat surface. The low flow weir width is approximately 1 m and is situated in the centre of the exiting stream with its notch level with the ground surface and 30 cm above the bed. Figure 3 illustrates that the lowest stage of the weir has the capacity to contain the majority of non-freshet flows up to discharges of 0.11 m^3 /s. Previous studies indicate that the maximum monthly non-freshet flow is approximately 0.07 m^3 /s.

Stage 2 – Freshet Flow Control

The Stage 2 weir is designed to entirely contain freshet peak flows. The weir dimensions are sized to pass 3.6 m^3 /s through the Stage 1 and 2 sections (the highest recorded flow in 15 years of data collection is 1.7 m^3 /s). The Stage 2 structure consists of a rectangular weir extending 2.5 m on each side of the Stage 1 weir, and with a crest 0.15 m above Stage 1 crest. It will be constructed as a continuation of the 5 mm aluminum plate used for the Stage 1 weir, as shown on Figure 1

Stage 3 – Flood Control

Should discharges exceed 3.6 m³/s, excess flow will pass over the Stage 3 weir, which will be comprised of broad-crested rectangular concrete weir sections extending beyond each side of the Stage 2 weir and tying into the bridge abutments, as shown on Figure 1.

Theoretical Rating Curve

A theoretical rating curve for the weir is shown on Figure 2, with the three stages of the weir clearly identified. Figure 3 displays the capacity of each weir stage in reference to the average annual hydrograph developed for Hazeltine Creek and outlined in KPL Letter Report VA09-00317. This figure indicates that the majority of the flow will be contained in the lower stages of the control weir.

In order to allow the provision of accurate and defensible discharge data, the new weir design must overcome the deficits in the existing design.

New Weir Design Considerations:

• **Backwater:** The proposed Stage 1 weir crest is situated approximately 20 cm higher than the existing weir's control notch. The proposed weir crest level roughly corresponds to the normal backwater height during freshet flow periods. Some thinning of downstream vegetation may be recommended to minimize backwater levels. It is expected that minor backwatering may result from the downstream Fish Ladder during high flows, but the effects of this will be minimal.

- **Structural Stability:** The proposed weir will be constructed of reinforced concrete. This will eradicate leakage, and be able to withstand water and ice loading forces imposed by the creek, without deformation of the structure.
- **Competent foundation:** The proposed design will have a concrete footing with dowels anchoring it into the creek bed. In order to prevent any erosion and footing undermining as a result of weir overflow, a thin concrete apron will be constructed downstream of the weir.
- **low flow accuracy:** The proposed design utilizes a thin plate weir crest to increase measurement accuracy during the low flow periods
- Fish migration: The proposed design utilizes a small fish ladder downstream of the low flow section that has been sized to allow the passage of juvenile rainbow trout fish species. The design conservatively uses a step size of 15 cm. Various literature sources suggest a maximum step size of 30 cm for juvenile species.

CONSTRUCTION VOLUMES AND SCHEDULING

Concrete and grouted riprap is required to complete the main construction of the weir. Approximately 7.5 m^3 of concrete is required for the weir foundation and bulkheads. An additional 3 m^3 of grouted riprap will be required for the downstream apron and fish ladder. A 5 mm Aluminum plate be required to be fabricated and installed on the upstream edge of the weir bulkheads.

Construction is intended to take place in mid to late 2010, when flows are low and can be easily diverted via pumping for the duration of construction. It is intended that a temporary sand bag coffer dam be installed upstream to capture water for pumping. Once all necessary permits have been obtained, construction will be undertaken using the following approach;

- 1. Environmental construction works, flow diversion & sediment control
- 2. Foundation excavation
- 3. Dowel anchoring and reinforcement
- 4. Concrete weir pouring, shaping and smoothing
- 5. Fish ladder construction, and
- 6. Weir Plate placement, sealant and installation.

The total in-creek construction time has been conservatively estimated to be 4-5 days. However, efficiencies in construction can reduce this estimated time.

REMARKS

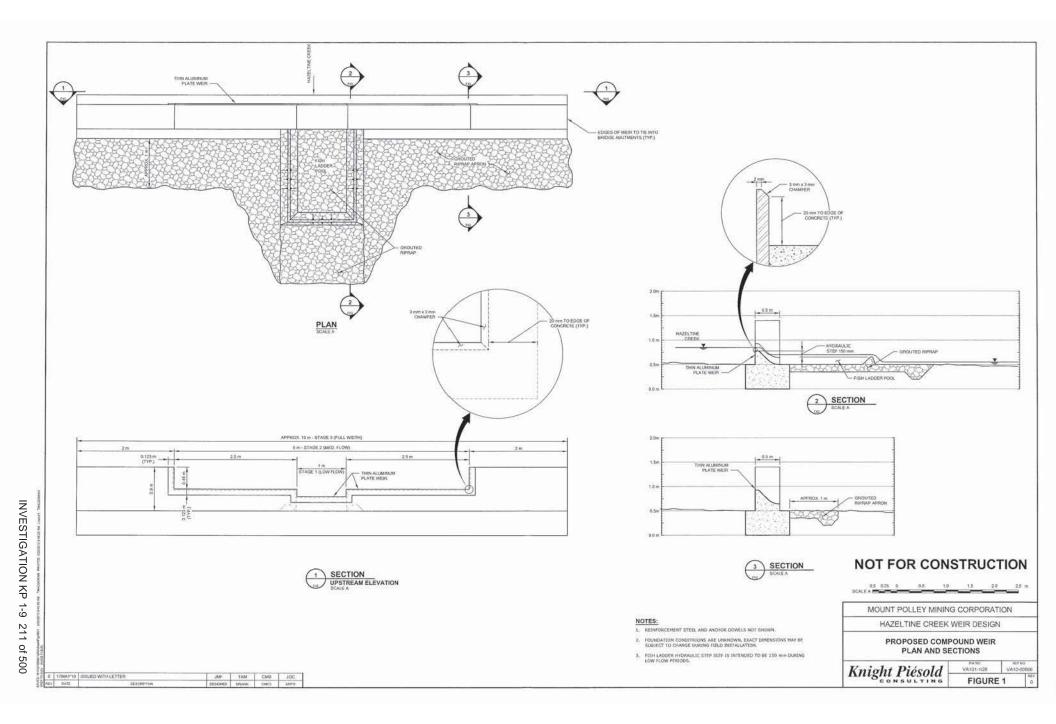
The proposed new weir design addresses the deficits in the previous design by elevating the weir crest level and creating a more robust structure to withstand the natural forces imposed by the creek. Elevating the weir crest will eliminate the backwater problems and the thin plated weir will increase discharge measurement accuracy for the non-freshet low flow periods.

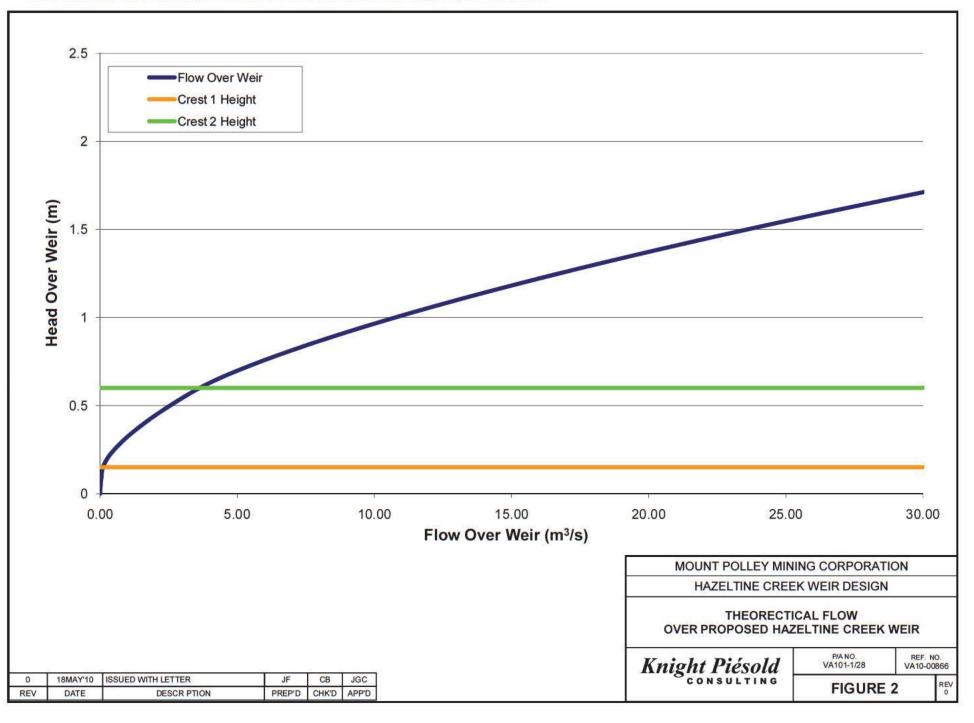
Should you have any questions or comments on the proposed design, please do not hesitate to contact us.

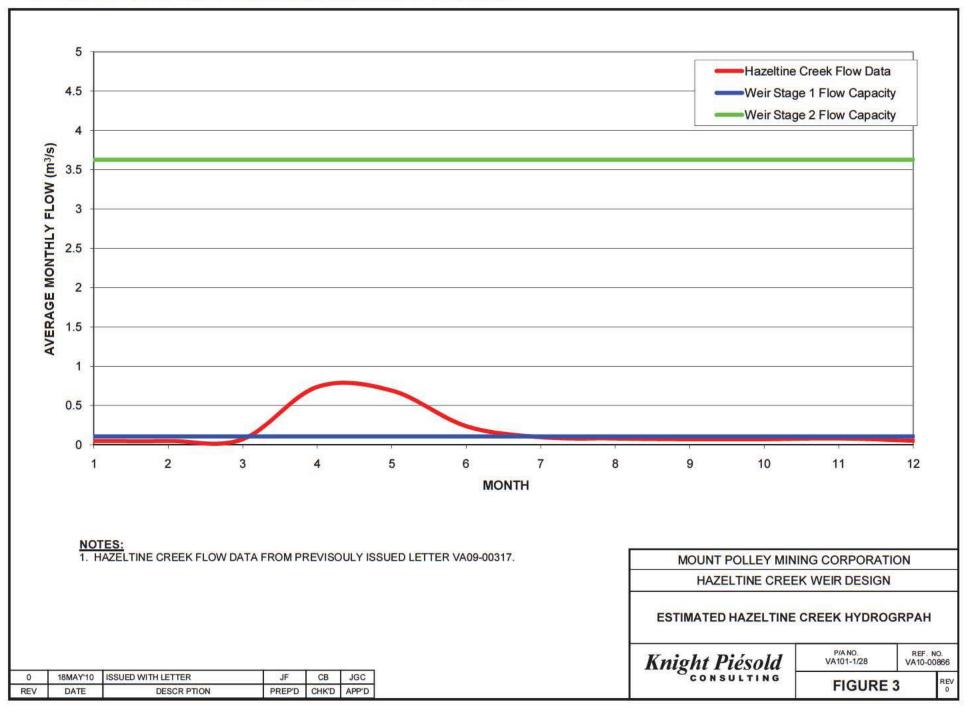
Yours truly, KNIGHT PIESOLD LTD.

Signed: Jeff FitzGerald, E.I.T. Staff Engineer

THCAR 4 20,2010 GIN


Reviewed: Cameron Butt, P.Geo., PMP Project Scientist


Approved: Ken Brouwer, P.Eng. Managing Director


Reviewed: Jaime Cathcart, PhD, P.Eng. Specialist Hydrotechnical Engineer

Attachments:	
Figure 1 Rev 0	Proposed Compound Weir Plan and Sections
Figure 2 Rev 0	Theoretical Flow Over Proposed Hazeltine Creek Weir
Figure 3 Rev 0	Estimated Hazeltine Creek Hydrograph
Photo 1	Existing Weir
Photo 2	Existing Weir and Approximate Profile of New Weir Structure

/cmb

Print 5/20/2010 9:20 AM

Knight Piésold

PHOTO 2 - Existing Weir and Approximate Profile of New Weir Structure.

MOUNT POLLEY MINING CORPORATION HAZELTINE CREEK WEIR DESIGN

 1 of 1
 VA10-00086

 M:\1\01\00001\28\A\Correspondence\Outgoing\VA10-00866 - Hazeltine Creek Weir Design\Photos\Weir Photos.Doc
 Rev 0

 MAY 20, 2010

File No.:VA101-1/29-A.01 Cont. No.:VA10-01175 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 *Fax:* 604.685.0147 *www.knightpiesold.com*

July 22, 2010

Mr. Ron Martel Environmental Superintendent Mount Polley Mining Corporation P.O. Box 12 Likely, BC V0L 1N0

Dear Ron,

Re: Mount Polley Tailings Storage Facility Instrumentation Repair, Productivity Upgrade and Remote Monitoring Capacity

Introduction

The Mount Polley Mine Tailings Storage Facility is a large earth and rock fill embankment located in central British Columbia. The Tailings Storage Facility is monitored on a regular basis to ensure safety, as an early warning of undesirable conditions and to confirm the structure meets or exceeds regulatory requirements. The regulatory requirements include regular dam safety reviews by a suitably qualified and experienced engineer. The most recent dam safety review was completed by AMEC in late 2006. This review indicated that there is "about the right" amount of instrumentation in the embankment but there is little redundancy. The dam safety review recommended that lost instrumentation be re-established, Knight Piésold (KP) agrees with this recommendation.

The two major types of instrumentation in the Tailings Storage Facility (TSF) are piezometers and inclinometers. The piezometers provide information on the internal water pressure in various parts of the embankment and foundation. The piezometers are all vibrating wire (VW) type instruments. VW piezometers are widely used in geotechnical instrumentation, are generally robust and have a long life span. However, over time there have been failures of instrumentation and damage to data cables resulting in non-functional instrumentation. The inclinometers are industry standard slotted pipe that is read by a manually operated probe.

This letter summarizes the replacement of instrumentation and highlights two options for improving the TSF instrumentation, as follows:

- A **Base Case** to replace non-functional instrumentation to develop a satisfactory level of TSF instrumentation
- A **Productivity Improvement** to significantly reduce the amount of time required to complete routine monitoring of the TSF instrumentation, and
- The installation of **Remote Monitoring** capability for instrumentation on the TSF.

An estimated cost has been developed for the replacement and modifications to the TSF instrumentation. The estimated cost for instrumentation includes input from sole sourced suppliers for the major expense items. The cost estimate is to establish the approximate cost of each option and some efficiencies may be achieved by a soliciting a more detailed bid of the work required.

Knight Piésold

Current TSF Instrumentation Status

The installed instrumentation in the TSF includes a total of 91 piezometers and 5 inclinometers. Of these 48 piezometers are functional and 43 piezometers are not functional, 4 inclinometers are functional and 1 is not functional. The inclinometers are all installed in the main embankment. The functional inclinometers include 3 that are generally showing minimal movement and 1 inclinometer that shows localized movement.

The distribution of non-functioning piezometers is not random and a large portion of the Main Embankment foundation instruments have stopped functioning. In total 20 piezometers have been installed in the Main embankment foundation and 7 (35%) are functional. All 6 of the foundation piezometers in the A instrumentation plane have been damaged, 2 piezometers remain functional in the B instrumentation plane. This is the main area of concern due to a low strength glaciolacustrine unit that underlies a portion of the Main Embankment including the A and B instrumentation planes. The inclinometers and Main Embankment foundation piezometers are installed to monitor this glaciolacustrine unit. The TSF monitoring program is in part to confirm that the displacement and pore pressure in the glaciolacustrine unit are within acceptable limits.

The Ministry of Energy Resources, Petroleum and Mines (MEMPR) have previously expressed concerns about the characterization and behavior of the glaciolacustrine unit under the Main Embankment. A point of concern that has been raised by MEMPR is the amount of laboratory testing available to define the strength of the glaciolacustrine unit.

Base Case

The base case is to replace non-function VW piezometer instrumentation and install a level of redundancy in the VW piezometers. The collection of samples for laboratory testing can be completed at the same time as drilling the new instrumentation holes. This base case is a minimum level of replacement TSF instrumentation required. The base case includes the following:

- 5 holes in the TSF main embankment for replacement instrumentation. Of these drill holes, 2 holes 60 m deep will be drilled from the crest of the dam and 3 holes 25 m deep will be drilled from the dam buttress. A total drilling length of approximately 200 m is estimated.
- Install inclinometer casing in all holes.
- Install 4 VW piezometers in each hole (3 as replacement instruments and 1 for redundancy).
- Recovery of samples of the glaciolacustrine unit for laboratory testing.
- Laboratory testing of samples from the glaciolacustrine unit.

The drilling costs are based on a cost estimate by Geotech Drilling attached in Appendix A. The drilling cost estimate includes for inclinometer supply and installation, VW piezometer installation and soil sampling. The drilling cost estimate should be considered as an approximate cost as adjustments to the program are likely required. The KP costs and laboratory testing costs have been estimated by Knight Piésold.

Productivity Improvement

The productivity upgrade includes everything described in the Base Case and additional items to significantly reduce the time and complexity of instrumentation monitoring. The goal is to reduce the work

Knight Piésold

load and time taken monitoring the TSF. An additional benefit is automation is expected to improve the accuracy of the data. Two additional items are proposed:

- 1. Centralize the location of VW piezometer reading points. This will include developing an upstream and downstream readout location on each embankment. The readout locations would collate the data collection for the instrumentation planes and provide a common interface. The piezometer cables would be extended and routed to the appropriate readout location. For example, on the Perimeter Embankment a downstream readout location would be installed in the vicinity of the seepage collection pumps house. The VW piezometer cables from the 3 instrumentation planes in the perimeter embankment would be routed to the readout location. The cost for establishing centralized readout locations has been estimated by KP.
- 2. Install a fixed inclinometer consisting of a ShapeAccelArray from Measurand in the existing inclinometer that is showing deflections. A ShapeAccelArray (SAA) is a comparatively new method in geotechnical engineering for monitoring deflections in inclinometers. The SAA is significantly faster and easier to read using a laptop computer. A SAA is cheaper to automate compared with traditional inclinometers. A brochure for the ShapeAccelArray is attached.

The installation of an SAA will allow automation of the inclinometer. Automation will facilitate regular inclinometer readings collected remotely from the Mount Polley site office. The readings from a fixed inclinometer can be completed very rapidly in a small fraction of the time currently required to complete an inclinometer survey. A cost estimate for an inclinometer SAA and remote retrieval package from Measurand is attached. The cost of automation is approximately 60% of the quoted cost and savings could be made by electing to complete manual readings using a laptop. This cost estimate is approximate and may be adjusted based on the data retrieval method selected by Mount Polley Mine.

Remote Monitoring

The remote monitoring of all of the geotechnical instrumentation is possible. The remote monitoring would require the work described in the Base Case and Improved Productivity. In addition the VW piezometers would be monitored by a remote solar powered system and radio communications system. The current inclinometers would all have arrays installed and would be able to be remotely read. A cost estimate for the VW piezometer readout system has been provided by Measurand and is attached.

Summary

The instrumentation at the Mount Polley TSF has experienced damage over time. The replacement of some of the non-functional instrumentation is now necessary. This letter details the base cost to replace non-functional instrumentation and summarizes opportunities for reduced the difficulty and time required for TSF monitoring. The monitoring of the TSF instrumentation requires a reasonable time investment by Mount Polley Mine staff and/or KP staff. Two systems to reduce the time required to monitor the TSF and the setup cost to implement the systems are summarized.

It is recommended that the TSF instrumentation replacement be completed this year. To help satisfy concerns previously raised by MEMPR it is recommended that the replacement instrumentation should be either installed or at an advanced planning stage in time for the annual inspection of the Mount Polley TSF.

The estimated cost for the replacement of non-functional piezometers and installation of additional slope inclinometers is in total \$195,000, the total cost for the alternative option to simplify the monitoring of the TSF is estimated to be \$230,000. The total cost for a second alternative for remote monitoring of the TSF geotechnical instrumentation is estimated to be \$310,000. A breakdown of the estimated costs is included on Table 1. We trust this information will assist you in planning for the TSF. Please contact us if you have any questions or would like additional information on the described systems.

Yours truly, KNIGHT PIESOLD LTD.

Prepared by: Greg Johnston, M.Sc. Engineering Geology and Geotechnical Specialist

Attachments: Table 1 Rev A **Cost Estimate**

Approved:

Ken Brouwer, P.Eng. Managing Director

Geotech Drilling - Cost Estimate Measurand - ShapeAccelArray (SAA) Brochure Measurand - Quote 38 - Fixed Inclinometer Measurand - Quote 40 - Remote Monitoring of VW Piezometers

/gj

TABLE 1

MOUNT POLLEY MINING CORPORATION TAILINGS STORAGE FACILITY

INSTRUMENTATION REPLACEMENT COST ESTIMATE

Option	Item		Item Cost	Total
Base Cost	Drilling		\$130,000	
	Replacement VW Piezometers		\$15,000	
	Laboratory testing		\$20,000	
	Knight Piesold site and office support		\$30,000	
		Total		\$195,000
Productivity Im	provements			
	Base Cost plus the following		\$195,000	
	Mount Polley Excavator for 3 days (NOTE 1)		•	
	VW piezometer cable and readout locations		\$7,000	
	Fixed Inclinometer		\$23,000	
	Knight Piesold site support		\$5,000	
		Total		\$230,000
Remote Monito	-			
	Productivity Improvements plus the following		\$230,000	
	Additional fixed inclinometers		\$28,000	
	Remote monitoring for VW Piezometers		\$44,000	
	Knight Piesold site support		\$8,000	
		Total		\$310,000

M:\1\01\00001\29\A\Correspondence\VA10-01175 - Instrumentation Replacement\Tables\[Table 1 - Cost Est.xlsx]Sheet1

NOTES:

1. MOUNT POLLEY MINE EXCAVATOR TIME NOT INCLUDED

A	22JUL'10	ISSUED WITH LETTER VA10-01175	GL	GIJ	KJB
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

Bill to: Knight Piesold Ltd.

Care	of:	Knight Piesold I 1400 750 West	_td. Pender Street
		Vancouver, BC	V6C 2T8

Tel: 1-604-685-6543

ATTN: Mark Smith/Greg Lewsley

Email: msmith2@knightpiesold.com

Geotech DRILLING Cost Estimate

Date:	Tuesday, October 27, 2009
Revised No./Date:	5-Jul-10
Project Manager:	Ryan Samis
Cost Estimate No.:	1KRS10-0043
Unit No. (Drill Rig):	Odex/Mud Rotary Drill
Location:	Mount Polley
Province:	BC

Scope: This cost estimate is for 5 boreholes to 40 meters (130 ft) with 2 vibrating Wire installs per hole. 4 boreholes to 30 meters (100 ft) with 2.75" SI casing installed, and 3 boreholes to 30 meters (100 ft) with 2" monitoring wells installed. Soil coring (HQ3) will be required in the last 40 ft of the vibrating well installs, and the last 75 ft of the inclinometer holes. No sampling required in monitoring well holes.

ltm	Qty	Unit	Description	Price	1	Extended
1	190	hrs	Odex Drilling / Soil Coring	275.00		52,250.00
2	70	hrs	Overtime (after 8 hours, weekends, stats/two man crew)	65.00		4,550.00
3	1	L/S	Mob / Demob to Mount Polley	2750.00		2,750.00
4	54	hrs	Crew travel	149.00		8,046.00
5	19	shift	Support vehicle(truck mount)	249.00		4,731.00
6	19	shift	Crew subsistence (two man crew)	279.00		5,301.00
7	19	shift	Air compressor (300/200)	425.00		8,075.00
8	19	shif.	_rout pump /Mud Pump Rental	199.00		3,781.00
9	9	hrs	Safety meeting	149.00		1,341.00
10	500	ft	Diamond Bit Wear Consumption	19.50		9,750.00
11	850	ft	Odex bit wear consumption	5.75		4,887.50
12	16	shift	High Pressure Diamond Pump Rental	249.00		3,984.00
13						-
14						()=(
15	27	10 ft	P - Solid 1", 1.5" or 2" p.v.c. well casing	36.87		995.49
16	3	10 ft	P - Slotted 1", 1.5" or 2" p.v.c. well casing	49.45		148.35
17	6	ea	P - 1", 1.5" or 2" slip caps	3.45		20.70
18	650	ft	P - 1" PVC (for Vibrating wire installs)	1.87		1,215.50
19	40	10 ft	P - 2.75" Slope Inclinometer	148.35		5,934.00
20	3	ea	P - 2.75" Slope Inclinometer Top Cap	6.90		20.70
21	3	ea	P -2.75" Slope Inclinometer Grout Anchor	417.00		1,251.00
22	60	bags	P - Bentonite Chips (Possible Option)	28.55		1,713.00
23	22	bags	P - Sand	15.52		341.44
24	105	5 ft	P - Acrylic Liners for Soil Coring	20.40		2,142.00
25	15	bags	P - Premix grout	34.44		516.60
26	12	bags	P - Fast Set Concrete	17.25		207.00
27	36	bags	P - Portland Cement	23.75		855.00
28	12	ea	P - Stand up casing protectors	109.25		1,311.00
29						158
lees & rea	stocking charges	may apply if less that	valid for 60 days. Underground / Overhead utilities are the sole responsibility of the client. Lost, broken or unrecoverable tooling will be charged at cost plus 15%. Cancellation n 48 hours notice. Invoice Payment terms: Upon Receipt. 2% interest charges will apply on past due accounts Invoice considered accepted and approved 15 days after	Subtotal	\$	126,118.28
eceipt ur	less written natif.	ication is received.	**Overtime is applicable after 8 hours, weekends, and statutory holidays**	P.S.T.	\$	1,167.02
			Line items beginning with P denote PST chargeable items	G.S.T.	\$	6,305.91
Brit	tish C	olumbia		TOTAL DUE	s	133,591.22

5052 Hartway Drive • Prince George • British Columbia • Canada • V2K 5B7

Tel: (250)962-9041 • Fax: (250)962-9046 • Web: geotechdrilling.com

Promotion Code:

Thank You for Your **Business!** INVESTIGATION KP 1-9 220 of 500

Frequently Asked Questions

How long is a typical SAA?

Most Field SAAs are near 32 m (104'). Most Research SAAs are 7.32m (24') long. Lengths up to 100m (300') are possible.

How long are the rigid segments in an array?

Standard joint-center to joint-center lengths are 305 mm (12") and 500 mm (19.7").

Do I need a casing for SAAs?

SAA should be installed in 27mm (1.05") ID casing (inexpensive PVC electrical conduit). The array and casing are flexible enough to survive deformations of tens of cm (feet). The 27 mm casing will fit into inclinometer casing, enabling ecovery of some defunct SI sites.

Can I re-use an SAA?

1 of 500

After typical deformations, SAA may be removed from the casing and installed elsewhere. For more information on Shape-AccelArray and other Measurand products:

ShapeAccelArray (SAA)

2111 Hanwell Rd Fredericton, NB CANADA E3C 1M7 (ph)506.462-9119 (fax)506.462-9095 www.MeasurandGeotechnical.com www.measurand.com

Introduction

SAAF (Field Arrays)

SAAR (Hi-Bandwidth Research Arrays)

SAA is an array of rigid segments separated by special joints. Triaxial MEMS gravity sensors in the segments measure tilt. SAA produces data equivalent to inclinometer data but over much larger deformations. SAA may be used vertically to track magnitude and direction of lateral deformation, and horizontally to track vertical deformation. In any pose, 3D vibration data are available from selected locations along the array.

There are two basic types: Field and Research. Each is available in increments of 8 segments, where standard segment lengths include 305 mm (12") and 500 mm (19.7").

The main distinctions are speed, Bumber of segments, and power Consumption. SAAF is designed for solarpowered installations with wireless communication. SAAF may be up to 100 m long. Long-term accuracy for 30 m (96') SAAFs is 1.5 mm (0.06").

Vibration data are available from up to 3 segments along the array at 40 Hz sampling, and at 35 Hz from 4 segments.

All communication in the array is digital. Data are carried in a small cable to a digital logger. Most installations use solar power and provide wireless data over the internet.

SAAR is designed to collect high frequency data from all sensors continuously.

Each microprocessor in an SAAR (1 microprocessor per 8 segments) has a dedicated communication line.

SAAR can be supplied with up to 24 high-speed segments.

Quotation

Quote	Greg Lewsley	Contra Data	hun 24 2010
Prepared	Knight Piesold	Quote Date	Jun-24-2010
For	750 West Pender Street	Quote Number	38
	Suite 1400	Sales Contact:	DJ Snodgrass
	Vancouver, BC V6C 2T8 CAN		
	(604) 685-0543 Fax: (604) 685-0147		

Quote for 2 holes with remote data retrieval

Item	Description	Qty	Price	DD	Extended Price
SAAF500	SAA Field Octet (0.5 m segments)	4	\$1,673.30		\$6,693.20
Enclosure	Earth Station Enclosure	1	\$993.25		\$993.25
SAAReg	SAA Charge Regulator	1	\$269.10		\$269.10
SAA232	RS485 to RS232 converter w/Power switching	2	\$450.15		\$900.30
¶*ProSupport	Project Support Time Installation assistance cost (Inclusive)	1	\$5,000.00		\$5,000.00
Custom	Radio package for retreival of data (Includes Radios, Antennas and mounting Hardware)	1	\$3,700.00		\$3,700.00
SAAUSB	RS485 to USB PC connection kit for SAA	1	\$596.90		\$596.90
*CR1000	Campbell Scientific CR1000 Datalogger	1	\$2,397.45		\$2,397.45
CR1000IntPack	SAA-CR1000 Integration Package	1	\$978.55		\$978.55
Solar20W	20 Watt Solar Panel	1	\$391.40		\$391.40
SolarBracket	Solar Panel Bracket	1	\$97.85		\$97.85

Total Quote	\$22,018.00
Harmonized Sales Tax Exempt	\$0.00
Labor / Shipping	\$0.00
Total Items	\$22,018.00

All Quotes are valid for 60 Days. All Pricing are in USD unless otherwise specified. * Denotes Distributor discounts do not apply ¶ Please contact Measurand Inc. Prior to ordering

NOTES:

(1) a) Unless otherwise specified, SAAs have no unsensorized segment at the far end;

b) Unless otherwise specified, SAAs have one unsensorized segment at the near end that provides an attachment point and junction to the cable. This segment and a stiffer portion of the cable occupy approximately 30 cm (1') "extra" beyond the length of sensorized segments. The cable can

Sales@measurand.com http://www.measurand.com

2111 Hanwell Road, Fredericton NB E3C 1M7 Tel: (506) 462-9119 Fax: (506) 462-9095

Licensed To: Measurand Inc

1/2

Item	Description	Qty	Price	DD	Extended Price
must	ned 90 degrees within this dimension. When planning installation depth, be accounted for;		0		
,	are built in groups of 8 segments called octets. A SAAF may be ordered wit ole: 14 segments instead of the standard 2 x 8 = 16 segments). Because thi				
produc	tion run, pricing is per fully populated octet. For the example above, this e (16 segments instead of 14).				
(2)Payment Tei	ms: Net 30 days from time of shipping. Overdue accounts will be subject t	o interest an	d penalties;		
(3)Freight char be added at tir	ges not included in total prices unless otherwise specified. Please indicate ne of sale;	preferred shi	pping method or	n purchase o	rder. Freight charges will
(4)Applicable ta	axes will be calculated and added at time of sale				
	escription: ion/Ordering List" and "Ordering Guide" at www.MeasurandGeotechncial imensions, and installation variables.	.com/downlo	oads" for assistar	nce in interp	reting the quoted

Not included in the above: Drilling Casing Excavation Backfilling Lift equipment Security fencing Electrical supply Lightning protection

All quoted items are FOB Fredericton, New Brunswick, Canada. Any shipping and taxes due will be the responsibility of the customer Prices: Prices are subject to change without notice.

Terms & Conditions Concerning Delivered Products

1. Warranty: Measurand Inc. Warrants that its products are free from defects in material and workmanship for a period of one (1) year from date of delivery unless otherwise specified by Measurand Inc. In writing. This warranty applies only if the products have not been opened and have not been subjected to misuse, neglect, accident or improper installation or care. Said improper care includes but is not limited to supply of power not as specified by Measurand Inc. If Measurand Inc. Products fail due to no fault of the Buyer, Measurand Inc. Will, at its option, either repair the defective product and restore it to normal operation without charge for parts and labor or will provide a new replacement product in exchange for the defective product. Repair work shall be warranted for the remainder of the original warranty period or for a period of 60 days, whichever is longer. Measurand Inc. Hereby disclaims any implied warranty of merchantability.

2. Limitations of Liability: In no event will Measurand Inc. Be liable for any indirect, incidental or consequential damages or any lost profits or like expectancy damages arising out of the delivery of its products. Measurand Inc.'s liability for personal injury and/or property damage shall not exceed its general liability insurance policy limitations.

3. Inspection and Rejection of Products: Buyer shall notify Measurand, Inc., within seven (7) business days after receipt, of the discovery of any defects in delivered products and/or its acceptance/non acceptance thereof; otherwise, it shall be deemed to have accepted the products.

4. Return Goods Authorization: Measurand Inc. Shall not accept returned or rejected products/parts unless first authorized with a return merchandise authorization (RMA) number. The Buyer is responsible for handling, insurance and transportation of unit to Measurand Inc. Measurand Inc. Shall be responsible for inspecting the unit and repair as necessary. Measurand Inc. Shall pay for the return of the repaired/new unit to the Buyer via Ground Transportation only.

5. Title & Delivery: Title/risk of loss or damaged goods shall pass to the Buyer upon Measurand Inc. Delivery of products. Measurand Inc. Shall retain a security interest with repossession rights for products shipped on open account until all obligations are met. The delivery date is an estimate only, based on a best forecast of conditions at time of order entry. Neither party shall be liable to the other party for any failure to perform any of its obligations under this Agreement during any period in which such performance is delayed by circumstances beyond its reasonable control including, but not limited to fire, flood, war, terrorism, embargo, strike, constrained markets, riot or the intervention of any governmental authority ("Force Majeure"). In such event, however, the delayed party must promptly provide the other party with written notice of the Force Majeure. The delayed party's time for performance will be excused for the duration of the Force Majeure, but, if the Force Majeure event lasts longer than thirty (30) days, the other party may immediately terminate the Agreement by giving written notice to the delayed party.

6. Delivery Times/Expedited Delivery: Standard Delivery time is 3 4 weeks ARPO. In some cases, expedited delivery may be possible. Measurand Inc. Reserves the right to apply

an expedite fee of 10% of the total cost of the equipment purchased or a minimum charge of \$200.00 USD, whichever is greater.

7. BIS: The US Bureau of Industry and Security (BIS) may limit exports of USA made goods to certain individuals and organizations. A license application may need to be completed and submitted to Measurand before equipment may be shipped.

Sales@measurand.com http://www.measurand.com

2111 Hanwell Road, Fredericton NB E3C 1M7 Tel: (506) 462-9119 Fax: (506) 462-9095

Licensed To: Measurand Inc

Quote	Greg Lewsley		1 20 2010
Prepared	Knight Piesold	Quote Date	Jun-28-2010
For	750 West Pender Street	Quote Number	40
	Suite 1400	Sales Contact:	DJ Snodgrass
	Vancouver, BC V6C 2T8 CAN		
	(604) 685-0543 Fax: (604) 685-0147		

Quote for datalogging equipment for monitoring Peizometers around site.

Item	Description	Qty	Price	DD	Extended Price
Custom	10 installations for monitoring Peisometers. Can monitor multiple probes on each station	1	\$38,733.0 0		\$38,733.00
	Item includes logging equipment as well as radio commu radio.	inications to allo	w for one collection	n point via	
Solar20W	20 Watt Solar Panel	11	\$391.40		\$4,305.40
SolarBracket	Solar Panel Bracket	11	\$97.85		\$1,076.35
		Total Ite	ms		\$44,114.75
		Labor / S	hipping		\$0.00
		Harmoni	zed Sales Tax	Exempt	\$0.00
		Total Q	uote		\$44,114.75

All Quotes are valid for 60 Days. All Pricing are in USD unless otherwise specified.

* Denotes Distributor discounts do not apply

¶ Please contact Measurand Inc. Prior to ordering

NOTES:

- (1) a) Unless otherwise specified, SAAs have no unsensorized segment at the far end;
 - b) Unless otherwise specified, SAAs have one unsensorized segment at the near end that provides an attachment point and junction to the cable. This segment and a stiffer portion of the cable occupy approximately 30 cm (1') "extra" beyond the length of sensorized segments. The cable can be turned 90 degrees within this dimension. When planning installation depth, this "extra" length must be accounted for;
 - c) SAAFs are built in groups of 8 segments called octets. A SAAF may be ordered with a partial octet (example: 14 segments instead of the standard 2 x 8 = 16 segments). Because this entails a special production run, pricing is per fully populated octet. For the example above, this entails pricing for 2 octets (16 segments instead of 14).

(2)Payment Terms: Net 30 days from time of shipping. Overdue accounts will be subject to interest and penalties;
 (3)Freight charges not included in total prices unless otherwise specified. Please indicate preferred shipping method on purchase order. Freight charges will

be added at time of sale;

(4)Applicable taxes will be calculated and added at time of sale

Components Description: See "Specification/Ordering List" and "Ordering Guide" at www.MeasurandGeotechncial.com/downloads" for assistance in interpreting the quoted

Sales@measurand.com http://www.measurand.com

2111 Hanwell Road, Fredericton NB E3C 1M7 Tel: (506) 462-9119 Fax: (506) 462-9095

Licensed To: Measurand Inc

1/2

Item

components, dimensions, and installation variables.

Not included in the above: Drilling Casing Excavation Backfilling Lift equipment Security fencing Electrical supply Lightning protection

All quoted items are FOB Fredericton, New Brunswick, Canada. Any shipping and taxes due will be the responsibility of the customer Prices: Prices are subject to change without notice.

Terms & Conditions Concerning Delivered Products

1. Warranty: Measurand Inc. Warrants that its products are free from defects in material and workmanship for a period of one (1) year from date of delivery unless otherwise specified by Measurand Inc. In writing. This warranty applies only if the products have not been opened and have not been subjected to misuse, neglect, accident or improper installation or care. Said improper care includes but is not limited to supply of power not as specified by Measurand Inc. If Measurand Inc. Products fail due to no fault of the Buyer, Measurand Inc. Will, at its option, either repair the defective product and restore it to normal operation without charge for parts and labor or will provide a new replacement product in exchange for the defective product. Repair work shall be warranted for the remainder of the original warranty period or for a period of 60 days, whichever is longer. Measurand Inc. Hereby disclaims any implied warranty of merchantability.

2. Limitations of Liability: In no event will Measurand Inc. Be liable for any indirect, incidental or consequential damages or any lost profits or like expectancy damages arising out of the delivery of its products. Measurand Inc.'s liability for personal injury and/or property damage shall not exceed its general liability insurance policy limitations.

3. Inspection and Rejection of Products: Buyer shall notify Measurand, Inc., within seven (7) business days after receipt, of the discovery of any defects in delivered products and/or its acceptance/non acceptance thereof; otherwise, it shall be deemed to have accepted the products.

4. Return Goods Authorization: Measurand Inc. Shall not accept returned or rejected products/parts unless first authorized with a return merchandise authorization (RMA) number. The Buyer is responsible for handling, insurance and transportation of unit to Measurand Inc. Measurand Inc. Shall be responsible for inspecting the unit and repair as necessary. Measurand Inc. Shall pay for the return of the repaired/new unit to the Buyer via Ground Transportation only.

5. Title & Delivery: Title/risk of loss or damaged goods shall pass to the Buyer upon Measurand Inc. Delivery of products. Measurand Inc. Shall retain a security interest with repossession rights for products shipped on open account until all obligations are met. The delivery date is an estimate only, based on a best forecast of conditions at time of order entry. Neither party shall be liable to the other party for any failure to perform any of its obligations under this Agreement during any period in which such performance is delayed by circumstances beyond its reasonable control including, but not limited to fire, flood, war, terrorism, embargo, strike, constrained markets, riot or the intervention of any governmental authority ("Force Majeure"). In such event, however, the delayed party must promptly provide the other party with written notice of the Force Majeure. The delayed party's time for performance will be excused for the duration of the Force Majeure, but, if the Force Majeure event lasts longer than thirty (30) days, the other party may immediately terminate the Agreement by giving written notice to the delayed party.

6. Delivery Times/Expedited Delivery: Standard Delivery time is 3 4 weeks ARPO. In some cases, expedited delivery may be possible. Measurand Inc. Reserves the right to apply

an expedite fee of 10% of the total cost of the equipment purchased or a minimum charge of \$200.00 USD, whichever is greater.

7. BIS: The US Bureau of Industry and Security (BIS) may limit exports of USA made goods to certain individuals and organizations. A license application may need to be completed and submitted to Measurand before equipment may be shipped.

Licensed To: Measurand Inc

2/2

Ken Brouwer

From:	Ken Brouwer
Sent:	Wednesday, October 20, 2010 4:12 PM
.0:	Greg Johnston; Les Galbraith; Gregory Smyth
Cc:	Jeremy Haile
Subject:	FW: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley
Attachments:	2005 TSF Capacity vs Elevation Curve (KP).pdf; 2006 Dam Safety Review (AMEC).pdf; 2008 Capacity of Existing Mine Tailings Line (KP).pdf; 2010 Mount Polley Flyover.jpg; 2010 Stage 6b IFC Drawings (KP).pdf; RFP #MP100 Tailings Design.pdf
FYI.	
Due Nov 5 th .	

Cheers,

Ken

From: Denis Bernardi [mailto:DenisBernardi@imperialmetals.com] Sent: October-20-10 4:05 PM To: Denis Bernardi Cc: Don Parsons Subject: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley

Please find our request for proposal attached for the above inquiry, along with the following attachments;

- 2005 TSF Capacity vs. Elevation Curve (KP)
- 2006 Dam Safety Review (AMEC)
- 2008 Capacity of Existing Mine Tailings Line (KP)
- 2010 TSF Stage 6b IFC Drawings (KP)
- 2010 Mount Polley Flyover (MPMC)
- 2009 TSF Report on 2009 Annual Inspection (KP) (due to its size, it will be forwarded upon acceptance to submit a proposal)

Kindly review and advise on your intent to submit a proposal.

Regards.

Denis Bernardi Manager, Contracts & Purchasing

Imperial Metals Corporation #200 - 580 Hornby Street Vancouver, BC V6C 3B6 Direct: 604-488-2682

1

MOUNT POLLEY MINING CORPORATION

200 – 580 Hornby Street Vancouver, B.C., Canada V6C 3B6 Tel: 604.669.8959 Fax: 604.687.4030

October 20, 2010

Subject: Request For Proposal #MP-100

You are hereby invited to submit your proposal for providing design services for the Tailings Impoundment at the Mount Polley mine in accordance with requirements contained in the following attachments:

ATTACHMENT A -	INSTRUCTION TO BIDDERS
ATTACHMENT B -	SCOPE OF SERVICES/GENERAL DESCRIPTION
ATTACHMENT C -	MEMORANDUM OF AGREEMENT (Sample)
ATTACHMENT D -	GENERAL CONDITIONS

Proposals shall be submitted IN DUPLICATE for receipt at Mount Polley's office ON OR BEFORE 2:00 P.M., November 5, 2010, TO THE ATTENTION OF DENIS BERNARDI. Proposals emailed to <u>dbernardi@imperialmetals.com</u> will be accepted. Proposals received after the time and date specified will not be considered.

Any and all costs incurred by the bidder in the preparation and submission of a proposal shall be the responsibility of the bidder.

The award decision is based upon a selective competitive bid process. The lowest, or any proposal, may not necessarily be accepted.

Please proceed with your evaluation of this package and confirm in writing your intention to submit a Tender or otherwise, on or before October 26, 2010.

If you would like to schedule a site visit, kindly contact Ron Martel, Environmental Superintendent at 250-790-2215 ext. 409 or email <u>martel@mountpolley.com</u>.

We thank you in advance for your interest in this Project. Feel free to contact me regarding any aspect of this inquiry.

Yours truly,

We confirm our intent to tender Yes No

Company Name

Mount Polley Mining Corporation Denis Bernardi Manager, Contracts & Purchasing

Representative Name & Signature

Page 1 of 21

ATTACHMENT "A" Instructions To Bidders

28

19 A.S. 20 A.S.

Page 2 of 21

14

1.0 Intent

A. 18374

1.1.8

This RFP is not an offer to enter into an agreement with any party, but rather a request to receive proposals from entities interested in providing the products and/or services outlined herein. Such proposals shall constitute offers to enter into an agreement.

Bidders are advised that an agreement may or may not result from this RFP. Mount Polley's standard Agreement and General Conditions will apply to these agreements and are attached below.

Any deviations from this Agreement and General Conditions should be explained in detail with suggested alternate contract language provided as an attachment.

1.1 Contact Person

Each bidder is requested to designate one individual as its authorized contact person for all matters relating to this RFP.

1.2 Notice of Intention

All Bidders are requested to advise on their intent to submit a proposal by completing and returning a copy of the cover letter prior to the date indicated.

1.3 Submission Requirements

Bidders are required to submit an electronic copy of their bid by the time and date shown on the cover letter above. When received, Mount Polley will send an E-mail to confirm receipt. This E-mail softcopy bid **must** be received within the bid deadline. In addition, bidders are requested to submit **two (2)** hard copies of their proposals to the individual identified above. These hard copies **must** be received within two working days of the bid deadline.

1.4 Late or Incomplete Bids

Late or incomplete bids will not be considered.

1.5 No Liability for Costs or Expenses

Mount Polley will not be liable for any costs or expenses incurred by any bidder including, without limitation, any expenses incurred in the preparation and submissions of the bid.

1.5 Irrevocable Bid

The bid submitted is irrevocable by the bidder.

1.6 Changes to Bid

Bidders will not be permitted to alter their proposals once they have been submitted.

1.7 Oral Information

Any information given orally by Mount Polley employees or other third parties will not be binding nor will it be construed as a change to the RFP requirements.

1.8 Confidential Bids

Bid documents and all other documents and information given, or made available to Bidder pursuant to these Instruction to Bidders ("Bidding Information") are confidential. Bidder must not disclose any Bidding Information to any other person and may use the Bidding Information only for the purpose of preparing and submitting a Bid.

Page 3 of 21

1.9 Incomplete Bids

Mount Polley reserves the right to reject any bid, whether or not completed properly and whether or not it contains all required information. Without prejudice to this right, Mount Polley may request clarifications where the bidder's intent is unclear and may request amendments where, in the opinion of Mount Polley, there are minor errors, inconsistencies, or omissions in the bidder's proposal.

1.10 Clarification

Mount Polley reserves the right to clarify any information contained in a proposal.

1.11 Award

Mount Polley reserves the right to accept or reject any or all proposals in whole or in part (including, without limitation, any of the optional proposals). Mount Polley will have the right to make an award to one or more bidders or not to proceed with the project whatsoever.

2.0 Proposal Format

Bidders are requested to prepared and submitted their proposals in the following format:

.1 Task Description Sheets

The format for a task description sheet is given in Attachment I. Subdivide your work program into tasks corresponding to distinct groupings of deliverable products and services. Project management activities should be included for each task. (If the proposal is selected, these task description sheets once negotiated to the mutual satisfaction of the Consultant and Mount Polley will form part of the contract for consulting services).

.2 Bar Chart Schedule(s)

Show schedule of activities for each task. The time scale shall be on week or day intervals.

Each task must be divided into activities with distinct start and finish dates. In particular, the schedule must show the activities leading up to the milestone event dates for the Consultant's work program. Preliminary milestone event dates are provided in Attachment B, Scope of Services / General Description. These dates will be discussed and confirmed after contract award.

.3 Staff Workload Plan

For each task, forecast the chargeable time for each staff member (or job classification) by month.

.4 Dollar Budget

Present a budget of the cost to be charged to Mount Polley for each task by month. A single page may be used to display this information for all the tasks in the work program.

All the charges associated with providing the deliverable product and services in a task must be included in the budget for the task. Disbursements and expenses must be allocated to individual tasks. Such charges may include travel, equipment, communications and printing charges.

Page 4 of 21

ATTACHMENT I FORMAT FOR TASK DESCRIPTION SHEET

10 10

 $\hat{\mathbf{x}} = \hat{\mathbf{x}}$

Contract No	1	(Supplied by Mount Polley)
Task No.	:	(by Consultant)
Consultant	:	(Name of Firm)
Task Title	:	(Descriptive title, by Consultant)
Purpose	•	(Summary statement, in one or two sentences, of the reason why the task is required)
Input Required	:	(In point form, list the information you require from Mount Polley or other consultants in order to proceed on this task.)
Work Steps	:	(In point form, list the detailed work steps or activities which make up the task. Use this section to describe methods or techniques which will be employed in the conduct of the work.)
Deliverables	:	(In point form, list the tangible products or services that will be provided from this task. The deliverables define the scope of the task. Make reference to other documents, such as your proposal or earlier reports, as needed to make the definition of deliverables as specific as possible.)
Resource and Budget	:	(List the total staff consulting time, and expenses that make up the total budget for the task.)
Assigned Staff	:	(List the personnel or classification who will perform the work, by name.)

Page 5 of 21

ATTACHMENT "B" Scope of Services / General Description

Page 6 of 21

REQUEST FOR PROPOSAL

Tailings Impoundment Life of Mine Design Services

For Mount Polley Mining Corporation Tailings Dam Expansion Project

Proposal closing date and time: Proposals shall be submitted IN DUPLICATE for receipt at Mount Polley's office ON OR BEFORE 2:00 P.M., NOVEMBER 5, 2010, TO THE ATTENTION OF DENIS BERNARDI. Email proposals to <u>dbernardi@imperialmetals.com</u> will be accepted, with hard copies to follow. Proposals received after the time and date specified will not be considered.

Request to notify of intent to submit proposal: Respondents are requested to notify Denis Bernardi no later than noon, October 26, 2010 if you intend to submit a proposal.

Purpose

The purpose of this Request for Proposal (RFP) is to select a consultant who can provide the most cost effective solution for the storage of an additional 50 million metric tonnes of tailings at the Mount Polley mine.

Background

MPMC is seeking a company or individuals to provide tailings disposal design services to identify and select the most cost effective method, on a cost per ton basis for storing the expanded tailings disposal volumes. The mine is located in south central British Columbia, 8 km southwest of Likely and 100 km (by road) northeast of Williams Lake.

Scope

The MPMC current tailings impoundment stores 45 M cubic meters at the supernatant 953 m elevation. The crest was elevated to 958.5m during the recent 2010 construction season. The next planned lift is summer 2011. A previous design completed by Knight Piesold indicates an ultimate capacity of 73 M cubic meters by increasing the dam crest elevation to 968 m as currently designed. MPMC's revised ore body reserves have extended the life of mine plan to 2017 and increases the additional tailings storage requirements to 50 M metric tonnes.

We are seeking proposals from qualified companies to provide a conceptual design option to meet Mount Polley's additional tailing storage volume requirements.

Possible options identified by MPMC are:

- 1) Increase existing dam height to 970+m and dry stack additional tailings.
- Extend the existing tailings storage facility either side of existing embankments.
- Incorporate cyclone sand as a downstream construction material.
- Increase the existing dam height to meet life of mine tailings volumes.

Page 7 of 21

Permitting timelines as well as pipeline dynamics need to be considered in developing proposal options. Magnetite recovery from the tailings stream will begin in 2011, options to keep the old tailings separate from future tailings production should be considered.

To provide a basis for your recommended option the following capacity criteria should be considered:

ROM Plant Feed (April - Oct) ROM Plant Feed (Nov-March) Tailings Production Rate Current Tailings Stored Additional Storage Required Current Pipeline; Mill to TSF Extended Mine Life 22,000 TPD 20,000 TPD 7.7 MTPY 45 M cubic meters 50 M metric tonnes (approx, 36 M cubic meters) 24" HDPE to 2017

Additional information:

The following documents, reports and drawings provide site-specific background on the project to assist with your proposal submission;

- 2005 TSF Capacity vs. Elevation Curve (KP)
- 2006 Dam Safety Review (AMEC)
- 2008 Capacity of Existing Mine Tailings Line (KP)
- 2009 TSF Report on 2009 Annual Inspection (KP)
- 2010 TSF Stage 6b IFC Drawings (KP)
- 2010 Mount Polley Flyover (MPMC)

Proposal:

Proposals should include the following as a minimum;

- Your recommended tailings option(s) for life of mine operation, identifying advantages and disadvantages of the option(s).
- 2. Provide the preliminary capital cost estimate for construction.
- Provide the estimated costs, including hourly rates, for developing construction level detail design, specifications and scope of work for the recommended option.
- 4. Provide resumes for key personnel, highlighting experience with northern interior sites, copper mining operations, Tailings Storage Facility management and design experience.

Page 8 of 21

ATTACHMENT "C" Memorandum of Agreement (sample)

SAMPLE AGREEMENT

THIS AGREEMENT made in duplicate as of the _____ day of ______, 2010.

BETWEEN: MOUNT POLLEY MINING CORPORATION, a company incorporated under the laws of the Province of British Columbia, with offices located at 200 – 580 HORNBY STREET Vancouver, B.C., V6C 3B6

("Owner")

AND:

a company incorporated under the laws of the Province of British Columbia, with offices located at

("Consultant")

- RECITALS: A. Consultant has expertise in providing certain professional services as set forth on the attached Schedule "A" (collectively, the "Services")
 - B. Owner desires that Consultant will provide the Services to be performed at Owner's Mount Polley Mine (the "Site"). Consultant agrees to provide the Services to Owner, in accordance with the terms and conditions of this Agreement. All capitalized terms not otherwise defined in this Agreement shall have the meanings set forth in GC1 – Definitions, below.

NOW, THEREFORE, in consideration of the foregoing and the mutual promises, covenants and conditions contained herein, the Parties agree as follows:

ARTICLE 1 ENTIRE AGREEMENT AND CONTRACT DOCUMENTS

1.1 The Contract sets forth the entire Agreement between the parties and supersedes all previous communications, agreements and commitments, whether written or oral, pertaining to the Work or the Contract. The provisions of the Contract may only be changed in writing executed by the parties to the Contract. Trade custom and trade usage are superseded by the Contract and shall not be applicable in the interpretation of the performance of the Contract.

1.2 The Form of Agreement together with the following documents:

- Schedule A Scope of Services/General Description
- Schedule B Pricing Schedule/Proposal
- Schedule C General Conditions

form the Contract and together shall hereinafter be referred to as the Contract or Contract Documents.

ARTICLE 2 SCOPE OF SERVICES

2.1 Consultant shall furnish all supervision, tools, equipment, labour and materials and perform all Work necessary to fully complete the Work outlined in Scope of

Page 10 of 21

Services (the "Work") and the other Contract Documents.

2.2 Any changes to the Work that will result in a change in the Contract Sum or the Contract Schedule requires prior written agreement of both parties. Any agreed change in the Contract Sum will be paid in accordance with the Contract Documents.

ARTICLE 3 SCHEDULE

- 3.1 Time shall be of the essence of the Contract and shall remain so notwithstanding any amendments to the schedule or adjustments to the completion date.
- 3.2 Consultant will schedule and coordinate the Work with the work of others.
- 3.3 Consultant will commence the work on _____, 2010 and shall complete the Work by _____, 2010, to be better defined as project progresses.

ARTICLE 4 CONTRACT SUM AND PAYMENT

- 4.1 Owner shall pay Consultant, in lawful money of Canada, the sum NOT TO EXCEED Dollars (\$.00), as full and complete payment for the performance of the Work, subject to adjustments as may be provided for in the Contract Documents.
- 4.2 Consultant shall notify Owner upon the Contract value reaching 80% of the Contracted amount, upon which time the projected costs to completion shall be reviewed.
- 4.2 GST not included and is extra.

ARTICLE 5 RECEIPT OF AND ADDRESSES FOR NOTICES

If either party desires to give notice to the other in connection with the Contract, such notice shall be sufficiently given if delivered by hand, if sent by registered mail, or if sent by facsimile or other electronic message system which provides a hard copy, to the

Consultant:

ATTN: TEL: () FAX: ()

and to Owner:

MOUNT POLLEY MINING CORPORATION 200 – 580 Hornby Street Vancouver, B.C. V6C 3B6 ATTN: Mr. Denis Bernardi TEL: (604) 488-2682 FAX: (604) 687-4030 E-mail: dbernardi@imperialmetals.com

Page 11 of 21

Gregory Smyth

From:	Ken Brouwer
ent:	Wednesday, October 27, 2010 7:58 AM
ſo:	Denis Bernardi; Don Parsons
Cc:	Jeremy Haile; Gregory Smyth; Greg Johnston
Subject:	RE: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley -
	Knight Piesold

Dear Denis,

We have always made ourselves available to assist Imperial Metals and will continue to do so, but we confirm that we do not intend to submit a proposal for the specific scope of work outlined in RFP MP-100.

We agree that our long history on the project would be advantageous for the proposed study program. In fact many of our previous studies have considered various options for expansion and we would have a huge head start.

However, in this instance, it is presumed that our services are not essential and we therefore encourage you to continue to evaluate alternative options for the study program outlined in the proposal. A thorough review and evaluation by others may outline new opportunities, or provide refinements to the concepts that have already been developed.

We will be pleased to discuss this further, once you have had the opportunity to fully consider the alternatives.

Best Regards, Ken.

From: Denis Bernardi [mailto:DenisBernardi@imperialmetals.com]
Sent: October-26-10 1:21 PM
To: Ken Brouwer
Cc: Don Parsons; Brian Kynoch; rmartel@mountpolley.com; tfisch@mountpolley.com; afrye@mountpolley.com; Jeremy Haile
Subject: RE: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley - Knight Piesold

Ken, we are surprised in your decision on not intending to submit a proposal, as your history with this project would give you an advantage on developing a viable cost effective option.

Our intent with this proposal request, is to perform our due diligence and evaluate all possible options on a competitive nature, in an effort to reduce our overall annual capital and operating costs. It is of no reflection of the performance or capabilities that we are receiving or have received to date. That being said, we trust that you would reconsider your decision and participate in our RFP process.

We would be pleased to respond to any questions or concerns.

Regards.

Denis Bernardi Manager, Contracts & Purchasing

'mperial Metals Corporation .00 - 580 Hornby Street Vancouver, BC V6C 386

1

From: Ken Brouwer [mailto:kbrouwer@knightpiesold.com]
Sent: Monday, October 25, 2010 1:59 PM
To: Denis Bernardi
Cc: Don Parsons; Brian Kynoch; rmartel@mountpolley.com; tfisch@mountpolley.com; afrye@mountpolley.com
Subject: RE: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley - Knight Piesold

Dear Denis,

As requested in the RFP documents, we confirm that Knight Piésold is **NOT** intending to submit a proposal in response to RFP #MP-100- Tailings Impoundment Design Services without some prior clarifications. In general, we would welcome the updated protocols and contract management procedures outlined in the RFP documents but feel that there are some fundamental issues that must be resolved prior to proceeding with the development of a detailed scope and budget for the requested services.

As you know, Knight Piésold has a long history with Imperial Metals and the Mt Polley Mine. We have previously developed and evaluated various options for cost effective storage of tailings for the expanded mine plans outlined in the RFP. We have also assisted with long range planning for tailings, waste rock disposal, water management, closure planning, operational monitoring and permitting. Many of the options outlined in the RFP have been evaluated previously by KP and MPMC personnel, including completion of tailings impoundment expansion studies and full scale field trials for implementation of cyclone sand as a downstream construction material, etc.

Our long term relationships with all of our clients is very important to us and we are surprised and disturbed by the sudden change in our relationship with Imperial Metals. It has been suggested that one of the primary reasons that th' RFP has been initiated is due to concerns about excessive costs relating to services provided by KP for the design/ construction of the tailings management systems at the Mount Polley Mine. Unfortunately, this message is also being communicated to our peers and clients within the Mining Industry and is a significant concern to us.

The following points are presented for your consideration:

- It has been indicated that expenditures in excess of \$400,000 have been incurred by MPMC for KP engineering services relating to the tailings impoundment and it has been suggested that these costs are considered by Imperial Metals to be grossly excessive for services that were actually required.
- We are not sure where the \$400,000 number comes from or what it includes for, but our detailed records indicate that it is far in excess of any KP billings for our 2010 Scope of Work.
- Greg Johnston, the KP Project Manager, has provided a brief summary of expenditures and contract status as outlined in the attached internal email. Knight Piésold has been diligent in controlling costs for engineering support at the Mt Polley Mine.
- We are concerned that Imperial Metals management may not have been adequately informed of the reasons for the extensions to the construction programs, and the specific requests for additional KP services that were required by MPMC. The reasoning for these additional services is also identified in the attached internal email from Greg Johnston.
- We will be pleased to provide copies of all signed contracts and the invoicing status for 2010 and/or previous years.
- Knight Piésold are very interested in any concerns that Imperial Metals/MPMC may have with respect to the services provided for Mt Polley or any other Imperial Metals project, and we would welcome the opportunity to discuss them.

It seems that a fundamental miscommunication may have occurred and it will be appropriate to resolve this prior to proceeding with the development of a scope of work and cost estimate for RFP MP-100.

Regards,

......

Ken Brouwer, P.Eng. Managing Director Knight Piésold Ltd.

Suite 1400 - 750 West Pender Vancouver | British Columbia | Canada | V6C 2T8 phone: +1 604 685 0543 | fax: +1 604 685 0147 direct: +1 604 685 0543 ext 252 | mobile: +1 604 802 5128 email: <u>kbrouwer@knightpiesold.com</u> web: <u>http://www.knightpiesold.com</u>

Please consider the environment before printing this email. 🤇

This communication, including any attachments, is intended only for the use of the intended recipient(s) and is confidential. If the reader of this communication is not the intended recipient, any dissemination, distribution or copying of this communication is strictly prohibited. Knight Piésold does not warrant the accuracy of this communication. If you receive this communication in error, please notify the sender by return e-mail and delete this communication from your system.

From: Denis Bernardi [mailto:DenisBernardi@imperialmetals.com]
Sent: October-20-10 4:05 PM
To: Denis Bernardi
Cc: Don Parsons
Subject: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley

Please find our request for proposal attached for the above inquiry, along with the following attachments;

- 2005 TSF Capacity vs. Elevation Curve (KP)
- 2006 Dam Safety Review (AMEC)
- 2008 Capacity of Existing Mine Tailings Line (KP)
- 2010 TSF Stage 6b IFC Drawings (KP)
- 2010 Mount Polley Flyover (MPMC)
- 2009 TSF Report on 2009 Annual Inspection (KP) (due to its size, it will be forwarded upon acceptance to submit a proposal)

Kindly review and advise on your intent to submit a proposal.

Regards.

Denis Bernardi Manager, Contracts & Purchasing

perial Metals Corporation #200 - 580 Hornby Street Vancouver, BC V6C 3B6 Direct: 604-488-2682

File No.:VA101-1/29-A.01 Cont. No.:VA10-01620 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 *Fax:* 604.685.0147 *www.knightpiesold.com*

November 23, 2010

Mr. Ron Martel Environmental Superintendent Mount Polley Mining Corporation P.O. Box 12 Likely, BC V0L 1N0

Dear Ron,

Re: Tailings Storage Facility Instrumentation Replacement Program, Drilling Cost Estimates

Introduction

The Mount Polley Mine has several options for the instrumentation replacement program required at the Tailings Storage Facility. These options are described in the Knight Piésold Letter VA10-01175. The installation of the replacement instrumentation will include a drilling program; this drilling program is the largest cost item in the instrumentation replacement program. Mr. Ron Martel of Mount Polley Mine has requested Knight Piésold assist with the selection of a suitably qualified drilling contractor.

To assist Mount Polley in managing the drilling costs Knight Piésold has obtained three competitive quotes from qualified drilling contractors. Knight Piésold has experience working with all three contractors on similar programs and based on our experience, we believe that all are capable of completing the work.

Drilling Program

The drilling contractors were requested to provide cost estimates and comment on drill availability. The drilling program is summarized as:

- 5 drill holes in total, 2 drill holes to 60m and 3 drill holes to 25m
- Supply and install slope indicator casing in each drill hole
- Install 4 vibrating wire piezometers in each drill hole, (supply by others)
- Collect soil samples and evaluate geotechnical conditions encountered in the foundation soils, and
- All drill sites will be truck accessible (Mount Polley to provide suitable drill site access)

Cost Estimate

Three drilling contractors were requested to provide cost estimates. A copy of the cost estimates provided by each of the drilling contractors is attached. The cost estimate provided by Foundex Explorations Ltd. included for the supply of vibrating wire piezometers. To facilitate a cost comparison between the potential contractors the HST has been excluded and the Foundex Explorations Ltd. cost estimate has been adjusted to exclude supply of vibrating wire piezometer and cable. The summarized cost estimates excluding HST are:

Knight Piésold

CONSULTING

- 1. Mud Bay Drilling Co. Ltd. \$63,700
- 2. Geotech Drilling \$69,700
- 3. Foundex Explorations Ltd. \$81,300

All three contractors have verbally confirmed they have a drill available before the end of the year.

Summary

The selection of a drilling contractor from this short list is required by Mount Polley Mine. It is recommended that Mount Polley directly contract the drilling contractor in order to avoid any mark-ups that would be applied by Knight Piésold. Knight Piésold is available to assist Mount Polley with the drilling contract document review.

In addition to the drilling costs, the specified instrumentation will also need to be purchased. Knight Piésold is expecting cost estimates for the instrumentation purchase later this week, and will be reported in a separate letter.

We trust this will help your selection of a drilling contractor. This instrumentation replacement program is overdue and we recommend that it be initiated as soon as possible. Please call Greg or Ken if you have any questions.

Yours truly, KNIGHT PIESOLD LTD.

Signed: Greg Johnston, M.Sc. Engineering Geology and Geotechnical Specialist

Attachments: Cost Estimates by: Geotech Drilling (1 page) Mud Bay Drilling Co. Ltd. (1 page) Foundex Explorations Ltd. (3 pages)

Copy To: Luke

Luke Moger

Approved: Ken Brouwer, P.Eng. Managing Director

/gj

Bill to: Knight Piesold Ltd.

Care of: Knight Piesold Ltd. 1400 750 West Pender Street Vancouver, BC V6C 2T8

Email: msmith2@knightpiesold.com

ATTN: Mark Smith

Tel:

Cost Estimate

Date: October 27, 2009

Revised No./Date: 04-Nov-10 Project Manager: Ryan Samis Cost Estimate No.: 1KRS10-0043 Unit No. (Drill Rig): Odex/Mud Rotary Drill Location: Mount Polley Mine Province:

_ Province: ____

Scope: This cost estimate is for 2 boreholes to 60 meters (200 ft) with 4 Vibrating Wire Installs per hole and 3 boreholes to 25 meters (s (100 ft) with 2.75" Casing installed and 4 Vbrating Wires per hole, Soil coring(HQ3) will be required in the last 65 ft of each hole.

ltm	Qty	Unit	Description	Price	Extended
	96	hrs	Odex Drilling / Soil Coring	249.00	23,904.00
2	52	hrs	Overtime (after 8 hours, weekends, stats)(two man crew)	65.00	3,380.00
3	1	L/S	Mob/Demob to Mount Polley	2750.00	2,750.00
4	30	hrs	Crew travel	150.00	4,500.00
5	12	shift	Support vehicle(truck mount)	249.00	2,988.00
6	12	shift	Crew subsistence (two man crew)	279.00	3,348.00
7	12	shift	Air compressor rental (300/200)	425.00	5,100.00
8	12	shift	Grout/Mud pump rental	199.00	2,388.00
9	5	hrs	Safety meeting	149.00	745.00
10	311	ft	Diamond Bit Wear Consumption	19.75	6,142.25
11	590	ft	Odex bit wear consumption (Vibrating Wire BH's, Inclinometers and Monitoring Wells)	5.75	3,392.50
12	12	shift	High Pressure Diamond Pump Rental	175.00	2,100.00
13					
14					-
15					
16				1	-
17					
18	400	ft	1" PVC (for Vibrating wire installs)	1.87	748.00
19	25	10 ft	2.75" Slope Inclinometer Pipe	148.35	3,708.75
20	3	ea	2.75" Slope Inclinometer Top Cap	6.90	20.70
21	3	ea	2.75" Slope Inclinometer Grout Anchor	58.69	176.07
22	40	bags	Bentonite chips (If grouting does not work, chips will be used as backfill material in rock fill)	21.84	873.60
23	12	bags	Sand (Vibrating Wire Installs if required)	15.52	186.24
24	5	ea	Stand up casing protectors	109.25	546.25
25	5	bags	Fast set pre-mix concrete	17.25	86.25
26	65	5 ft	Acrylic Liners for Soil Coring	28.75	1,868.75
27	7	bags	Premix Grout	34.44	241.08
28	21	bags	Portland cement	23.75	498.75
bes & res	locking charges	O.E. Cost Estimate may apply if less that loation is received.	valit hu 60 days. Underground / Overhead utilities are the sole responsibility of the client. Lost, broken or unrecoverable looling will be charged al cost plus 15%. Concellation 148 hours notice. Invoice Payment terms: Upon Receipt. 2% interest charges will apply on past due occusits Invoice considered accepted and approved 15 days after **Overfilme is applicable after 8 hours, weekends, and statutory holidays.**	Subtotal HST	\$ 69,692.19 \$ 8,363.06
Drif	ish C	olumbia		TOTAL DU	CONTRACTOR OF THE OWNER

5052 Hartway Drive • Prince George • British Columbia • Canada • V2K 5B7

Tel: (250)962-9041 · Fax: (250)962-9046 · Web: geotechdrilling.com

Promotion Code:

Thank You for Your Business!

2	
0	MUD
Ņ	
D	DRILLING CO. LTD.
10	•)•)

ATTN: Greg Johnston

45gal drums, if needed

Cost Estimate

Date: August 13 2010

Unit A, 18509 96th Avenue, Surrey, BC V4N-3P7 Rev

Tel: (604) 888-2206 Fax: (604) 888-4206

Knight & Piesold Ltd. Suite 1400 - 750 West Pender St. Revised No./Date:

Cost Estimate No.: 1

Unit No. (Drill Rig): Sonic Truck Location: Mount Polley

Vancouver, B.C., V6C 2T8

Scope: 2 boreholes to 60m and 3 boreholes to 25m. Slope indicator casing to be installed in each hole. 4 VW piezometers in each hole. Piezometers to be supplied by client.

ltm	Qty	Unit	Description		Price		Extended
1	1	ls.	Mobilization (Surrey/Mount Polley/Surrey)	\$	6,500.00	\$	6,500.00
2	60	hrs	Drilling, sampling and installation	\$	550.00	\$	33,000.00
3		hrs	Crew overtime (1.5)			\$	-
4		hrs	Crew overtime (2.0)			\$	-
5	12	hrs	Crew Travel	\$	185.00	\$	2,220.00
6	6	days	Living allowance	\$	525.00	\$	3,150.00
7	195	m	Bit Wear	\$	35.00	\$	6,825.00
8		in.	Concrete coring (10 in dia.)			\$	-
9	195	m	2.75"/70mm INCLINOMETER CASING SNAP SEAL	\$	37.00	\$	7,215.00
10		ft.	(2)" PVC blank			\$	-
11	5	ea	INCLINOMETER TOP/BOTTOM CAP	\$	27.00	\$	135.00
12		ea	DCPT tips	\$	20.00	\$	-
13		ea	Shelby tubes	\$	40.00	\$	-
14		sacks	Silica sand	\$	16.00	\$	-
15		sacks	Bentonite chips	\$	20.00	\$	-
16	5	sacks	Concrete	16.00	\$	80.00	
17	195	m	Grouting of Boreholes	\$	11.00	\$	2,145.00
18		sacks	Quik-gel bentonite drilling mud	\$	20.00	\$	-
19		sacks	Asphalt patch \$ 22.00				-
20		sacks	Portland cement \$ 20.00				-
21	6	days	Support /Decontamination Unit	\$ 300.00		\$	1,800.00
22		days	Compressor rental for ODEX	Compressor rental for ODEX \$ 450.00		\$	-
23		ea	45 gal. Drums with lids \$ 60.00		\$	-	
24	5	ea	Well covers (flush mounted, cast iron, above ground)	\$	135.00	\$	675.00
25		ea	Core boxes	\$	60.00	\$	-
26						\$	-
27							-
28							-
29							-
Note					Subtotal	\$	63,745.00
		f rig and o			H.S.T.	\$	7,649.40
			an 8hrs onsite +\$75/hr e for contaminated soil/wast water removal	тс	TAL DUE	\$	71,394.40
		sponsible s, if need					

\$60/ea

Explorations Ltd.	EX									Date: Client Job#:	Oct. 28, 20 N/A
		Proposal #	4385							Equipment:	CSR-100
Fo: Knight Piesold Consulting Suite 1400 - 750 West Pe /ancouver, BC /6C 2T8 Fel: 604-			Project Details: Site: Attention: Single shif / double Estimate # of Shifts Estimate # of Days	Mount Polley Mark Smith Single Shift 15 15							
Hole # 60	Hole Depth (m) 60.00	Hole Depth (ft) 196.80	Move/Setup	Air Rotary Overburden (m)	Overburden (hrs)	Mud Rotary (m)	Mud Rotary (hrs)	Coring (m)	Coring (hrs)	Install/Backfill/G rout (hrs)	Total Hr
60	60.00	196.80)								
25	35.00	114.80									
25 25	35.00 35.00	114.80 114.80					s.21				
QUANTITY:	225.00	738.00									
UNITS:	Meters	Feet	t								
RATE:											
TOTAL:			\$ 1,950.00		\$ 16,250.00		\$ 15,600.00		\$ 15,600.00	\$ 9,360.00	· · · · · ·
										Sub Total:	\$58,76
* DENOTES WEEKEND										Mobilization:	\$8,50
	oduction Rates		1	Hourly Rate	e Calculator					Materials:	\$26,08
Moving		Hours Per Hole	-							Contingency:	\$8,48
Air Rotary		Meters / hour	-							Sub Total:	\$101,83
Mud Rotary		Meters / hour	-							HST @ 12%:	\$12,21
Travel		Hours Per day	-							Total:	\$114,05
Holes Work Week		Project Total Hours Per Week	-								
Work Days		Days Per Week	-								
Contingency		Per Job	-	s	.21						
Hours Per Day		Hours Per Day	-	0.							
Supervisor		Days Per week	-								
Extra Helper		Hours Per Week	-								
Crew	2.00	# of Men	-								
R&B Rate / Man		Rate Per Man									
Rig Rate		Per Hour	-								
-			1								
Quantity	Desc	ription	Unit	Rate	Extension	1					
40 H	HQ3 Coring		Per Meter	32.80	1,312.00						
	Mud Rotary Drilling		Per Meter	16.50	990.00						
	Air Rotary Drilling -	6' Symmetrix	Per Meter	50.00	6,250.00						
	Cement		Bags	15.15	606.00						
	X-Tra Gel Bentonit	e	Bags	12.50	125.00						
	Bentonite Chips		Bags	19.50	97.50						
	Time Release Pelle Piezo Sand	315	Pails	103.80	2,076.00						
	3/4" PVC Pipe		Bags	10.17 0.55	406.80 137.50						
	2 3/4"x 10' linclind	meter Casing	Each	98.50	1,773.00						
	2 3/4" Inclinomete		Each	5.53	11.06						
		r Grout Bottom Caps		129.20	258.40						
	Vibrating Wire Piez		Each	550.00	11,000.00						
	Cable for VW		Per Meter	3.25	1,043.25						
321 0						4					
321 (TOTAL	26,086.51						
321 (-							
PROJECT DETAILS											
PROJECT DETAILS Water Availability		Surface Casing	Yes	Accommodations	Williams Lake	Installation	N/A				
PROJECT DETAILS Nater Availability Equipment Access	Truck	Casing Size	Symmetrix 6"	Accommodations Fuel	N/R	Installation PVC Size	N/A				
PROJECT DETAILS Water Availability Equipment Access Environmental Project	Truck			Accommodations	N/R	PVC Size Slot size					
PROJECT DETAILS Water Availability Equipment Access Environmental Project	Truck No By Others	Casing Size Drill Hole Hole Size	Symmetrix 6"	Accommodations Fuel	N/R	PVC Size	N/A				
PROJECT DETAILS Water Availability Equipment Access Environmental Project Any Permitting	Truck No By Others	Casing Size Drill Hole	Symmetrix 6" Yes	Accommodations Fuel Insurance certificate	N/R N/R	PVC Size Slot size	N/A N/A				
PROJECT DETAILS Water Availability Equipment Access Environmental Project Any Permitting Intended Driller	Truck No By Others Unknown	Casing Size Drill Hole Hole Size	Symmetrix 6" Yes Symmetrix 6"	Accommodations Fuel Insurance certificate Shipping Quote	N/R N/R N/R	PVC Size Slot size Flush/Standup	N/A N/A N/A				
PROJECT DETAILS Water Availability Equipment Access Environmental Project Any Permitting Intended Driller Cutting Disposal	Truck No By Others Unknown Left on site	Casing Size Drill Hole Hole Size Drill Method	Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core	Accommodations Fuel Insurance certificate Shipping Quote Maps Required	N/R N/R N/R Yes	PVC Size Slot size Flush/Standup Sand	N/A N/A N/A N/A				
PROJECT DETAILS Water Availability Equipment Access Environmental Project Any Permitting Intended Driller Cutting Disposal Drill Containment	Truck No By Others Unknown Left on site No	Casing Size Drill Hole Hole Size Drill Method Core Size	Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core HQ3	Accommodations Fuel Insurance certificate Shipping Quote Maps Required Utility Locate Req.	N/R N/R N/R Yes By Others	PVC Size Slot size Flush/Standup Sand Pellets	N/A N/A N/A N/A N/A				
PROJECT DETAILS Water Availability Equipment Access Environmental Project Any Permitting Intended Driller Cutting Disposal Drill Containment Rental Equipment	Truck No By Others Unknown Left on site No No	Casing Size Drill Hole Hole Size Drill Method Core Size SPT/Shelby Wireline Samples	Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core HQ3 SPT and Shelby N/A	Accommodations Fuel Insurance certificate Shipping Quote Maps Required Utility Locate Req. Terms Sent	N/R N/R N/R Yes By Others Yes	PVC Size Slot size Flush/Standup Sand Pellets Grout	N/A N/A N/A N/A N/A N/A				
PROJECT DETAILS Water Availability Equipment Access Environmental Project Any Permitting Intended Driller Cutting Disposal Drill Containment Rental Equipment Subcontractors	Truck No By Others Unknown Left on site No No No	Casing Size Drill Hole Hole Size Drill Method Core Size SPT/Shelby Wireline Samples CPT / SCPT	Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core HQ3 SPT and Shelby N/A N/A	Accommodations Fuel Insurance certificate Shipping Quote Maps Required Utility Locate Req. Terms Sent	N/R N/R N/R Yes By Others Yes	PVC Size Slot size Flush/Standup Sand Pellets Grout	N/A N/A N/A N/A N/A N/A				
PROJECT DETAILS Water Availability quipment Access Environmental Project Any Permitting Intended Driller Cutting Disposal Drill Containment Rental Equipment Subcontractors Service Vehicles	Truck No By Others Unknown Left on site No No No Yes	Casing Size Drill Hole Hole Size Drill Method Core Size SPT/Shelby Wireline Samples CPT / SCPT Development	Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core HQ3 SPT and Shelby N/A N/A N/A	Accommodations Fuel Insurance certificate Shipping Quote Maps Required Utility Locate Req. Terms Sent	N/R N/R N/R Yes By Others Yes	PVC Size Slot size Flush/Standup Sand Pellets Grout	N/A N/A N/A N/A N/A N/A				
PROJECT DETAILS Water Availability Equipment Access Environmental Project Any Permitting Intended Driller Cutting Disposal Drill Containment Rental Equipment	Truck No By Others Unknown Left on site No No Yes Yes	Casing Size Drill Hole Hole Size Drill Method Core Size SPT/Shelby Wireline Samples CPT / SCPT	Symmetrix 6" Yes Symmetrix 6" Air, Mud, Core HQ3 SPT and Shelby N/A N/A	Accommodations Fuel Insurance certificate Shipping Quote Maps Required Utility Locate Req. Terms Sent	N/R N/R N/R Yes By Others Yes	PVC Size Slot size Flush/Standup Sand Pellets Grout	N/A N/A N/A N/A N/A N/A				

*** THIS IS A COST ESTIMATE ONLY ** ACTUAL CHARGES WILL BE BASED ON FIELD LOGS AND OUR STANDARD TERMS AND CONDITIONS***

L

STANDARD TERMS & CONDITIONS OF FOUNDEX EXPLORATIONS LTD.

1. General

- 1.1. Prices include a 2 man crew and all necessary drilling and sampling equipment.
- 1.2. FWA, regulated or Union wage rates would be at an additional charge.
- 1.3. Survey and layout of all drill locations to be the responsibility of others.
- 1.4. Authorized utility clearance to be provided to Foundex prior to drilling.
- 1.5. Suitable access for our equipment would be provided by others to the satisfaction of Foundex.
- 1.6. Removal of and transport of contaminated drilling and decontamination spoils from the drill sites to be the responsibility of others.
- 1.7. Foundex's minimum work schedule is 10 hours per day and 5 days per week along with being a continuous operation until the work is complete. Overtime rate is in effect for all hours after 8 hrs per day, and after 40 hours per week, and on weekends and holidays. Work schedule revisions will be at the discretion of Foundex Explorations Ltd. based on project specific situations.
- 1.8. Client will provide site specific Health and Safety Plan for environmental projects. Equipment spill containment systems would be at an additional cost and only be provided at the specific request of the client. Pricing assumes Level "D" personnel protection unless specifically indicated otherwise.
- 1.9. Any or all traffic control to be provided by others.
- 1.10. Security for our equipment to be the responsibility of others.
- 1.11. Potable water supply, utility permits, misc. permits etc to be provided by others.

2. Marine Work and Marine Transportation

- 2.1. When contracting Marine vessels, Foundex will flow thru to the client all the terms and conditions of the supplier.
- 2.2. Standby will apply to all time that the barge and drill are unable to work due to tides, weather, permits or anything else that is beyond the control of the drill crew and/or barge operator.
- 2.3. When required by Foundex the Client will provide suitable moorage for barge and work boats.
- 2.4. All Marine vessels supplied by the client shall meet Foundex's minimum requirements for offshore drilling.
- 2.5. Minimum day for all rigs is 10 hours. Standby due to weather will be charged at agreed rates for 10 hours per day.
- 2.6. Cargo insurance for FEL's equipment while being transported by non-scheduled marine transportation will be charged on a cost plus basis or be provided by the client.

3. Heliportable Work

- 3.1. When requested, contracting helicopter services, Foundex will flow thru to the client all the terms and conditions of the supplier.
- 3.2. Suitable Helipads and work platforms when required will be provided for by others.
- 3.3. All Permitting when required will be provided by the client
- 3.4. When requested, Fuel will be supplied at cost plus 10% to the client.
- 3.5. Cargo insurance for FEL'S equipment while in flight is to be provided for by the client and hen Foundex provides cargo insurance it would be at Cost plus 10%.

4. Technical

- 4.1. Any artesian water flows will be dealt with on a cost plus basis.
- 4.2. Standby at 80 % of our unit rates includes but is not limited to, site orientation, safety meetings, engineering, health & safety plan protocols, personal protection equipment upgrades, water sampling, and lab analysis. Client will be invoiced for actual time consumed.
- 4.3. Materials are based on identified scope of work and include materials and supplies required to complete the work. Additional materials and supplies can be made available provided as mutually agreed.

Page 1 of 2

- 4.4. Estimate is subject to final scope of work, terms and conditions, health & safety plan and rig availability. Client will be invoiced for actual units consumed.
- 4.5. Reasonable drilling and sampling refusal based upon industry standard for applicable methodology. Refusal for Becker Drilling will be considered to be 200 blows per foot.
- 4.6. Foundex makes no guarantee desired maximum depths can be achieved. Potential for tool replacement if required by the client to drill or sample past the drill rig operators identified maximum safe depth. Potential for Becker pipe repair or replacement will be at cost plus 10% for any lost, damaged or bent pipe.

5. Financial

- 5.1. Any estimates offered by Foundex are for budgeting purposes only. Unless specifically indicated otherwise invoicing will be based upon actual time and quantities. Foundex does not guarantee that production rates used in the estimate will be achieved. Foundex reserves the right to modify our stated methodology to respond to differing site conditions. Should a not to exceed contract or footage rates be required Foundex requires this information prior to the bid date.
- 5.2. Sales tax or GST is not included in the above rates unless specifically indicated.
- 5.3. Upon prior approval of credit, payment terms are net 30 days from date of Invoice. All invoices issued by Foundex will be in digital format. All agreements that do not comply with these terms and conditions will be subject to a 5% mark-up on the total invoice. All invoices will also carry a 2% charge per month on any overdue balances.
- 5.4. Payment or performance bonds are not included in this proposal.
- 5.5. Any retention of funds due to Foundex shall be released in full within 30 days of completion of Foundex Explorations Ltd.'s Original scope of work.
- 5.6. Certificates of insurance will be submitted upon request only and any additional insurance requirements would be charged to the client at cost plus 10%.
- 5.7. When applicable a Fuel surcharge will be charged on Foundex projects.
- 5.8. Project cancellations after notice to proceed may incur costs payable by the client. Mobilization ends once the rig has arrived on site; set-up on the first borehole is per the terms of the proposal.
- 5.9. All proposals offered by Foundex are commercial in confidence and valid for 30 Days.
- 5.10. Upon Foundex receiving a purchase order or a verbal or written" notice to proceed", the client shall be deemed to have accepted and agreed to these terms and conditions unless specifically indicated otherwise and agreed to in writing prior to the commencement of the project. These terms and conditions incorporate the entire agreement between Foundex and the client, and supersede all prior understandings and agreements with respect to the project. If this document is a subcontract, then Foundex will not be bound by any term of the head contract unless specifically included in this document, or an amendment signed by Foundex and the client. No modification of this agreement will be effective unless made in writing and signed by Foundex and the client. There are no representations, warranties, terms, conditions, undertakings or collateral agreements express, implied or statutory, between Foundex and the client other than as expressly set forth in these terms and conditions.

Section" A" (Site specific terms)

To be Determined

Section "B" (Foundex Proposal and Scope of Work) See Attached

Section "C" (Miscellaneous attachments)

To be Determined

Foundex Explorations Ltd. End of Terms and Conditions

Page 2 of 2

File No.:VA101-1/29-A.01 Cont. No.:VA11-00252 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 *Fax:* 604.685.0147 *www.knightpiesold.com*

February 3, 2011

Mr. Ron Martel Environmental Superintendent Mount Polley Mining Corporation P.O. Box 12 Likely, BC V0L 1N0

Dear Ron,

Re: Mount Polley Mine – Site Water Management

Knight Piésold (KP) recently issued the 2010 annual inspection report for the Tailings Storage Facility (TSF) at the Mount Polley Mine. Although the primary focus of the annual inspection is to evaluate the performance of the TSF, the inspection also considers site water management practices, as these can have a significant impact on water accumulation at the mine and the storage requirements for the tailings impoundment.

KP previously assisted with assessing the operational water balance for the overall site. However, Mount Polley Mining Corporation (MPMC) has been managing the water balance in-house for the last two years and KP has had no involvement with it during this time. The water balance for the mine site was operating with a significant water surplus when KP last reviewed the information, with surplus water progressively accumulating within the TSF and the Cariboo and Wight Pits. KP understands that the quality of the water that is stored in the TSF and the pits is not suitable for discharge to the environment, and that MPMC does not yet have a permit to discharge excess water.

MPMC recently provided KP with a copy of an amendment (2009) to the mine operating permit that allows for the transfer of water from the TSF to the Cariboo Pit. This permit amendment allows for filling of the Cariboo Pit up to a designated maximum water level, and also stipulates that a minimum water cover be maintained over Potentially Acid Generating (PAG) waste rock that has been placed in the pit. KP has a general knowledge of the Cariboo Pit, but has not completed relevant geotechnical or hydrological studies for it. However, our overview assessment of the TSF operations, conducted as part of the 2010 Annual Inspection, suggests that a significant amount of water was transferred out of the TSF as the impounded supernatant water was considerably less than in previous years. MPMC site staff confirmed that tailings supernatant water had been transferred from the TSF to the Cariboo Pit to reduce the volume of water stored within the TSF.

The storage capacity for surplus water in the Cariboo Pit is limited by the geometry of the pit, the amount of PAG waste rock being stored in the pit, and the upper storage limit as defined in the operating mine permit. It is our opinion that the volume of water currently being stored in the Cariboo Pit is lower than would have been predicted by the site water balance, and it is possible that significant leakage may have occurred during filling of the Cariboo Pit, resulting in the discharge of poor quality water to adjacent water courses.

KP included a recommendation in the 2010 Annual Inspection report that the water balance and water management practices be reviewed to ensure compliance with the intent of the current permits. Our

INVESTIGATION KP 1095459001 500

concern is that some of the water transferred from the TSF to the Cariboo Pit is not being contained, but rather is being discharged as seepage and/or overflow to adjacent receiving waters. KP therefore recommends that MPMC adopt a pro-active approach and have an experienced reviewer examine the overall site water management system, with particular focus on the hydrogeological characteristics of the Cariboo and Wight Pits, to evaluate the current practices for managing site surplus water to confirm compliance with existing storage and discharge permits.

We trust that this information will be of assistance to MPMC in their continuing operation of the Mount Polley Mine. Please contact the undersigned if you have any questions or comments.

Yours truly, KNIGHT PIESOLD LTD.

GINE

Signed: Les Galbraith, P. Eng. Senior Engineer

Approved: Ken Brouwer, P.Eng. Managing Director

Copy To: Tim Fisch (MPMC), Bryan Kynoch (Imperial Metals Corporation)

/lg

Gregory Smyth

From:	Ken Brouwer
ent:	Monday, January 10, 2011 5:23 PM
10:	Art Frye
Subject:	RE: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley -
Attachments:	Knight Piesold FW: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley
	- Knight Piesold

Hi Art,

Thanks for the note. I appreciate your comments and will follow up, but I suspect we won't get too far. We haven't had any luck discussing it with them either.

I was wondering what was happening and have been meaning to follow up again. Ron M. has also been in touch with us for some suggested revisions to some of the wording in the Annual Inspection Report which Greg J. is looking into as we speak. As you know, we have always tried to accommodate the clarifications, suggestions and comments provided by MPMC.

For the record, we did try and touch base with Don back in October, but he indicated was not interested or available to discuss the situation with us at that time. I must confess that the whole RFP process was quite confusing and it was far from clear what was wanted, needed or expected. I had indicated that we would be happy to discuss the options and would be pleased to follow up further as suggested in the attached email.

I will call Brian to attempt to get confirmation of his position as you suggest, and at the very least make sure we have set o appropriate procedures for the proper transfer of responsibilities to the new Engineer of Record.

I very much appreciate your suggestions and we will always keep the door open. We will always be happy to help you out.

Happy New Year and Best Regards, Ken

From: Art Frye [mailto:afrye@mountpolley.com] Sent: January-10-11 11:33 AM To: Ken Brouwer Subject: RE: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley - Knight Piesold

Hi Ken,

I just wanted to send you a quick note between you and I regarding this. I have not been involved in any of these decisions and I agree that \$400,000 is inaccurate. I have tried to discuss this with the guys in Vancouver but to no avail. I will be very sorry if you choose not to submit a proposal or in the very least contact Brian Kynoch to at least discuss it. I really don't feel that Brian is totally aware of what is going on here. We at Mount Polley are very aware of the service your company has provided us and appreciate the way you worked with us to reduce costs. I am also aware that we haven't always been the easiest clients. If you do choose to meet with Brian there are a few issues that he has a real problem with.

The buttress. I don't think KP has done a good enough job explaining the importance of the largely expanded buttress.
 The water balance. BK feels that the water balance is something that we can and should maintain.

3) The comment about transferring water from the TSF to the Cariboo pit and possible ground water issues in the annual TSF report. This is covered in our permit with MOE and didn't need to appear in this document.

 Construction supervision. BK thinks we could do more of it ourselves but I don't think he realizes how far we have come addressing this.

I have always enjoyed working with KP and I feel it would be a real shame if the relationship ended over misunderstanding and the failure on both sides to discuss the issues. Don is out of the office this week and the RFP closes on Friday so it might be a good time to call BK.

I am sorry that I haven't been able to assist more in this but it seems to be completely driven by head office.

Regards, Art

From: Ken Brouwer [mailto:kbrouwer@knightpiesold.com]
Sent: October-25-10 1:59 PM
To: Denis Bernardi
Cc: Don Parsons; Brian Kynoch; Ron Martel; Tim Fisch; Art Frye
Subject: RE: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley - Knight Piesold

Dear Denis,

As requested in the RFP documents, we confirm that Knight Piésold is **NOT** intending to submit a proposal in response to RFP #MP-100- Tailings Impoundment Design Services without some prior clarifications. In general, we would welcome the updated protocols and contract management procedures outlined in the RFP documents but feel that there are some fundamental issues that must be resolved prior to proceeding with the development of a detailed scope and budget for the requested services.

As you know, Knight Piésold has a long history with Imperial Metals and the Mt Polley Mine. We have previously developed and evaluated various options for cost effective storage of tailings for the expanded mine plans outlined in the RFP. We have also assisted with long range planning for tailings, waste rock disposal, water management, closure planning, operational monitoring and permitting. Many of the options outlined in the RFP have been evaluated previously by KP and MPMC personnel, including completion of tailings impoundment expansion studies and full scale field trials for implementation of cyclone sand as a downstream construction material, etc.

Our long term relationships with all of our clients is very important to us and we are surprised and disturbed by the sudden change in our relationship with Imperial Metals. It has been suggested that one of the primary reasons that this RFP has been initiated is due to concerns about excessive costs relating to services provided by KP for the design/ construction of the tailings management systems at the Mount Polley Mine. Unfortunately, this message is also being communicated to our peers and clients within the Mining Industry and is a significant concern to us.

The following points are presented for your consideration:

- It has been indicated that expenditures in excess of \$400,000 have been incurred by MPMC for KP engineering services relating to the tailings impoundment and it has been suggested that these costs are considered by Imperial Metals to be grossly excessive for services that were actually required.
- We are not sure where the \$400,000 number comes from or what it includes for, but our detailed records indicate that it is far in excess of any KP billings for our 2010 Scope of Work.
- Greg Johnston, the KP Project Manager, has provided a brief summary of expenditures and contract status as
 outlined in the attached internal email. Knight Piésold has been diligent in controlling costs for engineering
 support at the Mt Polley Mine.
- We are concerned that Imperial Metals management may not have been adequately informed of the reasons for the extensions to the construction programs, and the specific requests for additional KP services that were

required by MPMC. The reasoning for these additional services is also identified in the attached internal email * from Greg Johnston.

- We will be pleased to provide copies of all signed contracts and the invoicing status for 2010 and/or previous years.
- Knight Piésold are very interested in any concerns that Imperial Metals/MPMC may have with respect to the services provided for Mt Polley or any other Imperial Metals project, and we would welcome the opportunity to discuss them.

It seems that a fundamental miscommunication may have occurred and it will be appropriate to resolve this prior to proceeding with the development of a scope of work and cost estimate for RFP MP-100.

Regards,

Ken Brouwer, P.Eng. Managing Director Knight Piésold Ltd.

Suite 1400 - 750 West Pender Vancouver | British Columbia | Canada | V6C 2T8 **phone:** +1 604 685 0543 | **fax:** +1 604 685 0147 **direct:** +1 604 685 0543 ext 252 | **mobile:** +1 604 802 5128 **email:** <u>kbrouwer@knightpiesold.com</u> **web:** <u>http://www.knightpiesold.com</u>

Please consider the environment before printing this email. $^{
m V}$

This communication, including any attachments, is intended only for the use of the intended recipient(s) and is confidential. If the reader of this communication is not the intended recipient, any dissemination, distribution or copying of this communication is strictly prohibited. Knight Piésold does not warrant the accuracy of this communication. If you receive this communication in error, please notify the sender by return e-mail and delete this communication from your system.

From: Denis Bernardi [mailto:DenisBernardi@imperialmetals.com]
Sent: October-20-10 4:05 PM
To: Denis Bernardi
Cc: Don Parsons
Subject: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley

Please find our request for proposal attached for the above inquiry, along with the following attachments;

- 2005 TSF Capacity vs. Elevation Curve (KP)
- 2006 Dam Safety Review (AMEC)
- 2008 Capacity of Existing Mine Tailings Line (KP)
- 2010 TSF Stage 6b IFC Drawings (KP)
- 2010 Mount Polley Flyover (MPMC)
- 2009 TSF Report on 2009 Annual Inspection (KP) (due to its size, it will be forwarded upon acceptance to submit a proposal)

Kindly review and advise on your intent to submit a proposal.

Regards.

enis Bernardi Janager, Contracts & Purchasing Imperial Metals Corporation #200 - 580 Hornby Street Vancouver, BC V6C 3B6 Direct: 604-488-2682

.

Knight Piésold CONSULTING

File No.:VA101-1/29-A.01 Cont. No.:VA11-00298 Suite 1400 - 750 West Pender Street Vancouver, BC Canada V6C 2T8

Tel: 604.685.0543 Fax: 604.685.0147 www.knightpiesold.com

February 10, 2011

Mr. Brian Kynoch Mount Polley Mining Corporation Suite 200 - 580 Hornby Street Vancouver, BC V6C 3B6

Dear Brian,

Re: Mount Polley Tailings Storage Facility Engineer of Record

We have completed all assignments and on January 25, 2011 issued to Mount Polley Mining Corporation (MPMC) the final versions of the 'Tailings Storage Facility - Report on the 2010 Annual Inspection' and 'Tailings Storage Facility – Report on Stage 6B Construction'.

We are currently assuming that MPMC will be retaining the services of a separate individual or organization to take over as the Engineer of Record for the tailings storage facility, as a result of Knight Piésold's decision to opt out of the bidding process implemented by MPMC late last year. We would like to facilitate a formal handover to the new individual/group, as it is essential that it be recognized that Knight Piésold will not have any responsibility for any aspects of the on-going operations, or of any modifications to the facilities that are undertaken from now onwards. To date, the tailings impoundment has been developed using the observational approach, wherein the design is modified as appropriate depending on actual performance and conditions. It must be understood that Knight Piésold will no longer have any responsibility for the performance of the tailings storage facility.

The embankments and the overall tailings impoundment are getting large and it is extremely important that they be monitored, constructed and operated properly to prevent problems in the future. Knight Piésold would be happy to assist in the formal handover to the new Engineer of Record.

As we have a long relationship with the Mines Branch and the Ministry of Energy, Mines and Petroleum Resources, we consider that it is prudent to notify them of the change in status. Therefore, we have copied them on this correspondence.

We would like to thank you for our long and constructive association at the Mount Polley Mine and look forward to working together again in the future.

Signed: Ken Brouwer, P.Eng. Managing Director

Approved: Jeremy Haile, P.Eng. President

Copy To:

Don Parsons (IMC), Ron Martel (MPMC), Tim Fisch (MPMC) Al Hoffman, Chief Inspector of Mines /kjb

Greg Johnston

From: Jent: To: Cc: Subject: Ron Martel <rmartel@mountpolley.com> Friday, March 25, 2011 4:28 PM Greg Johnston; Denis Bernardi Ken Brouwer RE: Mount Polley Data for Handover

Thanks Greg...

Have a great weekend

RON M

From: Greg Johnston [mailto:gjohnston@knightpiesold.com]
Sent: Friday, March 25, 2011 4:24 PM
To: Denis Bernardi; Ron Martel
Cc: Ken Brouwer
Subject: Mount Polley Data for Handover

Hello Denis & Ron,

I have sent out all of the data requested for the handover. I have also posted a copy of the data on our FTP site, to access the FTP site please find the link below:

cp://10100001-29:js98lqtp@ftp.knightpiesold.com

This link allows both upload and download from our FTP server. To upload files, please copy and paste the above link directly into the address box of the Windows Explorer (not Internet Explorer).

If you use FTP client software, below please find the logon information: Server address: <u>ftp.knightpiesold.com</u> User name: 10100001-29 Password: js98lqtp

The data has been issued with the following Transmittals: VA11-00514 – AutoCAD Drawings – 33 files (16 pdf, 16 dwg, 1 ctb) – via CD and on FTP site VA11-00522 – Piezometer Data – 3 files (1 pdf, 1 .xlsx, 1zip) – via email and on FTP site VA11-00526 – Inclinometer and Drain Data – 2 files (2 .xlsx) – via eail and on FTP site

Can you please let me know if you have received everything.

Cheers Greg

Greg Johnston, M.Sc, P.Eng. Senior Engineer ''night Piésold Ltd.

celebrating

1.6

direct: +1 604 685 0543 ext 244 email: gjohnston@knightpiesold.com web: http://www.knightpiesold.com

Please consider the environment before printing this email.

This communication, including any attachments, is intended only for the use of the intended recipient(s) and is confidential. If the reader of this communication is not the intended recipient, any dissemination, distribution or copying of this communication is strictly prohibited. Knight Piésold does not warrant the accuracy of this communication. If you receive this communication in error, please notify the sender by return e-mail and delete this communication from your system.

COMMUNICATIONS RELATING TO TRANSFER OF ENGINEER OF RECORD FROM KNIGHT PIÉSOLD LTD. TO AMEC

PREPARED BY:

Knight Piésold Ltd. Suite 1400 – 750 West Pender Street Vancouver, BC V6C 2T8 Canada p. +1.604.685.0543 • f. +1.604.685.0147

VA101-1/34-1 Rev 0 October 3, 2014

INVESTIGATION KP 1-9 259 of 500

Knight Piésold

COMMUNICATIONS RELATING TO TRANSFER OF ENGINEER OF RECORD FROM KNIGHT PIÉSOLD LTD. TO AMEC

TABLE OF CONTENTS

No.	Date	Continuty Number	Rev	Туре	Details	Sent By	Sent To	Comments
1	August 25, 2014	VA14-01295	n/a	Letter	Re: Conservation Officer Service – Major Investigations Unit	Ken Brouwer	Mike Sanderson	
2	April 23, 2014	n/a	n/a	Letter Report (Incoming)	Phosphorus in Polley Lake (Minnow Environmental Report Jul 2, 2013)	Colleen Hughes (MPMC)	Violeta Martin	See External Reports List
3	April 23, 2014	n/a	n/a	Report (Incoming)	Water Quality Evaluation of Polley & Bootjack Lakes Jul 2010 by Minnow Environmental	Colleen Hughes (MPMC)	Violeta Martin	See External Reports List
4	March 26, 2014	n/a	n/a	Letter (Incoming)	Confirmation of Terms of Reference for Water Treatment	Brian Yamelst (MOE)	Colleen Hughes	
5	December 14, 2011	VA11-01234	n/a	Letter	Hazeltine Creek Flows - Response to Technical Review	Cameron Butt	Ron Martel	
6	December 14, 2011	VA11-01344	n/a	Letter	Sediment / Polishing Retention Pond Design	Violeta Martin	Ron Martel	
7	December 5, 2011	n/a	n/a	Memo Report (Incoming)	Hazeltine Creek Nov 2011 Results from Field Program	Fred Burgess (Minnow Environmental)	Ron Martel	See External Reports List
8	August 4, 2011	n/a	n/a	Report (Incoming)	Independent Review of Mount Polley Mine Technical Assmt Report for Proposed Discharge of Mine Effluent (2009) Final (June 2011)	Brian Olding & Associates in Association with LGL Ltd	First Nations & MPMC	See External Reports List
9	March 30, 2011	VA11-00571	n/a	Transmittal	.pdf of 'Stage 6 Design of the Tailings Storage Facility' report VA101-1/18-1 dated June 2007	Greg Johnston	Denis Bernardi	
10	March 25, 2011	n/a	n/a	Emails	Re: Mount Polley Data for Handover	Greg Johnston	Denis Bernardi, Ron Martel	cc: Ken Brouwer
11	March 25, 2011	VA11-00526	n/a	Transmittal	.xls file of inclinometer data .xls of drain flow data	Greg Johnston	Denis Bernardi	
12	March 25, 2011	VA11-00522	n/a	Transmittal	.pdf file of piezometer data sheets (calibration sheets) .xls file of vibrating wire piezometer installation data .xls file of vibrating wire piezometer readings	Greg Johnston	Denis Bernardi	
13	March 24, 2011	VA11-00514	n/a	Transmittal	Two CDs containing AutoCAD format drawings and .pdf copies of the drawings	Greg Johnston	Denis Bernardi	cc: Ron Martel
14	March 15, 2011	VA11-00470	n/a	Transmittal	Summary table and a copy of Knight Piésold letters sent to MPMC in 2010 and 2011	Greg Johnston	Denis Bernardi	cc: Ron Martel
15	March 8, 2011	n/a	0	Tables	Table 1 – Document Request Table 2 – Additional Information/Studies	n/a	n/a	Internal Tracking Tables
16	March 8, 2011	VA11-00444	n/a	Transmittal	.pdf of 'Design of the Tailings Storage Facility to Ultimate Elevation' report VA101-1/8-1 Rev 0 dated March 14, 2005	Greg Johnston	Denis Bernardi	
17	March 3, 2011	n/a	n/a	Letter (Incoming)	Site Water Management Letter	Ron Martel MPMC	Les Galbraith	
18	March 3, 2011	n/a	n/a	Letter	Re: Mount Polley Mine – Site Water Management	Ron Martel	Les Galbraith	cc: Brian Kynoch, Tim Fisch, Ken Brouwer
19	February 16, 2011	VA11-00288	n/a	Letter	2010 Hydrology of H7 (Flows in Hazeltine Creek)	Cameron Butt	Ron Martel	
20	February 16, 2011	VA11-00321	А	Table	.pdf table summarizing all Knight Piésold reports issued to Mount Polley	n/a	n/a	Internal Tracking Table
21	February 10, 2011	VA11-00298	n/a	Letter	Re: Mount Polley Tailings Storage Facility Engineer of Record	Ken Brouwer	Brian Kynoch	cc: Don Parsons, Ron Martel, Tim Fisch, Al Hoffman

COMMUNICATIONS RELATING TO TRANSFER OF ENGINEER OF RECORD FROM KNIGHT PIÉSOLD LTD. TO AMEC

TABLE OF CONTENTS

No.	Date	Continuty Number	Rev	Туре	Details	Sent By	Sent To	Comments
22	February 3, 2011	VA11-00252	n/a	Letter	Re: Mount Polley Mine – Site Water Management	Les Galbraith	Ron Martel	cc: Tim Fisch, Brian Kynoch
23	January 31, 2011	VA11-00257	n/a	Transmittal	1 CD containing PDF files of Report on Stage 6B Construction (VA101-1/29-1 Rev 1) and Report of 2010 Annual Inspection (VA101-1/29-2 Rev 1)	Greg Johnston	Ron Martel	
24	January 28, 2011	VA11-00249	n/a	Transmittal	7 hard copies of Report on Stage 6B Construction (VA101-1/29-1 Rev 1) 7 hard copies of Report of 2010 Annual Inspection (VA101-1/29-2 Rev 1)	Greg Johnston	Ron Martel	
25	January 25, 2011	VA101-1/29-2	1	Report	Report on 2010 Annual Inspection	Greg Johnston	Ron Martel	Sent via VA11-00249 and VA11-00257
26	January 10, 2011	n/a	n/a	Emails	Re: Request for Proposal #MP-100 – Tailings Impoundment Design Services, Mt. Polley – Knight Piésold	Ken Brouwer	Art Frye	
27	January 10, 2011	n/a	n/a	Emails	Re: Request for Proposal #MP-100 – Tailings Impoundment Design Services, Mt. Polley – Knight Piésold	Jeremy Haile	Ken Brouwer, Greg Smyth	Internal Communications
28	December 20, 2010	VA10-01952	n/a	Transmittal	.pdf of 'Report on 2010 Annual Inspection' (VA101-1/29-2 Rev 0)	Greg Johnston	Ron Martel	
29	December 17, 2010	VA10-01946	n/a	Transmittal	7 hard copies of Report on Stage 6B Construction (VA101-1/29-1 Rev 0) 6 hard copies of Report of 2010 Annual Inspection (VA101-1/29-2 Rev 0)	Les Galbraith	Ron Martel	
30	December 16, 2010	VA10-01883	n/a	Transmittal	.pdf copy of Report on Stage 6B Construction (VA101-29/1-1 Rev 0)	Greg Johnston	Ron Martel	
31	November 23, 2010	VA10-01620	n/a	Letter	Re: Tailings Storage Facility Instrumentation Replacement Program, Drilling Cost Estimates	Ron Martel	Greg Johnston, Ken Brouwer	cc: Luke Moger
32	October 27, 2010	n/a	n/a	Emails	Re: Request for Proposal #MP-100 – Tailings Impoundment Design Services, Mt. Polley – Knight Piésold	Denis Bernardi, Don Parsons	Ken Brouwer	cc: Jeremy Haile, Greg Smyth, Greg Johnston
33	October 20, 2010	n/a	n/a	Emails	Fwd: Request for Proposal #MP-100 – Tailings Impoundment Design Services, Mt. Polley	Ken Brouwer	Greg Johnston, Les Galbraith, Greg Smyth	Original email from Denis Bernardi
34	October 14, 2010	n/a	n/a	Article	The Williams Lake Tribune article "Mine Discharge Application Raises Concerns"	n/a	n/a	Published in Williams Lake Tribune
35	July 22, 2010	VA10-01175	n/a	Letter	Re: Instrumentation Repair, Productivity Upgrade and Remote Monitoring Capacity	Greg Johnston	Ron Martel	
36	May 20, 2010	VA10-00866	n/a	Letter	Hazeltine Creek Weir Design	Cameron Butt	Ron Martel	
37	May 5, 2010	VA10-00709	n/a	Letter	Hydrology Site Visit	Cameron Butt	Ron Martel	
38	April 27, 2010	VA10-00389	n/a	Memorandum	Re: Mt. Polley TSF - Snow and ice in the Perimeter Embankment	Mark Smith	Greg Johnston	cc: Les Galbraith
39	April 23, 2010	VA10-00687	n/a	Memorandum	Re: Monitoring of Inclinometers	Mark Smith	Ron Martel	cc: Greg Johnston
40	February 5, 2010	VA10-00286	n/a	Letter	South Embankment seepage recycle pond sizing	Mark Smith	Ron Martel	
41	January 5, 2010	VA101-1/27-1	1	Report	Report on 2009 Annual Inspection	Les Galbraith	Ron Martel	
42	November 25, 2009	VA09-01636	n/a	Letter	Site visit by Mark Smith 9-10 Nov., 2009	Mark Smith	Ron Martel	
43	November 6, 2009	VA09-01539	n/a	Letter	Construction Material Volumes for Upcoming Embankment Raises	Mark Smith	Ron Martel	
44	September 28, 2009	VA09-01329	n/a	Memo	Site visit record 15 September 2009 by Mark Smith	Mark Smith	Ron Martel	
45	September 17, 2009	VA09-01328	n/a	Memo	Monitoring displacement in inclinometer SI01-02	Mark Smith	Ron Martel	
46	September 15, 2009	VA09-01314	n/a	Letter	2009 TSF Inspection MPMC	Les Galbraith	Ron Martel	
47	September 9, 2009	VA09-01273	n/a	Memo	Toe Drain conveyance pipe location (Main Embankment)	Mark Smith	Ron Martel	
48	September 1, 2009	VA09-01236	n/a	Memo	Monitoring displacement inclinometer SI01-02 lacustrine layer Aug 27	Mark Smith	Ron Martel	

Knight Piésold

COMMUNICATIONS RELATING TO TRANSFER OF ENGINEER OF RECORD FROM KNIGHT PIÉSOLD LTD. TO AMEC

TABLE OF CONTENTS

No.	Date	Continuty Number	Rev	Туре	Details	Sent By	Sent To	Comments
49	August 26, 2009	VA09-01219	n/a	Memo	Monitoring displacement inclinometer SI01-02 Aug 20	Mark Smith	Ron Martel	
50	August 14, 2009	VA09-01160	n/a	Memo	Monitoring displacement inclinometer SI01-02 Aug 6	Mark Smith	Ron Martel	
51	August 13, 2009	VA09-01064	n/a	Letter	Filling Schedule & Construction Requirements for TSF	Mark Smith	Ron Martel	
52	August 6, 2009	VA09-00991	n/a	Memo	Monitoring displacement inclinometer SI01-02 Aug 6	Mark Smith	Ron Martel	
53	July 23, 2009	VA09-00609	n/a	Letter	Alternative Assessment for Discharge of Excess Water	Alexis McPherson	Ron Martel	
54	July 10, 2009	VA09-00961	n/a	Memo	Monitoring displacement inclinometer SI01-02 Jul 1	Mark Smith	Ron Martel	
55	July 3, 2009	VA09-00838	n/a	Letter	Buttress Requirement for the Main Embankment	Leila Morstabilini	Ron Martel	
56	June 25, 2009	VA09-00929	n/a	Letter	update to CORMIX letter VA09-00614	Erin Rainey	Ron Martel	
57	June 12, 2009	VA09-00867	n/a	Memo	Monitoring of displacement of inclinometer SI01-02 Jun 11	Mark Smith	Ron Martel	
58	June 10, 2009	VA09-00848	n/a	Memo	Monitoring of inclinometers SI01-02 displacement Jun 4	Mark Smith	Ron Martel	
59	June 3, 2009	VA09-00802	n/a	Memo	Displacement monitoring for inclinometers SI01-02 May 19	Mark Smith	Ron Martel	
60	June 3, 2009	VA09-00804	n/a	Memo	Monitoring displacement of inclinometers SI01-02 May 28	Mark Smith	Ron Martel	
61	May 28, 2009	VA09-00614	n/a	Letter	CORMIX water quality modelling at W7 - Effluent Plume Delineation Study & Mass Balance Model	Erin Rainey	Ron Martel	
62	May 19, 2009	VA09-00700	n/a	Memo	Inclinometer monitoring displacement in SI01-02	Mark Smith	Ron Martel	
63	May 15, 2009	VA09-00095	n/a	Letter	Chemical Characterization of Proposed Effluent for Discharge to Hazeltine Creek	Rosie Perrin	Ron Martel	
64	May 11, 2009	VA09-00617	n/a	Letter	Sediment / Polishing Retention Pond Revision	Amanda Strouth	Ron Martel	
65	May 6, 2009	VA09-00666	n/a	Memo	Monitoring of displacement Inclinometer SI01-02	Mark Smith	Ron Martel	
66	May 4, 2009	VA09-00646	n/a	Memo	Ongoing monitoring of displacement at 10m inclinometer SI01-02 April 29	Mark Smith	Ron Martel	
67	April 30, 2009	VA09-00584	n/a	Letter	Hazeltine Creek Geomorphology	Toby Perkins	Ron Martel	
68	April 28, 2009	VA09-00597	n/a	Memo	Assesment of inclinometer displacement Readings Apr 22, 2009	Mark Smith	Ron Martel	
69	April 23, 2009	VA08-01858	n/a	Letter	Recommended Maximum Discharges from Mount Polley TSF to Hazeltine Creek	Oscar Gustafson	Ron Martel	
70	April 22, 2009	VA09-00589	n/a	Memo	April 16 inclinometer reading	Les Galbraith	Ron Martel	
71	April 14, 2009	VA09-00482	n/a	Memo	Inclinometer reading SI01-02	Mark Smith	Ron Martel	
72	April 14, 2009	VA09-00317	n/a	Letter	Assessment of Hazelting Creek Flows - Regressive Analysis with Emphasis on Low Flows	Cameron Butt	Ron Martel	
73	April 9, 2009	VA09-00298	n/a	Letter	Mt Polley Closure Water Balances for Predicted Discharge Flows	Alexis McPherson	Ron Martel	
74	April 6, 2009	VA09-00461	n/a	Memo	Assesment of inclinometer readings from April 1 2009	Mark Smith	Ron Martel	
75	April 1, 2009	VA09-00434	n/a	Memo	Monitoring displacement in inclinometer SI01-02	Mark Smith	Ron Martel	
76	March 24, 2009	VA09-00381	n/a	Memo	Monitoring displacement in inclinometer SI01-02	Mark Smith	Ron Martel	
77	March 17, 2009	VA09-00360	n/a	Memo	Monitoring displacement in inclinometer SI01-02	Mark Smith	Ron Martel	
78	March 6, 2009	VA09-00304	n/a	Memo	Monitoring displacement in inclinometer SI01-02	Carolyn Grise	Ron Martel	

COMMUNICATIONS RELATING TO TRANSFER OF ENGINEER OF RECORD FROM KNIGHT PIÉSOLD LTD. TO AMEC

Knight Piésold

COMMUNICATIONS RELATING TO TRANSFER OF ENGINEER OF RECORD FROM KNIGHT PIÉSOLD LTD. TO AMEC

Continuty No. Date Rev Details Sent To Comments Type Sent By Number February 27, 2009 VA09-00256 Site visit letter report February 2009 inclinometer shows possible dam displacement Mark Smith Ron Martel 79 n/a Letter 80 February 25, 2009 VA101-1/24-1 Report on 2008 Annual Inspection Les Galbraith Ron Martel 0 Report 81 December 5, 2008 VA08-02223 Letter Buttress Requirements for Main Embankment Andre Gagnon Ron Martel n/a 82 August 5, 2008 VA08-01436 Memo RE: Geotechnical Inspection by MEMPR Scott Rees Ron Martel n/a 83 July 30, 2008 VA08-01502 n/a I etter Retrospective Review of Hazeltine Creek Flows Cameron Butt Ron Martel 84 July 24, 2008 VA08-01473 n/a Letter Capacity of Existing Mine Tailings Pipeline Harvev Dew Don Parsons 85 June 2, 2008 VA08-01200 n/a Letter Stage 6 instrumentation Les Galbraith Ron Martel Chris Carr General Manager I etter 86 April 22, 2008 n/a n/a RE: TSF 2007 Annual Inspection (Incoming) (MEMPR) MPMC 87 March 27, 2008 VA101-1/14-1 0 Report Report on Stage 5 Construction Carolyn Grise Ron Martel March 14, 2008 VA08-00612 Updated OM&S manual with piezometric and inclinometer trigger levels Ron Martel 88 n/a Letter Eric Coffin 89 March 4, 2008 VA08-00488 n/a I etter 2007 Hydrology Review - Hazeltine Creek Cameron Butt Ron Martel 90 December 19, 2007 VA07-01853 n/a Letter Response to Chris Carr comments Les Galbraith Chris Carr December 19, 2007 VA101-1/20-1 91 0 Report on 2007 Annual Inspection Les Galbraith Ron Martel Report Hazeltine CreeK Geomorphology - Regime Modeling to Predict Changes in Channel 92 November 16, 2007 VA07-01589 Toby Perkins Ron Martel n/a Letter Characteristics 93 September 21, 2007 VA07-01221 Letter Borrow area geotechnical site investigations Josie Speed Ron Martel n/a 94 June 29, 2007 VA07-00671 n/a Memo Hydrology Site Visit Summary May 2007 Cameron Butt Ron Martel 95 June 29, 2007 VA07-00676 Letter Flow through pond downstream of Perimeter Embankment Carolyn Grise Ron Martel n/a 96 June 18, 2007 VA101-1/18-1 0 Report Stage 6 Design of the Tailings Storage Facility Greg Johnston Denis Bernardi Sent via VA11-00571 97 April 20, 2007 VA07-00416 n/a Letter Initial Effluent Plume Delineation Study for Hazeltine Creek - Updated (CORMIX) Erin Rainey Ron Martel 98 April 1, 2007 n/a n/a Presentation Mount Polley Project Les Galbraith KP Staff Internal Presentation to Staff March 15, 2007 VA07-00384 Eric Coffin Ron Martel 99 n/a Letter SOP for proper piezometer installations and recordings 100 March 14, 2007 VA07-00160 n/a Letter Effluent plume delineation of Hazeltine Creek at W7 Erin Rainey Ron Martel 101 March 14, 2007 VA07-00199 Chemical Analysis of Effluent Ron Martel n/a Letter Rosie Perrin 102 March 14, 2007 VA07-00359 Hydrology Review for Hazeltine Creek Station W7 Erin Rainey Ron Martel Letter n/a 103 March 14, 2007 VA07-00362 Letter **Revised Seepage Estimate Letter** Eric Coffin Ron Martel n/a 104 March 6, 2007 VA06-01778 Letter Mt Polley Hydrology Review for Hazeltine Creek at W7 Erin Rainey Ron Martel n/a 105 March 5, 2007 VA07-00328 Les Galbraith Ron Martel n/a Letter revised Stage 6 scope 106 February 28, 2007 VA07-00322 n/a Letter Mt Polley - Responses to comments by Ministry of Energy Brett Garland Paul Sterling Les Galbraith. Art Frve. 107 February 26, 2007 Mount Polley Project - Tailings Facility Summary Ken Brouwer, Ron Martel, Presentation at MPMC Offices n/a n/a Presentation Greg Smyth Don Parsons 108 February 6, 2007 VA07-00202 n/a Letter Upstream Toe Drain Seepage Estimations Eric Coffin Ron Martel

TABLE OF CONTENTS

Knight Piésold

COMMUNICATIONS RELATING TO TRANSFER OF ENGINEER OF RECORD FROM KNIGHT PIÉSOLD LTD. TO AMEC

TABLE OF CONTENTS

No.	Date	Continuty Number	Rev	Туре	Details	Sent By	Sent To	Comments
109	January 29, 2007	VA07-00172	n/a	Letter	Mt Polley Stage 6	Les Galbraith	Ron Martel	
110	December 18, 2006	n/a	n/a	Email	Suggestion that separate Annual Inspection Report may not be necessary and instead include content in the 2006 Construction Report	Ken Brouwer	Ron Martel	cc: Les Galbraith
111	December 1, 2006	n/a	n/a	Appendix	Reference Documents and Review Commentary	n/a	n/a	Taken from AMEC Dam Safety Review
112	November 20, 2006	VA06-01588	n/a	Memo	LJG Nov 2006 Site Visit Memo	Les Galbraith	Ron Martel	
113	September 22, 2006	n/a	n/a	Letter (Incoming Copy from MEMPR)	Report of Inspector of Mines Geotechnical (Aug 30, 2006)	Nick Rose MEMPR	Chris Carr MEMPR	
114	August 15, 2006	n/a	n/a	Fax	Amendment to Permit M-200 From F.W.Herman to Howard Bradley (MPMC) Aug 2- 2006	Ron Martel MPMC	Les Galbraith	
115	July 26, 2006	VA06-01198	n/a	Letter	Formal Dam Safety Review of Tailings Dam	Graham Greenaway	Ron Martel	Proposal Correspondence
116	May 31, 2006	VA06-00833	n/a	Letter	ARCL - Inv. 12351 - 101-1/10	Suzanne Parsons	Accounts Payable MPMC	
117	February 10, 2006	VA06-00241	n/a	Letter	We have completed an analysis of the requirements for pumping and piping to dispose of water	Les Galbraith	Don Parsons	
118	March 14, 2005	VA101-1/8-1	0	Report	Design of the Tailings Storage Facility to Ultimate Elevation	Les Galbraith	MPMC	
119	February 3, 2005	n/a	n/a	Presentation	Mount Polley Project – Tailings Facility Summary	KP	MPMC	

Ken Brouwer

From:	Gregory Smyth
Sent:	Tuesday, August 19, 2014 1:35 PM
ſo:	Ken Brouwer
Subject:	FW: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley - Knight Piésold

From: Jeremy Haile Sent: Monday, January 10, 2011 1:28 PM To: Ken Brouwer; Gregory Smyth Subject: RE: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley - Knight Piésold

Nice note from Art. He is obviously unaware that we did try and sit down with Brian and Don to clear the air, and I personally called Don after we received the RFP. Don was not prepared to meet with us and insisted that everything had to go through a formal "no contact" RFP process. We should point this out.

Jeremy

From: Ken Brouwer

Sent: January-10-11 12:52 PM To: Jeremy Haile; Gregory Smyth Subject: FW: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley - Knight Piesold

rY1

From: Art Frye [mailto:afrye@mountpolley.com] Sent: January-10-11 11:33 AM To: Ken Brouwer Subject: RE: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley - Knight Piesold

Hi Ken,

I just wanted to send you a quick note between you and I regarding this. I have not been involved in any of these decisions and I agree that \$400,000 is inaccurate. I have tried to discuss this with the guys in Vancouver but to no avail. I will be very sorry if you choose not to submit a proposal or in the very least contact Brian Kynoch to at least discuss it. I really don't feel that Brian is totally aware of what is going on here. We at Mount Polley are very aware of the service your company has provided us and appreciate the way you worked with us to reduce costs. I am also aware that we haven't always been the easiest clients. If you do choose to meet with Brian there are a few issues that he has a real problem with.

1) The buttress. I don't think KP has done a good enough job explaining the importance of the largely expanded buttress.

2) The water balance. BK feels that the water balance is something that we can and should maintain.

3) The comment about transferring water from the TSF to the Cariboo pit and possible ground water issues in the annual TSF report. This is covered in our permit with MOE and didn't need to appear in this document.

4) Construction supervision. BK thinks we could do more of it ourselves but I don't think he realizes how far we have come addressing this.

I have always enjoyed working with KP and I feel it would be a real shame if the relationship ended over

sunderstanding and the failure on both sides to discuss the issues. Don is out of the office this week and the RFP closes on Friday so it might be a good time to call BK.

I am sorry that I haven't been able to assist more in this but it seems to be completely driven by head office.

1

Regards, Art

From: Ken Brouwer [mailto:kbrouwer@knightpiesold.com] Sent: October-25-10 1:59 PM To: Denis Bernardi Cc: Don Parsons; Brian Kynoch; Ron Martel; Tim Fisch; Art Frye Subject: RE: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley - Knight Piesold

Dear Denis,

As requested in the RFP documents, we confirm that Knight Piésold is **NOT** intending to submit a proposal in response to RFP #MP-100- Tailings Impoundment Design Services without some prior clarifications. In general, we would welcome the updated protocols and contract management procedures outlined in the RFP documents but feel that there are some fundamental issues that must be resolved prior to proceeding with the development of a detailed scope and budget for the requested services.

As you know, Knight Piésold has a long history with Imperial Metals and the Mt Polley Mine. We have previously developed and evaluated various options for cost effective storage of tailings for the expanded mine plans outlined in the RFP. We have also assisted with long range planning for tailings, waste rock disposal, water management, closure planning, operational monitoring and permitting. Many of the options outlined in the RFP have been evaluated previously by KP and MPMC personnel, including completion of tailings impoundment expansion studies and full scale field trials for implementation of cyclone sand as a downstream construction material, etc.

Our long term relationships with all of our clients is very important to us and we are surprised and disturbed by the sudden change in our relationship with Imperial Metals. It has been suggested that one of the primary reasons that this RFP has been initiated is due to concerns about excessive costs relating to services provided by KP for the design/ construction of the tailings management systems at the Mount Polley Mine. Unfortunately, this message is also being communicated to our peers and clients within the Mining Industry and is a significant concern to us.

The following points are presented for your consideration:

- It has been indicated that expenditures in excess of \$400,000 have been incurred by MPMC for KP engineering services relating to the tailings impoundment and it has been suggested that these costs are considered by Imperial Metals to be grossly excessive for services that were actually required.
- We are not sure where the \$400,000 number comes from or what it includes for, but our detailed records indicate that it is far in excess of any KP billings for our 2010 Scope of Work.
- Greg Johnston, the KP Project Manager, has provided a brief summary of expenditures and contract status as
 outlined in the attached internal email. Knight Piésold has been diligent in controlling costs for engineering
 support at the Mt Polley Mine.
- We are concerned that Imperial Metals management may not have been adequately informed of the reasons for the extensions to the construction programs, and the specific requests for additional KP services that were required by MPMC. The reasoning for these additional services is also identified in the attached internal email from Greg Johnston.
- We will be pleased to provide copies of all signed contracts and the invoicing status for 2010 and/or previous years.
- Knight Piésold are very interested in any concerns that Imperial Metals/MPMC may have with respect to the services provided for Mt Polley or any other Imperial Metals project, and we would welcome the opportunity to discuss them.

It seems that a fundamental miscommunication may have occurred and it will be appropriate to resolve this prior to proceeding with the development of a scope of work and cost estimate for RFP MP-100.

Regards,

Ken Brouwer, P.Eng. Managing Director Knight Piésold Ltd.

Suite 1400 - 750 West Pender Vancouver | British Columbia | Canada | V6C 2T8 phone: +1 604 685 0543 | fax: +1 604 685 0147 direct: +1 604 685 0543 ext 252 | mobile: +1 604 802 5128 email: kbrouwer@knightpiesold.com web: http://www.knightpiesold.com

Please consider the environment before printing this email. 🕥

This communication, including any attachments, is intended only for the use of the intended recipient(s) and is confidential. If the reader of this communication is not the intended recipient, any dissemination, distribution or copying of this communication is strictly prohibited. Knight Piésold does not warrant the accuracy of this communication. If you receive this communication in error, please notify the sender by return e-mail and delete this communication from your system.

From: Denis Bernardi [mailto:DenisBernardi@imperialmetals.com] Sent: October-20-10 4:05 PM To: Denis Bernardi Cc: Don Parsons ubject: Request For Proposal #MP-100 - Tailings Impoundment Design Services, Mt. Polley

Please find our request for proposal attached for the above inquiry, along with the following attachments;

- 2005 TSF Capacity vs. Elevation Curve (KP)
- 2006 Dam Safety Review (AMEC)
- 2008 Capacity of Existing Mine Tailings Line (KP)
- 2010 TSF Stage 6b IFC Drawings (KP)
- 2010 Mount Polley Flyover (MPMC)
- 2009 TSF Report on 2009 Annual Inspection (KP) (due to its size, it will be forwarded upon acceptance to submit a proposal)

Kindly review and advise on your intent to submit a proposal.

Regards.

Denis Bernardi Manager, Contracts & Purchasing

Imperial Metals Corporation #200 - 580 Hornby Street Vancouver, BC V6C 3B6 Direct: 604-488-2682

IMPERIAL METALS CORP. MT. POLLEY PROJECT

REPORT ON PROJECT WATER MANAGEMENT (REF. NO. 1624/1)

FEBRUARY 6, 1995

Suite 1400 750 West Pender Street Vancouver, British Columbia Canada V6C 2T8 Telephone (604) 685-0543 Telefax (604) 685-0147 CIS: 72360,477

Knight Piésold Ltd.

CONSULTING ENGINEERS

Knight Piésold Ltd. CONSULTING ENGINEERS

<u>IMPERIAL METALS CORP.</u> <u>MT. POLLEY PROJECT</u>

REPORT ON PROJECT WATER MANAGEMENT (REF. NO. 1624/1)

"THIS REPORT HAS BEEN PREPARED EXCLUSIVELY FOR IMPERIAL METALS CORP. NO THIRD PARTY SHALL BE ENTITLED TO RELY ON ANY OF THE INFORMATION, CONCLUSIONS, OPINIONS OR ANY OTHER MATTER CONTAINED IN THIS REPORT".

Association des Ingénieurs-Conseils du Canada

INVESTIGATION KP 1-9 270 of 500

Knight Piésold Ltd. CONSULTING ENGINEERS

IMPERIAL METALS CORP. MT. POLLEY PROJECT

REPORT ON PROJECT WATER MANAGEMENT (REF. NO. 1624/1)

TABLE OF CONTENTS

SECTION 1.0	INTE	RODUCTION	1
SECTION 2.0	HYD	ROMETEOROLOGY	2
	2.1	GENERAL	2
	2.2	PRECIPITATION	2
	2.3	SNOWMELT	2
	2,4	EVAPORATION	3
	2.5	RUNOFF	3
SECTION 3.0	PRO.	JECT COMPONENTS	4
SECTION 4.0		ER BALANCE AND MAKE-UP WATER	5
	SUPI		
	4.1	GENERAL	5
	4.2	WATER BALANCE	7
	4.3	MAKE-UP WATER REQUIREMENTS	8
	4.4	WATER MANAGEMENT PLAN	10
SECTION 5.0	SUM	MARY AND CONCLUSIONS	12

TABLES

Table 2.1	Precipitation Details Used in Analyses
Table 3.1	Open Pit Development

Association des Ingénieurs-Conseils du Canada 1624/1, February 6, 1995

PAGE

Knight Piésold Ltd. CONSULTING ENGINEERS

Waste Dump Development
Tailings Storage Facility Development
Assumptions Used in Water Balance Analyses
Annual Water Balances for Average Conditions - 240 ha
Catchment
Water Balance Summary - Annual Water Surplus
Additional Make-Up Water Requirements
Water Available at Start-Up - Average Year Precipitation
Water Available at Start-Up - 10 Year Dry Precipitation
Water Available at Start-Up - 50 Year Dry Precipitation
Water Available at Start-Up - 10 Year Wet Precipitation

FIGURES

Figure 2.1	Annual Precipitation Distribution
Figure 3.1	Project Components
Figure 4.1	Water Balance Flow Volumes - Year 1 Average for Existing
	Permit
Figure 4.2	Water Balance Flow Volumes - Year 1 Average for New Option
Figure 4.3	Variation in Tailings Pond Volume for Average Precipitation
	Conditions
Figure 4.4	Total Water Stored in Tailings Pond
Figure 4.5	Excess Diverted Water
Figure 4.6	Additional Make-Up Water

APPENDICES

Appendix A	Tailings Storage Facility - Monthly Water Balances for Average
	Precipitation
Appendix B	Mine Site - Monthly Water Balances for Average Precipitation

Association des Ingénieurs-Conseils du Canada

- ii -

Knight Piésold Ltd. CONSULTING ENGINEERS

IMPERIAL METALS CORP. MT. POLLEY PROJECT

<u>REPORT ON PROJECT WATER MANAGEMENT</u> (REF. NO. 1624/1)

SECTION 1.0 - INTRODUCTION

This report provides an overview of the source and fate of all water associated with the Mt. Polley Project. An overall project water balance was completed by integrating the water balances for the mine site with the tailings facility. The objectives of the water balance analyses are to demonstrate that the tailings facility and open pit can be operated to ensure that no surface discharge of excess water will be required, and by selective addition of surface runoff from waste dumps and undisturbed catchment areas, the make-up water requirements from Polley Lake can be minimized.

A probabilistic water balance analysis using @RISK was developed to describe the effects of a statistical range of precipitation conditions over the entire life of the project. From the corresponding results, estimates were made of the probable requirements for fresh make-up water, probable tailings pond volume and probable volumes of additional water to be diverted out of the project area.

The @RISK Analysis and Modelling program is a software package that allows the input of a statistical distribution to describe an uncertain quantity. Instead of using a finite value to describe a particular quantity, individual values are repeatedly selected from a specified statistical distribution describing that quantity. These selected values are then used in subsequent calculations to generate a distribution of results that accounts for the uncertainty in the initial quantity.

Association g des Ingénieurs-Conseils du Canada -1-

Knight Piésold Ltd.

CONSULTING ENGINEERS

SECTION 2.0 - HYDROMETEOROLOGY

2.1 <u>GENERAL</u>

The hydrometeorological information used for the preparation of this report was taken from the most recent information incorporated in the Mine Development Certificate. A summary of the data is given in Table 2.1.

This section provides an overview of the applicable hydrometeorological information and how it was used to complete this analysis.

2.2 PRECIPITATION

A normal probability distribution was used to model the expected seasonal variability in precipitation data as shown in Figure 2.1. This distribution was chosen after using the software package BESTFIT to determine the underlying distribution of long term annual precipitation records for relevant AES stations in the region.

Since precipitation data at the site is limited, mean precipitation records for climatologically similar stations in the area were used to estimate a mean annual site precipitation of 755 mm. A coefficient of variation of 0.16 was determined for the standard deviation of 121 mm. These conditions were applied to the tailings facility and adjacent additional tailings catchment areas. To account for higher elevation, the waste dumps, pit area and mill site were modelled with a mean precipitation of 810 mm, a coefficient of variation of 0.16 and a standard deviation of 130 mm. The increased precipitation value is consistent with elevation correlations previously presented in the Stage I application documents. This data is summarized on Table 2.1.

2.3 <u>SNOWMELT</u>

Snowfall at the site was considered to melt only during the months of September, April and May. All snowfall in September was assumed to melt during the month

Association des Ingénieurs-Conseils du Canada - 2 -

Knight Piésold Ltd.

and all snowfall accumulated during the remainder of the year was assumed to melt equally in April and May.

2.4 EVAPORATION

Evaporation data is consistent with previous analyses incorporated in the Mine Development Certificate (MDC). The annual evaporation rate of 423 mm at the site has been assumed to be constant for all years of operation and precipitation conditions.

2.5 <u>RUNOFF</u>

Runoff coefficients used in this analysis are consistent with values used in the Mine Development Certificate and included variable runoff coefficients based on dry, average and wet years. Dry years were defined as years when the total precipitation was less than or equal to 1.3 standard deviations below the mean (10 year dry), and wet years were defined as years when the total precipitation was at least 1.3 standard deviations above the mean (10 year wet). Runoff coefficients are presented in the following section.

Association des Ingénieurs-Conseils du Canada - 3 -

Knight Piésold Ltd.

CONSULTING ENGINEERS

SECTION 3.0 - PROJECT COMPONENTS

The overall project components and development sequence are described in previous documents incorporated in the MDC. The main mine components incorporated in the model are illustrated on Figure 3.1 and include disturbed and undisturbed areas at; open pits, waste dumps, mill site, tailings facility, and also the additional undisturbed catchment areas (Areas A and B) immediately upgradient from the tailings area.

The project water balances consider the staged development of the various components of the project as summarized in:

- Table 3.1 Open Pit Development
- Table 3.2 Waste Dump Development
- Table 3.3 Tailings Storage Facility Development

In addition, specific assumptions incorporated in the water balance analyses are included in Table 3.4. These assumptions are consistent with those used in previous water balances for the tailings impoundment and mine site conducted in 1991.

Association des Ingénieurs-Conseils du Canada

Knight Piésold Ltd.

SECTION 4.0 - WATER BALANCE AND MAKE-UP WATER SUPPLY

4.1 <u>GENERAL</u>

The updated Water Management Plan for the Mt. Polley Project includes the following objectives:

- To minimize the volume of fresh water abstracted from Polley Lake.
- To limit the period of water removal from the Polley Lake/Hazeltine Creek system to high flow periods.
- To regulate additional surface water runoff into the tailings pond.
- To prevent the accumulation of excess water within the tailings impoundment so that the impoundment and open pit can be operated as a closed system with no surface water release.
- To supply make-up water for the milling process from within the project catchment area.
- To minimize the requirement for regulated discharges of surface runoff from the waste dumps.

These objectives will be managed simultaneously during operations by provision of surface water collection ditches around the project perimeter and by judicious transfer of "fresh" surface runoff from designated undisturbed catchment areas adjacent to the tailings impoundment.

The Starter Dam for the tailings impoundment will be constructed approximately one year prior to mill start-up, and will entrap the freshet runoff so that adequate quantities of water are available for mill start-up and the first years of operation.

Association des Ingénieurs Conseils du Canada - 5 -

Knight Piésold Ltd.

During on-going operations, the size of the tailings supernatant pond will be controlled, to a large extent by mine operators, by the annual precipitation and evaporation regime and by the water released from the settled tailings. Process fresh water make-up requirements from Polley Lake will be minimized by utilization of water sources in the following priority:

- Tailings supernatant.
- Open pit dewatering.
- Open pit groundwater depressurization wells.
- Mill site and waste dump runoff.
- Runoff diversion structures will be operated to provide supplementary water from diverted catchment areas A and B upslope of the tailings impoundment.
- Transfer of excess stream flow from Polley Lake/Hazeltine Creek during peak flow periods.

A series of water balances have been carried out to evaluate the annual process requirements for fresh make-up water and the overall water surpluses or deficits for the Mt. Polley Project. Water balances have been carried out for all 14 years of the project life, under a range of hydrometeorological conditions and for the various catchment areas.

The monthly water balance incorporates inflows from the open pit into the tailings storage facility. Additional surface runoff from the millsite, the various waste dump areas and additional undisturbed catchment areas have also been determined separately. Runoff collection ditches are assumed to control the addition of surface runoff into the system.

anada

Association des Ingénieurs-Conseils du Canada

- 6 -

Linked water balances have been carried out for all 14 years of the mine life. An example of the linked water balances for average precipitation conditions are included in Appendices A and B. Appendix A includes the tailings facility and open pit as per the existing MDC, and Appendix B includes separate water balances for the mine site area plus the additional undisturbed catchment area A immediately upgradient from the tailings impoundment. The information in these two sets of tables is linked, and when the tailings pond volume drops below a minimum specified volume of 1.5 million m³, all available surface runoff is diverted into the process. Catchment Area B is not included in the water balances and is therefore considered to represent a contingency source of additional water to compensate for any process shortfalls.

4.2 WATER BALANCE

The fundamental objective of the overall Water Management Plan is to operate the project so that surface discharge of excess water from the tailings impoundment and open pit will not be required. Table 4.1 summarizes the various components of the water balance for average precipitation conditions (as shown in Appendices A and B) over the life of the project assuming Catchment Area B will not be required. The main components of the water balances are illustrated graphically on Figure 4.1 for the Year 1 water balance previously presented in 1991 and on Figure 4.2 for the current 1995 Year 1 water balance which minimizes make-up water recovery from Polley Lake. The main difference between the two options is that in the 1995 water balance model, the make-up water requirements are reduced by incorporating additional runoff water collection from waste dumps and the additional catchment area at the tailings facility, plus it utilizes ponded water that is contained in the tailings impoundment at start-up.

The annual water balance summaries for Years 1 and 14 previously developed in 1991 are compared to results from the updated water management plan in Tables 4.2 and 4.3. The updated values presented in this table were developed using similar water balance tables to those in the MDC and were conducted separately from the linked water balance results included in Appendix A, in order to provide an independent check on the @RISK water balance results.

Association des Ingénieurs-Conseils du Canada -7-

Knight Piésold Ltd.

The variation in the volume of the tailings pond for average precipitation conditions is illustrated on Figure 4.3. The pond volume reaches a minimum during the winter months when there is little surface runoff and reaches a maximum volume in the summer after the freshet. Figure 4.3 also includes a smoothed average curve which tracks the tailings pond volume at the end of September in each year. The 50th percentile curve for September pond volumes, as determined in the @RISK analyses is also included for comparison.

The computer program @RISK was used to assess the risks of:

- accumulating too much water in the tailings impoundment over the life of the project,
- depleting the volume of water in the tailings pond so that an external source of make-up water would be required.

The @RISK program randomly selects separate annual precipitation values for each of the 14 years of operation and linked water balances are conducted. The water balances "link" the tailings facility and mine site water balances and also link the pond volumes from year to year. This process was repeated for 1000 iterations in order to provide estimates of the tailings pond volume, runoff water and make-up water requirements for various extreme combinations of wet and dry precipitation years. These results are illustrated on Figures 4.4, 4.5 and 4.6, and are discussed in the following section. It is evident that the updated water management strategy will achieve the permitted requirements for prevention of surface water discharge from the tailings facility and open pit, while minimizing the amount of make-up water removed from Polley Lake.

4.3 MAKE-UP WATER REQUIREMENTS

A fundamental requirement for the updated project water balances is that an adequate volume of water has to be stored at the tailings impoundment to compensate for low runoff periods during the cold winter months and during dry

Association des Ingénieurs-Conseils du Canada

Knight Piésold Ltd.

summer months. It has been estimated that a minimum volume of 1.5 million m^3 of water will need to be in storage prior to mill start-up. It is intended that this water will be obtained by constructing the tailings impoundment at least one year prior to mill start-up to allow capture of one year of direct surface runoff including the freshet. The amount of surface runoff which will be collected prior to start-up for various precipitation conditions is presented on Tables 4.4 to 4.7 and summarized as follows:

	Summary of Water Available	at Start-Up			
Precipitation	Surface Runoff Water (m ³) Available				
Condition	with Catchment Area A	with Catchment Areas A & B			
Average Year	1,455,000	1,992,000			
10 Year Dry	1,084,000	1,445,000			
50 Year Dry	921,000	1,220,000			
10 Year Wet	1,900,000	2,657,000			

These results indicate that if extremely dry conditions are encountered, up to $300,000 \text{ m}^3$ of water may also need to be abstracted from either Polley Lake or Hazeltine Creek during peak freshet flows to supplement stored water in the first year of operation as 1.5 million m³ of water must be stored prior to start-up.

The tailings pond volumes determined by the @RISK analyses for the linked water balances extending over the 14 year project life are shown on Figure 4.4. An initial pond volume of 1.5 million m³ has been included at start-up and runoff from waste dumps and catchment Area A have been included when necessary to provide adequate water for milling. The monthly fluctuations in the volume of the tailings pond have not been included on this summary figure. Figure 4.5 illustrates the amount of excess surface runoff from all waste dumps plus the 240 ha of Catchment Area A that is not diverted into the mill process. It does not include for additional runoff available from Catchment Area B.

Comparison of Figures 4.4 and 4.5 illustrates that virtually all available runoff is diverted into the process under average and dry precipitation conditions for the first

two to three years. The volume of stored water in the tailings impoundment is also reduced during this period. However, the analyses indicate that no additional makeup water will be required from Polley Lake except during the most extreme combinations of dry years. Figure 4.6 illustrates that there is about a 5% chance that some minor amount of additional make-up water will be required.

In practice, there is also a minimum pond volume which must be maintained in the tailings impoundment in order to compensate for ice accumulation in winter and to allow trouble free operation of the reclaim barge. Therefore, it will be necessary to include contingency provisions to transfer additional water into the tailings impoundment during operations. This additional water can be obtained from:

- selective diversion from Catchment Area B upgradient from the tailings impoundment, and/or
- transfer of excess flows from Polley Lake or Hazeltine Creek during peak flow periods. Minimum stream flows for fisheries releases would be maintained during any pumping period.

4.4 WATER MANAGEMENT PLAN

The objective of the project Water Management Plan in the early years will be to route all project water flows from disturbed areas into the process or into associated mine site activities such as dust suppression. An additional objective is to selectively route runoff from upslope Catchment Areas A and B into the tailings impoundment in order to eliminate the need for an external source of make-up water from Polley Lake. In the later years of operation the objective will be to monitor and release selected surface water inflow components which meet the required quality standards in order to manage the final volume of ponded water in the tailings impoundment at closure. The following activities will be incorporated in the Water Management Plan:

Association des Ingénieurs-Conseils du Canada - 10 -

•

Knight Piésold Ltd.

- (i) Maximize the capture of surface and groundwater flows from within the project area.
- (ii) Maximize the use of the poorest quality water recovered from within the project area in the milling process and in associated activities (such as dust suppression).
- (iii) Minimize the deliberate introduction of excess clean fresh water from Polley Lake and Hazeltine Creek.
- (iv) Monitor the quality of surface runoff from disturbed areas and groundwater flows within the project site.
- (v) Release only the best quality water from within the project boundaries and in accordance with permitted requirements, as is necessary to maintain an overall project water balance under actual hydrometeorological conditions.
- (vi) Manage the operation of the tailings supernatant pond to optimize the volume of water stored on the tailings surface during operations and at closure.
- (vii) Develop and maintain a detailed data base to allow water balances for the site to be as accurate as possible and thereby become useful tools for predicting annual make-up water requirements and for scheduling releases of clean surface runoff water as appropriate.

Knight Piésold Ltd.

CONSULTING ENGINEERS

SECTION 5.0 - SUMMARY AND CONCLUSIONS

A revised water management plan has been developed for the Mt. Polley project. Detailed water balances have been conducted for each year of the project using average precipitation conditions. Water balances have also been developed for 1000 different 14 year combinations of annual precipitation in order to assess the risk of either accumulating too much water in the system or increasing the make-up water requirements. These revised water balances indicate that:

- (i) Discharge of excess water from the tailings facility and open pit will not be necessary. These results confirm the findings of the previous project water balances conducted in 1991.
- (ii) It is possible to eliminate the requirement for a water supply dam on Polley Lake.

The updated water management plan requires early construction of a starter dam at the tailings impoundment in order to capture surface runoff for one year prior to the projected early start-up in October, 1996. Surface runoff from undisturbed catchment areas immediately adjacent to the tailings impoundment will be routed into the facility in order to provide a minimum pond volume of 1.5 million m³ prior to start-up. This initial volume of water is projected to be drawn down during the first few years of operation, even if all mine site runoff and runoff from the additional Catchment Area A is routed into the mill process. However, the amount of surface runoff increases during the later years of operation when the waste dumps increase in area and surface runoff also increases. Therefore, the amount of surface runoff obtained from undisturbed catchment areas will decrease after the first few years of operation.

The water balance has been evaluated for each year of the 14 year project life and under various precipitation conditions. Water balances have been conducted for over 1000 different combinations of mine life precipitation conditions and the risks of significant water accumulation or depletion have been assessed. These probability analyses indicate that it is extremely unlikely that any additional make-

Association g des Ingénieurs Conseils du Canada - 12 -

Knight Piésold Ltd.

CONSULTING ENGINEERS

up water, beyond the projected fresh water requirements of 24.9 m^3/hr , will be required from Polley Lake. However, it is recommended that a contingency water supply of about 300,000 m^3/yr be included in the revised permit application. It is anticipated that this volume of water would only be removed from either Polley Lake or Hazeltine Creek during high flow periods and would only remove water which is not required for minimum fisheries flow releases.

Association des Ingénieurs-Conseils du Canada

TABLE 2.1 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT PRECIPITATION DETAILS USED IN ANALYSIS

2/3/95 10:27

J:UOB\DATA\1624\WATERBAL\STATWBAL.XLS

DESCRIPTION		VAL	JUE			
Lower Elevations (ie. TSF)						
Mean annual precipitation (mm)	755					
"Dry" annual precipitation (mm)		60				
"Wet" annual precipitation (mm)		90	19			
"Max." annual precipitation (mm)		10	50			
"Min." annual precipitation (mm)		45	50			
Mean annual rainfall (mm)		45	51			
Mean annual snowfall (mm)		30)4			
Coefficient of variation		0.1	16			
Standard deviation (mm)		12	21			
Higher Elevations (ie. mill site, waste						
dumps, etc.)						
"Elevation" factor		1.07	285			
Mean annual precipitation (mm)	810					
"Dry" annual precipitation (mm)	645					
"Wet" annual precipitation (mm)	975					
Coefficient of variation	0.16					
Standard deviation (mm)	130					
Proportions of Total Precipitation:						
Rainfall	0.60					
Snowfall	0.40					
Monthly Proportions of Precipitation:						
	Rainfall	Proportion	Snowfall	Proportion		
	(mm)	as Rainfall	(mm)	as Snowfal		
Oct	48.3	0.11	12.1	0.04		
Nov	17.3	0.04	40.0	0.13		
Dec	7.6	0.02	67.2	0.22		
Jan	6.8	0.02	68.7	0.23		
Feb	6.0	0.01	52.1	0.17		
Mar	6.0	0.01	38.5	0.13		
Apr	24.2	0.05	18.9	0.06		
May	45.3	0.10	5.3	0.02		
Jun	81.5	0.18	0.0	0.00		
Jul	65.7	0.15	0.0	0.00		
Aug	83.1	0.18	0.0	0.00		
Sep	58.9	0.13	1.5	0.00		
Total (mm)	450.7		304.3			

Association des Ingénieurs-Conseils du Canada

INVESTIGATION KP 1-9 286 of 500

Knight Piésold Ltd. CONSULTING ENGINEERS

TABLE 3.1 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT OPEN PIT DEVELOPMENT

2/3/95 10:28

J:JOB\DATA\1624\WATERBAL\STATWBAL.XLS

END OF YEAR	PIT CATC	TOTAL		
	CENTRAL	NORTH	WEST	AREA (ha)
0	0.0	0.0	0.0	0.0
1	17.6	0.0	0.0	17.6
2	17.6	0.0	0.0	17.6
3	25.5	0.0	0.0	25.5
4	25.5	0.0	0.0	25.5
5	25.5	14.9	0.0	40.4
6	25.5	14.9	0.0	40.4
7	25.5	14.9	24.3	64.7
8	25.5	14.9	24.3	64.7
9	25.5	14.9	24.3	64.7
10	25.5	14.9	24.3	64.7
11	25.5	14.9	24.3	64.7
12	25.5	14.9	24.3	64.7
13	25.5	14.9	24.3	64.7
14	25.5	14.9	24.3	64.7

Notes:

1. Pit areas in italics are conservative estimates only.

2. Pit areas measured from mining sequence plans

c/o Wright Engineers ("Feasibility Study", Vol. 1 of 5).

Association des Ingénieurs-Conseils du Canada

Knight Piésold Ltd.

TABLE 3.2 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT WASTE DUMP DEVELOPMENT

2/3/95 10:26

J:JOB\DATA\1624\WATERBAL\STATWBAL.XLS

YEAR	WASTE (T x1000)	CUM. WASTE (T x1000)	DUMP CATCHMENT AREAS (ha)					TOTAL	
			EAST		NORTH		WEST		WASTE
			WASTE	UNDIST'BD	WASTE	UNDIST'BD	WASTE	UNDIST'BD	AREA (ha)
0	1217.0	1217.0							
1	2774.9	3991.9	10.0	70.0	0.0	0.0	0.0	0.0	10.0
2	2720.2	6712.1	14.7	65.3	0.0	0.0	0.0	0.0	14.7
3	2342.2	9054.3	19.3	60.7	0.0	0.0	0.0	0.0	19.3
4	1812.7	10867.0	24.0	56.0	0.0	0.0	0.0	0.0	24.0
5	9496.2	20363.2	28.7	51.3	9.3	75.7	0.0	0.0	38.0
6	7649.2	28012.4	33.3	46.7	18.7	66.3	0.0	37.0	52.0
7	10839.3	38851.7	38.0	42.0	28.0	57.0	2.3	34.8	68.3
8	11103.3	49955.0	42.7	37.3	37.3	47.7	4.5	32.5	84.5
9	8591.8	58546.8	47.3	32.7	46.7	38.3	6.8	30.3	100.8
10	1152.4	59699.2	52.0	28.0	56.0	29.0	9.0	28.0	117.0
11	0.0	59699.2	52.0	28.0	56.0	29.0	9.0	28.0	117.0
12	0.0	59699.2	52.0	28.0	56.0	29.0	9.0	28.0	117.0
13	0.0	59699.2	52.0	28.0	56.0	29.0	9.0	28.0	117.0
14	0.0	59699.2	52.0	28.0	56.0	29.0	9.0	28.0	117.0

Notes: - dump areas for years 1 and 14 taken from <u>Stage 1 Environmental and Socionomic Impact Assessment</u>, <u>Responses</u> to <u>Comments by the Agencies</u>. All areas for intermediate years are interpolated linearly.

Knight Piésold Ltd. CONSULTING ENGINEERS

<u>TABLE 3.3</u> <u>IMPERIAL METALS CORPORATION</u> <u>MT. POLLEY PROJECT</u> <u>TAILINGS STORAGE FACILITY DEVELOPMENT</u>

Area of total impoundment =

230 ha

2/3/95 10:29

J:VOB\DATA\1624\WATERBAL\STATWBAL.XLS

END OF	AREAS (ha)												
YEAR	UNPREP'D BASIN	TOT. PREP'D BASIN	PREP'D BASIN	BEACH (incl. pond)	BEACH ONLY	POND							
t=0	96	134	119	15	0	15							
1	96	134	64	70	48.9	21.1							
2	54	176	67	109	81.9	27.1							
2 3	54	176	38	138	104.8	33.2							
4	26	204	44	160	120.7	39.3							
5	26	204	19	185	139.6	45.4							
5 6 7	15	215	22	193	141.6	51.4							
7	15	215	13	202	144.5	57.5							
8	6	224	18	206	142.6	63.4							
9	6	224	15	209	139.4	69.6							
10	0	230	17	213	137.3	75.7							
11	0	230	13	217	135.2	81.8							
12	0	230	10	220	132.1	87.9							
13	0	230	6	224	130.1	93.9							
14	0	230	6 3	227	127	100							

Notes: 1) Unprep'd Basin = Total Impoundment - Prep'd Basin.

2) Prep'd Basin taken from Filling Schedule and Staged Construction.

3) Prep'd Basin has been increased by 5% in order to equal total

impoundment area after 10 years.

4) Beach (incl. pond) taken from D/A/C curve.

5) Pond volume varied linearly from 15ha at t=0 to 100ha at end of year 14.

Knight Piésold Ltd. CONSULTING ENGINEERS

TABLE 3.4 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT ASSUMPTIONS USED IN WATER BALANCE ANALYSIS

2/3/95 10:20

J:JOB\DATA\1624\WATERBAL\STATWBAL.XLS

DESCRIPTION		VALUE				
General Details:		1.6				
Daily ore throughput (tpd)			13,425			
Tailings % solids			35%			
Tailings S.G.			2.78			
Yr. 1 initial pond volume (m ³)		1	1,500,00	0		
Water content of ore			4%			
Min fresh water makeup (% of water i	n with slurry)		2.4%			
Initial tailings dry density (t/m ³)			0.9			
Final tailings dry density (t/m ³)	Yr.1		1.1			
	Yr.2		1.2			
	Yr.3 - 14		1.3			
Pit g/w infiltration (m ³ /month)			39,818			
Beach evaporation factor			0.8			
Dust control (m ³ /month)			25,000			
Runoff Coefficients:		dry	ave	wet		
Unprepared basin		20%	24%	29%		
Prepared basin		90%	90 %	90%		
Tailings beach		90%	90%	90%		
Pit area		45%	50%	55%		
Waste rock		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	60 %			
Undisturbed catchment		20%	24%	29%		
Mill site		65%	70%	75%		

Association des Ingénieurs-Consells du Canada

INVESTIGATION KP 1-9 290 of 500

Knight Piésold Ltd. CONSULTING ENGINEERS

TABLE 4.1 <u>IMPERIAL METALS CORPORATION</u> <u>MT. POLLEY PROJECT</u> <u>ANNUAL WATER BALANCES FOR AVERAGE</u> <u>CONDITIONS - CATCHMENT AREA "A"</u>

2/6/95 15:29

J:JOB\DATA\1624\WATERBAL\STATWBAL_XLS

YEAR	WATER	TAILINGS PO	ND VOL. (m ³)	MAKEUP	EXCESS
	AVAILABLE (m ³)	MIN.	MAX.	WATER REQ'D (m ³)	DIVERTED WATER (m ³
0	1,500,000	1,500,000	1,500,000		
1	1,136,187	765,590	1,432,777	0	0
2	1,233,138	610,223	1,341,963	0	0
3	1,440,914	866,681	1,663,887	0	150,014
4	1,441,040	1,090,844	1,760,095	0	435,218
5	1,507,113	1,120,791	1,861,307	0	549,537
6	1,491,361	1,136,205	1,929,259	0	770,682
7	1,603,921	1,181,655	2,032,575	0	756,609
8	1,674,549	1,215,669	2,100,044	0	876,349
9	1,735,786	1,276,298	2,172,620	0	922,218
10	1,824,823	1,341,827	2,264,337	0	957,312
11	1,889,491	1,420,501	2,343,190	0	967,572
12	1,933,176	1,474,927	2,398,170	0	977,832
13	1,652,895	1,518,504	2,132,030	0	1,287,699
14	1,703,906	1,270,389	2,194,337	0	945,683

Note :

Excess Diverted Water is surplus runoff not diverted into tailings impoundment.

Association des Ingénieurs-Conseils du Canada

INVESTIGATION KP 1-9 291 of 500

CONSULTING ENGINEERS

TABLE 4.2

IMPERIAL METALS CORPORATION MT. POLLEY PROJECT

WATER BALANCE SUMMARY - ANNUAL WATER SURPLUS

	Annual Surplus in Tailings Facility (m ³)											
	Initial Cas	se (1991)	Ne)								
	Year 1	Year 14	Year 1	Year 7	Year 14							
50 Year Dry	0	0	0	0	0							
10 Year Dry	0	0	0	0	0							
Average Year	0	$3,856^{(1)}$ 440,148 ⁽¹⁾	0	0	0							
10 Year Wet	0	$440,148^{(1)}$	0	87,098	74,626							
50 Year Wet	0	680,032 ⁽¹⁾	0	311,451	309,400							

Note:

 The Initial Case (1991) does not include water usage for dust control or enhanced evaporation losses (approximately 400,000 m³/yr). The New Case (1995) includes for dust control (150,000 m³/year) but not enhanced evaporation (250,000 m³/year).

Association des Ingénieurs Conseils du Canada

INVESTIGATION KP 1-9 292 of 500

Knight Piésold Ltd.

CONSULTING ENGINEERS

TABLE 4.3

IMPERIAL METALS CORPORATION MT. POLLEY PROJECT

ADDITIONAL MAKE-UP WATER REQUIREMENTS

Precipitation Conditions

Permitted Option: Scenario 2 - Total Pit Inflow to Tailings Area or to Process

	1991 Model (m ³ /year)	1995 Model (m ³ /year)
Year 1 - 50 Year Dry	1,580,709	0
Year 1 - 10 Year Dry	1,490,936	0
Year 1 - Average Year	1,259,725	0
Year 1 - 10 Year Wet	973,150	0
Year 1 - 50 Year Wet	861,263	0
Year 14 - 50 Year Dry	646,609	0
Year 14 - 10 Year Dry	415,057	0
Year 14 - Average Year	0	0
Year 14 - 10 Year Wet	0	0
Year 14 - 50 Year Wet	0	0

Notes:

- 1. The additional make-up water required is in addition to the 4.6 percent minimum fresh make-up water required (418,611 m³/yr) to the mill. Of this, 200,000 m³/yr is water in ore, and the remainder is for fresh water requirements (ie: potable water, etc.)
- 2. The new 1995 water balance model assumes that approximately 1.5 million m³ of water is stored in the tailings impoundment in October of each year.
- 3. Year 1 water balances indicate that ponded water in the tailings facility may need to be supplemented with additional make-up water if the tailings pond volume becomes too low for practical operations. Therefore, a contingency make-up water allowance of 300,000 m³ may need to be extracted during freshet from the Polley Lake system under extreme dry start-up conditions during the first few years of operations.

Association des Ingenieurs-Conseils du Canada

INVESTIGATION KP 1-9 293 of 500

CONSULTING ENGINEERS

TABLE 4.4

IMPERIAL METALS CORPORATION MT. POLLEY PROJECT TAILINGS STORAGE FACILITY

WATER AVAILABLE AT START-UP Average Year Precipitation

755 mm

Catchment Areas		Runoff Coeff.	
Stage I Tailings Facility Basin =	134 ha	90%	Total annual precipitation =
Tailings Facility Unprepared Basin =	96 ha	24%	
Diverted Catchment Area A =	240 ha	24%	
Diverted Catchment Area B =	310 ha	24%	

1	JOB\DATA\1624\WATSTART.WK4												06-Feb-95	10:35 AM
L	DESCRIPTION	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
A	Rainfall (mm/month)	48.3	17.3	7.6	6.8	6.0	6.0	24.2	45.3	81.5	65.7	83.1	58.9	450.7
B	Snowfall (mm/month - water equivalent)	12.1	40.0	67.2	68.7	52.1	38.5	18.9	5.3	0.0	0.0	0.0	1.5	304.3
С	Lake evaporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423.0
	<water in=""> (m³)</water>	1												
1	Tailings Facility Catchment Area Runoff	58,250	20,864	9,166	8,201	7,236	7,236	29,185	421,618	98,289	79,234	100,219	71,033	910,530
2	Diverted Catchment Area A Runoff	27,821	9,965	4,378	3,917	3,456	3,456	13,939	201,370	46,944	37,843	47,866	33,926	434,880
3	Diverted Catchment Area B Runoff	35,935	12,871	5,654	5,059	4,464	4,464	18,005	260,102	60,636	48,881	61,826	43,822	561,720
4	Unprepared Basin Runoff	11,128	3,986	1,751	1,567	1,382	1,382	5,576	80,548	18,778	15,137	19,146	13,571	173,952
5	Total Monthly Precipitation Runoff	133,134	47,686	20,949	18,744	16,538	16,538	66,705	963,637	224,647	181,095	229,057	162,352	2,081,082
6	Cumulative Monthly Precipitation Runoff	133,134	180,820	201,768	220,512	237,050	253,589	320,294	1,283,931	1,508,578	1,689,673	1,918,730	2,081,082	
	<water out=""> (m³)</water>													
	Surface Area of Start-up Pond (ha)	5	5	5	5	5	5	5	13	21	21	21	34	
7	Evaporation from Start-up Pond	750	0	0	0	0	0	0	6,110	23,520	22,470	19,320	17,000	89,170
ſ	<available in="" tsf="" water=""> (m³)</available>													
8	Total Monthly Available Water	132,384	47,686	20,949	18,744	16,538	16,538	66,705	957,527	201,127	158,625	209,737	145,352	1,991,912
9	Cumulative Monthly Available Water	132,384	180,070	201,018	219,762	236,300	252,839	319,544	1,277,071	1,478,198	1,636,823	1,846,560	1,991,912	

Assumptions:

ions: 1. Snowfall is given in equivalent depth of rainfall and is assumed to accumulate on catchment areas until May when it melts with 90% recovery in the tailings facility and 24% recovery from the diverted catchment areas.

CONSULTING ENGINEERS

TABLE 4.5

IMPERIAL METALS CORPORATION MT. POLLEY PROJECT TAILINGS STORAGE FACILITY

WATER AVAILABLE AT START-UP **10 Year Dry Precipitation**

Catchment Areas		Runoff Coeff.
Stage I Tailings Facility Basin =	134 ha	90%
Tailings Facility Unprepared Basin =	96 ha	20%
Diverted Catchment Area A =	240 ha	20%
Diverted Catchment Area B =	310 ha	20%

Total annual precipitation =

601.3 mm

Ľ	DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
A	Rainfall (mm/month)	38.5	13.8	6.1	5.4	4.8	4.8	19.3	36,1	64.9	52.3	66.2	46.9	359.1
B	Snowfall (mm/month - water equivalent)	9.6	31.8	53.5	54.7	41.5	30.7	15.0	4.2	0.0	0.0	0,0	1.2	242.2
cL	Lake evaporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423.0
	<WATER IN $>$ (m ³)													
1	Tailings Facility Catchment Area Runoff	46,431	16,643	7,357	6,512	5,789	5,789	23,276	335,630	78,269	63,074	79,837	56,561	725,168
2	Diverted Catchment Area A Runoff	18,480	6,624	2,928	2,592	2,304	2,304	9,264	133,584	31,152	25,104	31,776	22,512	288,624
3	Diverted Catchment Area B Runoff	23,870	8,556	3,782	3,348	2,976	2,976	11,966	172,546	40,238	32,426	41,044	29,078	372,806
4	Unprepared Basin Runoff	7,392	2,650	1,171	1,037	922	922	3,706	53,434	12,461	10,042	12,710	9,005	115,450
5	Total Monthly Precipitation Runoff	96,173	34,472	15,238	13,489	11,990	11,990	48,211	695,193	162,120	130,645	165,368	117,156	1,502,047
6	Cumulative Monthly Precipitation Runoff	96,173	130,645	145,883	159,372	171,363	183,353	231,565	926,758	1,088,878	1,219,524	1,384,891	1,502,047	
ľ	<water out=""> (m³)</water>													
	Surface Area of Start-up Pond (ha)	0	5	5	5	5	5	5	13	13	13	13	21	
7	Evaporation from Start-up Pond	0	0	0	5 0	0	0	0	6,110	14,560	13,910	11,960	10,500	57,040
	<available in="" tsf="" water=""> (m³)</available>										÷.			
8	Total Monthly Available Water	96,173	34,472	15,238	13,489	11,990	11,990	48,211	689,083	147,560	116,735	153,408	106,656	1,445,007
9	Cumulative Monthly Available Water	96,173	130,645	145,883	159,372	171,363	183,353	231,565	920,648	1,068,208	1,184,944	1,338,351	1,445,007	

1. Snowfall is given in equivalent depth of rainfall and is assumed to accumulate on catchment areas until May when it melts with 90% recovery in the tailings facility and 20% recovery from the diverted catchment areas.

Assumptions:

CONSULTING ENGINEERS

TABLE 4.6

IMPERIAL METALS CORPORATION MT. POLLEY PROJECT TAILINGS STORAGE FACILITY

WATER AVAILABLE AT START-UP 50 Year Dry Precipitation

Catchment Areas		Runoff Coeff.
Stage I Tailings Facility Basin =	134 ha	90%
Tailings Facility Unprepared Basin =	96 ha	20%
Diverted Catchment Area A =	240 ha	20%
Diverted Catchment Area B =	310 ha	20%

Total annual precipitation = 508.9 mm

	DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
A	Rainfall (mm/month)	32.6	11.7	5.1	4.6	4.0	4.0	16,3	30.5	54.9	44.3	56.0	39.7	303.7
в	Snowfall (mm/month - water equivalent)	8.2	27.0	45.3	46.3	35.1	26.0	12.7	3.6	0.0	0.0	0,0	1.0	205.2
cL	Lake evaporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423.0
	<water in=""> (m³)</water>													
1	Tailings Facility Catchment Area Runoff	39,316	14,110	6,151	5,548	4,824	4,824	19,658	284,254	66,209	53,426	67,536	47,878	613,733
2	Diverted Catchment Area A Runoff	15,648	5,616	2,448	2,208	1,920	1,920	7,824	113,136	26,352	21,264	26,880	19,056	244,272
3	Diverted Catchment Area B Runoff	20,212	7,254	3,162	2,852	2,480	2,480	10,106	146,134	34,038	27,466	34,720	24,614	315,518
4	Unprepared Basin Runoff	6,259	2,246	979	883	768	768	3,130	45,254	10,541	8,506	10,752	7,622	97,709
5	Total Monthly Precipitation Runoff	81,435	29,227	12,740	11,491	9,992	9,992	40,717	588,779	137,140	110,661	139,888	99,171	1,271,232
6	Cumulative Monthly Precipitation Runoff	81,435	110,661	123,401	134,892	144,884	154,876	195,593	784,372	921,512	1,032,174	1,172,062	1,271,232	
Ī	<water out=""> (m³)</water>													
	Surface Area of Start-up Pond (ha)	0	5	5	5	5	5	5	8	13	13	13	13	
7	Evaporation from Start-up Pond	0	0	0	0	0	0	0	3,760	14,560	13,910	11,960	6,500	50,690
	<available in="" tsf="" water=""> (m³)</available>	1												
8	Total Monthly Available Water	81,435	29,227	12,740	11,491	9,992	9,992	40,717	585,019	122,580	96,751	127,928	92,671	1,220,542
9	Cumulative Monthly Available Water	81,435	110,661	123,401	134,892	144,884	154,876	195,593	780,612	903,192	999,944	1,127,872	1,220,542	

INVESTIGATION KP 1-9 296 of 500

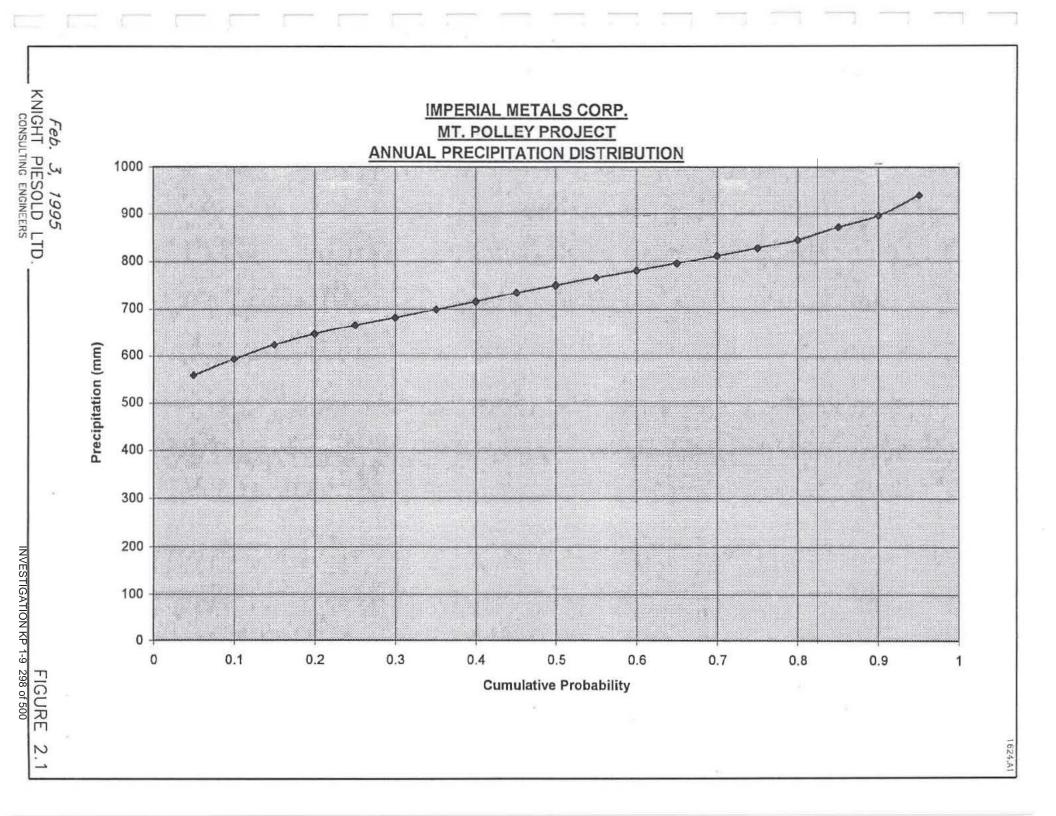
Assumptions: 1. Snowfall is given in equivalent depth of rainfall and is assumed to accumulate on catchment areas until May when it melts with 90% recovery in the tailings facility and 20% recovery from the diverted catchment areas.

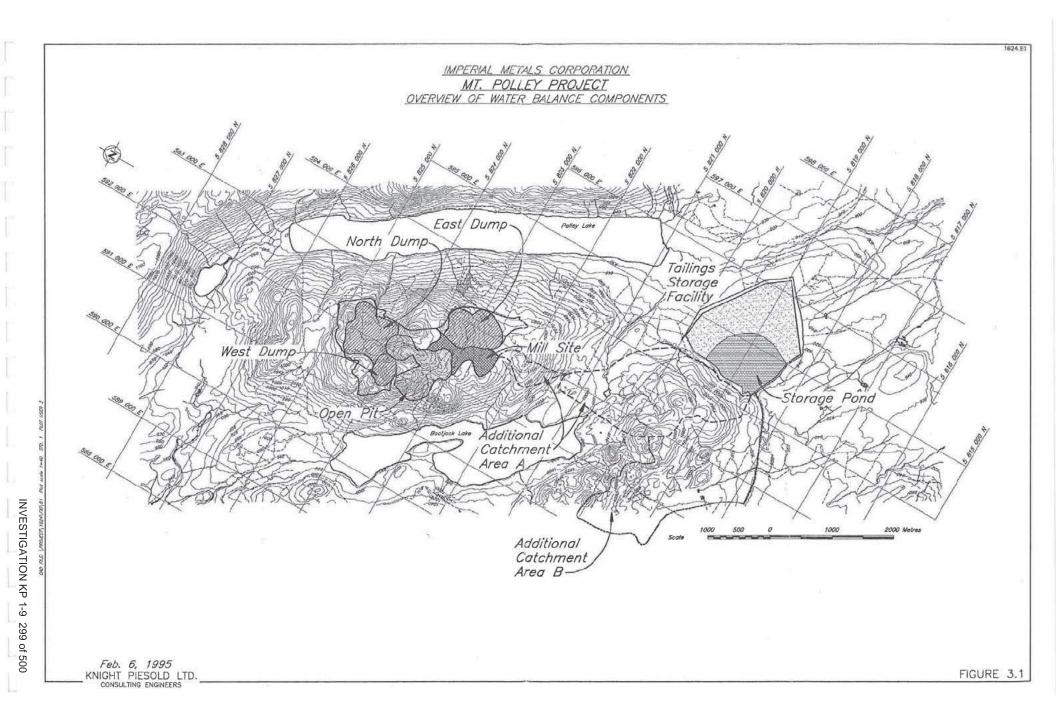
CONSULTING ENGINEERS

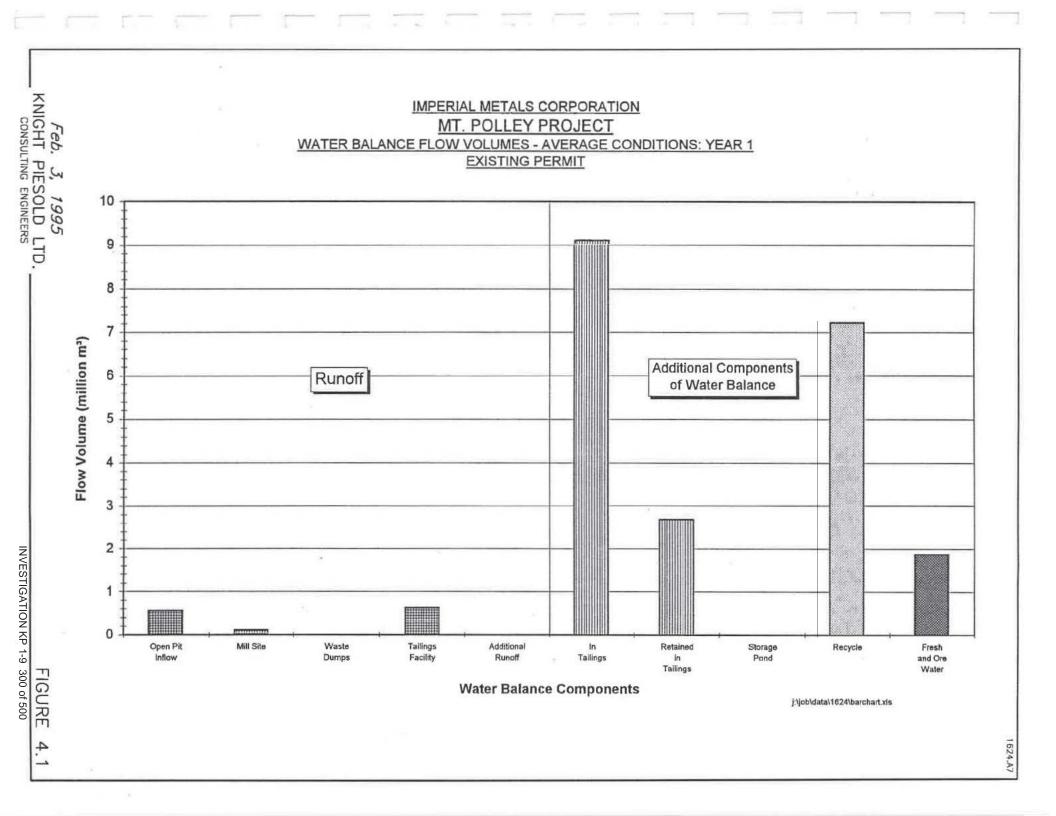
TABLE 4.7

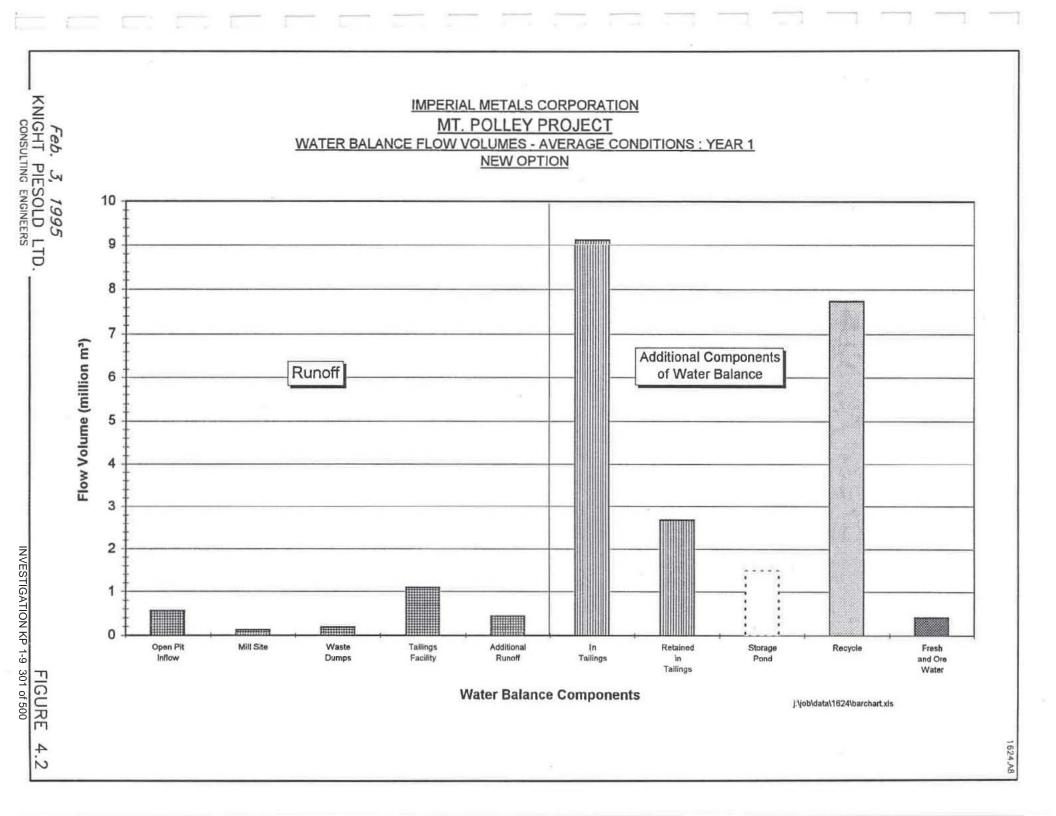
IMPERIAL METALS CORPORATION MT. POLLEY PROJECT TAILINGS STORAGE FACILITY

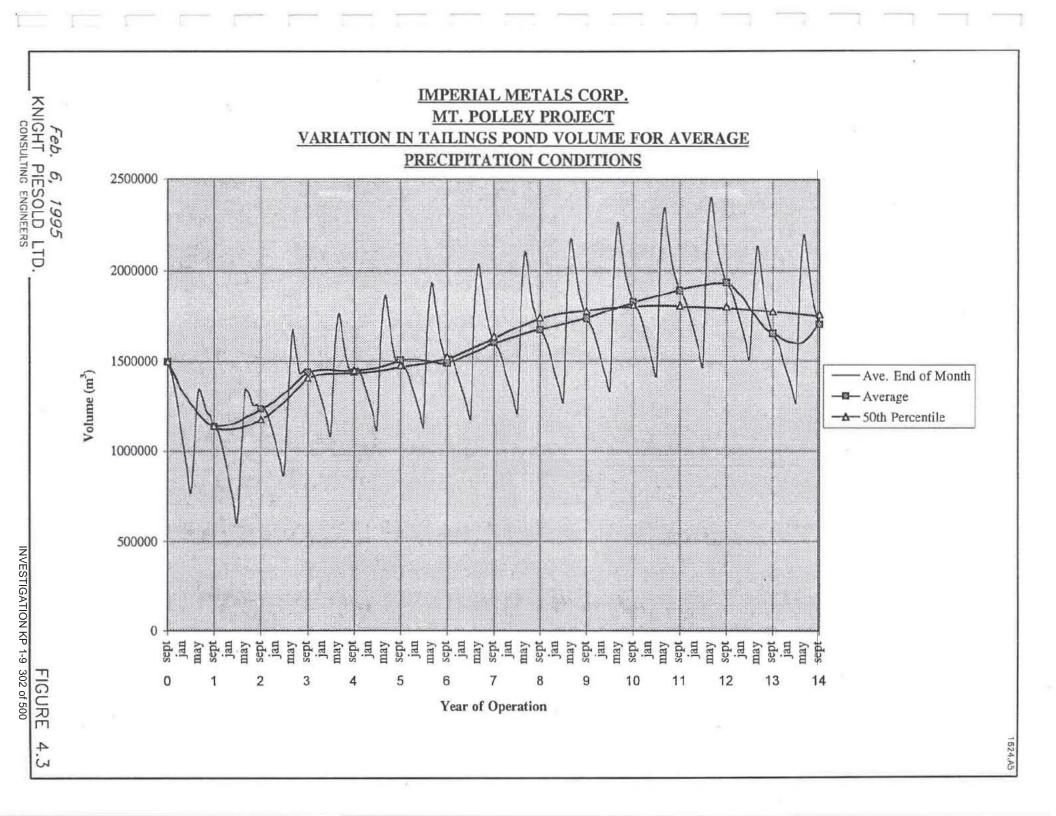
WATER AVAILABLE AT START-UP **10 Year Wet Precipitation**

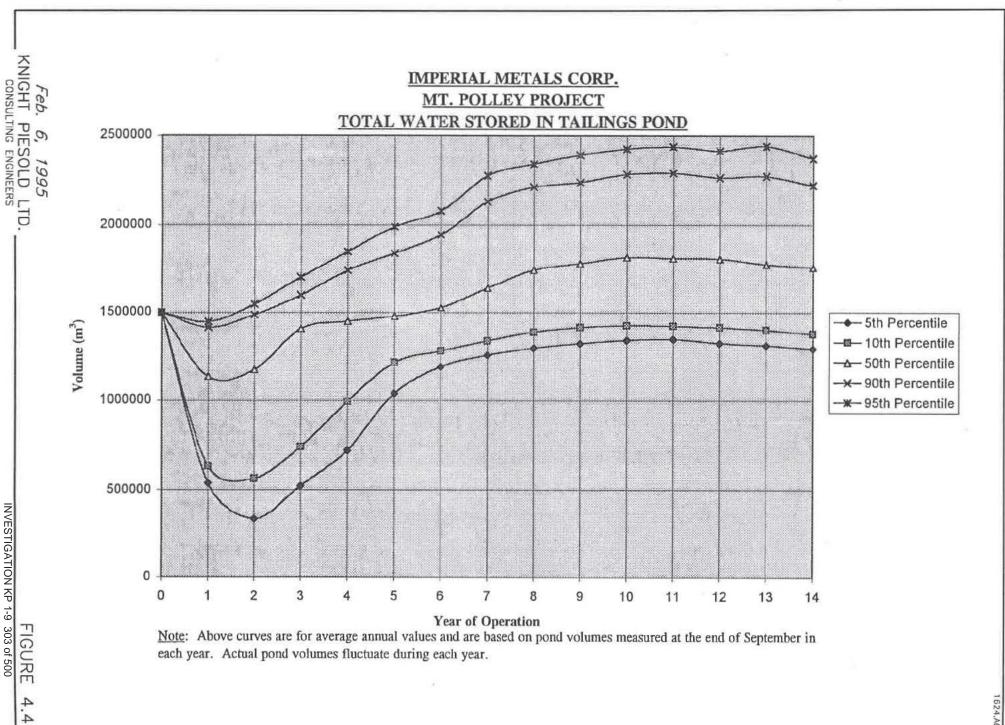

Catchment Areas		Runoff Coeff.
Stage I Tailings Facility Basin =	134 ha	90%
Tailings Facility Unprepared Basin =	96 ha	29%
Diverted Catchment Area A =	240 ha	29%
Diverted Catchment Area B =	310 ha	29%

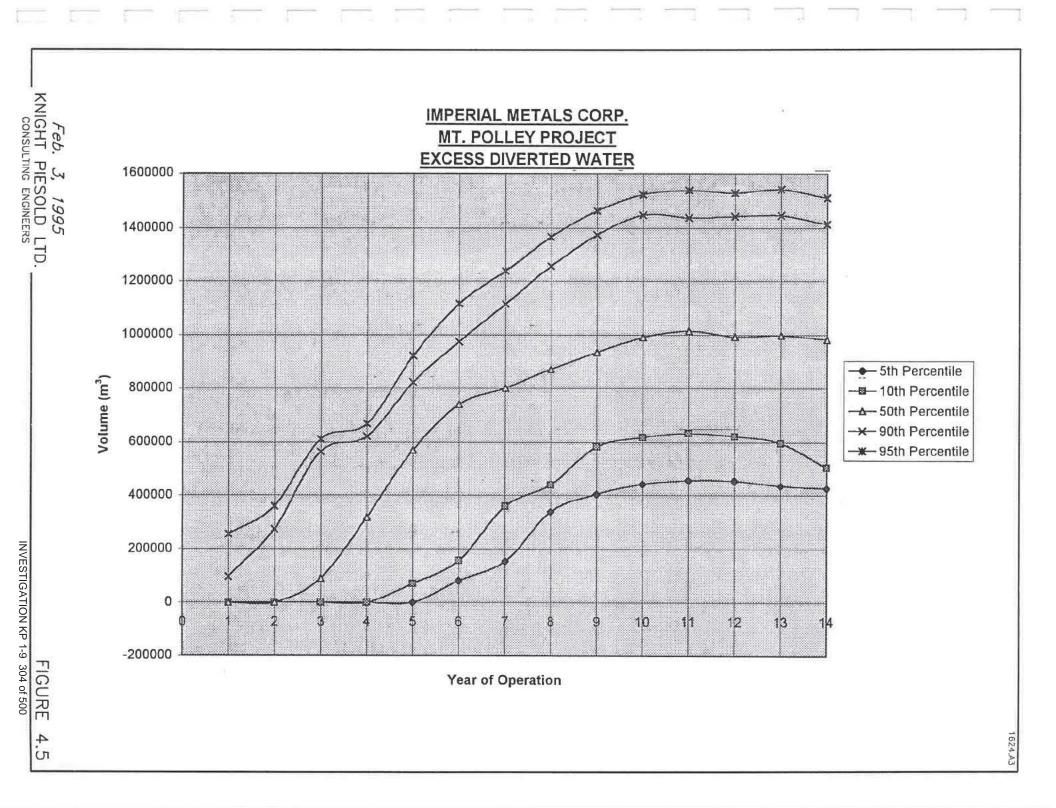

Total annual precipitation =

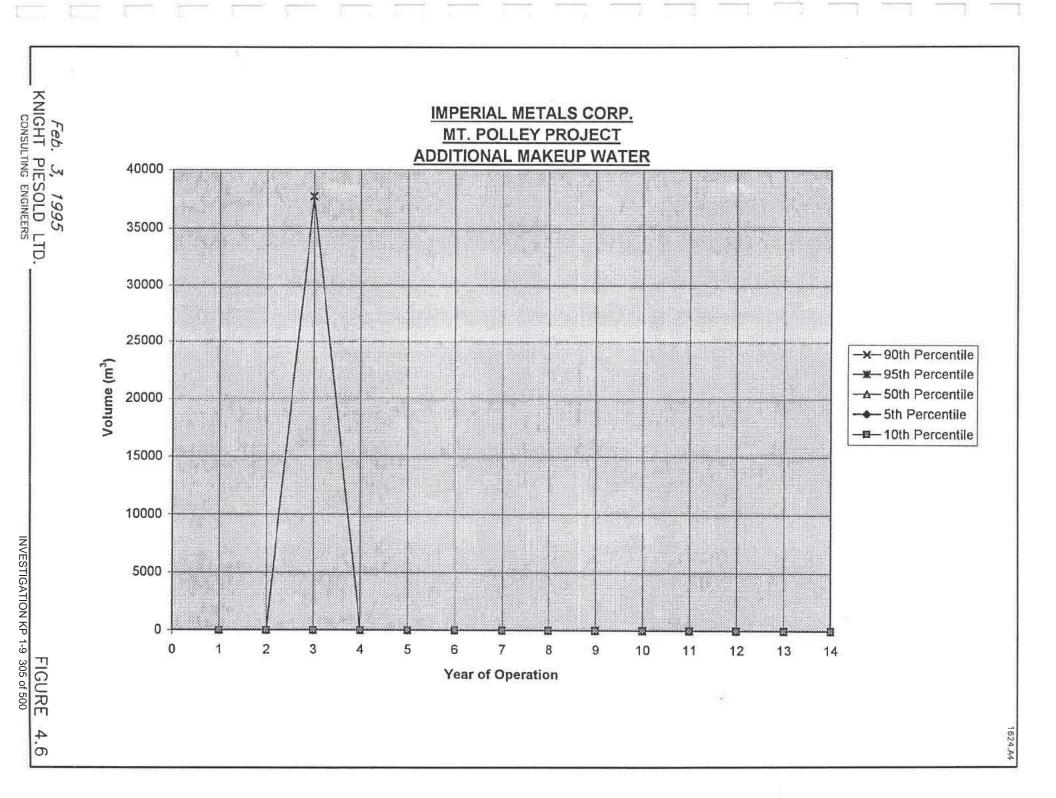

908.7 mm


DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
Rainfall (mm/month)	58.1	20.8	9.1	8.2	7.2	7.2	29,1	54.5	98.1	79.1	100.0	70.9	542.
Snowfall (mm/month - water equivalent)	14.6	48.2	80.9	82.7	62.7	46.3	22.8	6.4	0.0	0.0	0.0	1.8	366.
Lake evaporation (mm/month)	15.0	0.0	0.0	0.0	0,0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423.
<water in=""> (m³)</water>													
Tailings Facility Catchment Area Runoff	70,069	25,085	10,975	9,889	8,683	8,683	35,095	507,605	118,309	95,395	120,600	85,505	1,095,89
Diverted Catchment Area A Runoff	40,438	14,477	6,334	5,707	5,011	5,011	20,254	292,946	68,278	55,054	69,600	49,346	632,45
Diverted Catchment Area B Runoff	52,232	18,699	8,181	7,372	6,473	6,473	26,161	378,389	88,192	71,111	89,900	63,739	816,92
Unprepared Basin Runoff	16,175	5,791	2,533	2,283	2,004	2,004	8,101	117,179	27,311	22,021	27,840	19,739	252,98
Total Monthly Precipitation Runoff	178,913	64,052	28,023	25,251	22,172	22,172	89,611	1,296,119	302,089	243,581	307,940	218,329	2,798,25
Cumulative Monthly Precipitation Runoff	178,913	242,965	270,987	296,238	318,410	340,582	430,192	1,726,312	2,028,401	2,271,981	2,579,921	2,798,251	
<water out=""> (m³)</water>													
Surface Area of Start-up Pond (ha)	5	5	5	5	5	5	5	21	34	34	34	50	
Evaporation from Start-up Pond	750	0	0	0	0	0	0	9,870	38,080	36,380	31,280	25,000	141,36
<available in="" tsf="" water=""> (m³)</available>													
Total Monthly Available Water	178,163	64,052	28,023	25,251	22,172	22,172	89,611	1,286,249	264,009	207,201	276,660	193,329	2,656,89
Cumulative Monthly Available Water	178,163	242,215	270,237	295,488	317,660	339,832	429,442	1,715,692	1,979,701	2,186,901	2,463,561	2,656,891	


1. Snowfall is given in equivalent depth of rainfall and is assumed to accumulate on catchment areas until May when it melts with 90% recovery in the tailings facility Assumptions: and 29% recovery from the diverted catchment areas.







Knight Piésold Ltd. CONSULTING ENGINEERS

\$

8

٠

APPENDIX A

TAILINGS STORAGE FACILITY MONTHLY WATER BALANCES FOR AVERAGE PRECIPITATION

Association des Ingénieurs-Conseils du Canada

•

INVESTIGATION KP 1-9 306 of 500

ight Piésold Ltd. CONSULTING ENGINEERS			TAI	RIAL META MT. POLLE LINGS STO DNTHLY WA YE	EY PROJEC RAGE FACI	r Lity							
	n. fresh water ma initial dry dens final dry dens	ity $(t/m^3) =$	0,9	A (43	prepared basi prepared basi beacl		64		rep'd basin ru rep'd basin ru	noff coeff. = noff coeff. =		<u>ave.</u> 24% 90%	
initial pond volume $(m^3) = 1,500,000$ water content of ore = 4%	total pit pit g/w infiltration	$area (ha) = (m^{3}/mo) =$		1	pon beach evapora	d area (ha) = ation factor =				noff coeff. = noff coeff. =		90% 50%	
1/0511423 5/00FDATA164/WATEREALSTATWEAL2LS													-
DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	A
Rainfall (mm/month) Snowfall (mm/month) Evaporation (mm/month)	48,3 12,0 15,0	17.3 39.7 0.0	7.6 66.7 0.0	6.8 68.1 0.0	6.0 51.7 0.0	6,0 38.2 0,0	24.2 18.7 0.0	45.3 5.3 47.0	81.5 0.0 112.0	65.7 0.0 107.0	83.0 0,0 92.0	58.9 1.5 50.0	
<water in=""> (m³)</water>													
With slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,
Precipitation onto pond	10,185	3,648	1,603	1,434	1,265	1,265	38,211	39,814	17,186	13,854	17,524	12,734	1
Beach runoff Unprepid basin runoff	21,244 11,122	7,609 3,984	3,343 1,750	2,991	2,639 1,382	2,639	79,700 41,724	83,044 43,475	35,847 18,766	28,897 15,128	36,550 19,135	26,561 13,905	3
Prep'd basin runoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	4
Recovery from open pit: precipitation	4,557	1,632	717	642	566	566	17,097	17,815	7,690	6,199	7,841	5,698	1
g/w infiltration	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	4
>>> Total Water Input	873,083	825,003	809,958	808,717	807,477	807,477	1,079,214	1,091,006	924,575	900,070	927,057	891,832	10
<water out=""> (m³)</water>													
Supernatant Recovery	1	30											
(+) Recovery from tailings	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	5,4
(-) Seepage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	6
 (+) Total precipitation runoff (-) Evaporation from pond 	114,730 3,165	66,650 0	51,605 0	50,365 0	49,124 0	49,124 0	320,861 0	332,653 9,917	166,222 23,632	141,717 22,577	168,704 19,412	133,479 10,550	1,0
(-) Evaporation from beach	5,868	0	0	0	0	0	0	18,386	43,814	41,858	35,990	19,560	1
(+) Consolidation to final density	82,494	82,494	82,494	82,494	82,494	82,494	82,494	82,494	82,494	82,494	82,494	82,494	9
Sub-total (Water recovered as S/N)	581,614	542,567	527,523	526,282	525,041	525,041	796,779	780,267	574,693	553,199	589,219	579,287	7.
Underdrainage recovery													
(+) Underdrainage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	69
(-) Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	7
Sub-total (Water recovered as U/D)	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	6,
Unrecoverable Water		5 Normania (1997)	le:	112220-0000				10 C 10 C	50212047 (March 10-	12 (2.70) - 2002 - 10	ana cressource		
Water retained in tailings	224,335	224,335	224,335	224,335	224,335	224,335	224,335	224,335	224,335	224,335	224,335	224,335	2,0
Evaporation from beach and pond	9,033	0	0	0	0	0	0	28,303	67,446	64,435	55,402	30,110	2
Seepage losses Sub-total (Unrecoverable water)	5,840 239,208	5,840 230,175	5,840 230,175	5,840 230,175	5,840 230,175	5,840 230,175	5,840 230,175	5,840 258,479	5,840 297,622	5,840 294,611	5,840 285,578	5,840 260,285	13,0
>>> Total Water Output	873,083	825,003	809,958	808,717	807,477	807,477	1,079,214	1,091,006	924,575	900,070	927,057	891,832	10,
Monthly water available (excluding stored water in TSF)	633,874	594,827	579,783	578,542	577,301	577,301	849,039	832,527	626,953	605,459	641,479	631,547	7,5
Available stored water in TSF at beginning of month	1,500,000	1,432,777	1,321,031	1,184,705	1,046,351	905,971	765,590	1,069,188	1,339,298	1,297,793	1,219,260	1,193,853	
Total Monthly Water Available	2,133,874	2,027,604	1,900,814	1,763,247	1,623,653	1,483,272	1,614,628	1,901,715	1,966,252	1,903,252	1,860,739	1,825,400	-
Water included with slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,1
Fresh water input to mill Water in ore	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200	18,200 16,572	18,200 16,572	2:
Water for dust control on roads	25,000	0	0	0	0	0	0	25,000	25,000	25,000	25,000	25,000	1
Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,8
Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	1
Monthly precipitation water surplus/deficit	-114,706	-128,753	-143,798	-145,039	-146,279	-146,279	125,458	83,946	-121,627	-143,122	-107,102	-117,034	-1,
Annual cumulative precipitation surplus/deficit	-114,706	-243,459	-387,257	-532,296	-678,575	-824,854	-699,396	-615,450	-737,077	-880,199	-987,300	-1,104,334	
Total water in TSF at end of month (incl. mine site runoff)	1,432,777	1,321,031	1,184,705	1,046,351	905,971	765,590	1,069,188	1,339,298	1,297,793	1,219,260	1,193,853	1,136,187	1
Excess runoff not diverted into tailings pond	0	0	0	0	0	0	0	0	0	0	0	0	11

night Piésold Ltd.			TAI	IAL META MT. POLLI LINGS STO NTHLY W/	LE A.2 LS CORPOR BY PROJECT RAGE FACI NTER BALA AR 2	r LITY							
CONSULTING ENGINEERS	6. 9. N. L	1 (0)	0.0	Per con									
daily ore throughput (tpd) = 13,425 m tails % solids = 35%	nin. fresh water m initial dry den	P. C. C. S.			prepared basic prepared basic			11000	an'd basis m	noff coeff. =	<u>dry</u> 20%	ave. 24%	2
$tails 5, G_{*} = 2.78$	다 가슴을 위 줄 수가 가슴 것 같아.	sity $(t/m^3) =$ sity $(t/m^3) =$				$1 \operatorname{area} (\operatorname{ha}) =$ 1 area (ha) =			04.04.05.040.000	noff coeff. = $noff coeff. =$	20%	24 70 90 %	ŝ
initial pond volume $(m^3) = 1,136,187$		t area (ha) =				f area (ha) =		p		noff coeff. $=$	90%	90%	5
	pit g/w infiltratio			S1	beach evapora						45%	50%	3
water content of ore = 4 %	pit g/w infituatio	a (m5/m0) =	39,818	2	beach evapora	tion factor =	0.80		pii area ru	noff coeff. =	4.3 %	3070	ł
DESCRIPTION	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AN
			Conces	252	12.0%	0.0044		With the	5.5.175	50.50	2.555 (c)	20072	
A Rainfall (mm/month)	48.3	17.3	7.6	6.8	6.0	6.0	24.2	45.3	81.5	65.7	83.0	58.9	4
B Snowfall (mm/month)	12.0	39.7	66.7	68.1	51.7	38.2	18.7	5.3	0.0	0.0	0,0	1.5	4
C Evaporation (mm/month)	15.0	0.0	0.0	0,0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50,0	4
<water in=""> (m³)</water>			-										
1 With slurry	758,353 13,081	758,353 4,685	758,353	758,353 1,842	758,353	758,353 1,625	758,353 49,077	758,353 51,136	758,353 22,073	758,353 17,794	758,353 22,507	758,353 16,355	9,1
2 Precipitation onto pond 3 Beach runoff	35,580	4,085	2,058 5,599	5,009	4,420	4,420	49,077 133,485	139,086	60,037	48,398	61,216	44,486	55
4 Unprep'd basin runoff	6,256	2,241	984	881	777	777	23,470	24,455	10,556	8,510	10,763	7,822	9
5 Prep'd basin runoff	29,107	10,426	4,580	4,098	3,616	3,616	109,200	113,782	49,115	39,593	50,079	36,392	44
6 Recovery from open pit: precipitation	4,557	1,632	717	642	566	566	17,097	17,815	7,690	6,199	7,841	5,698	7
7 g/w infiltration	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	47
8 >>> Total Water Input	886,753	829,899	812,109	810,642	809,175	809,175	1,130,500	1,144,443	947,642	918,665	950,576	908,924	10,9
<water out=""> (m³)</water>													
Supernatant Recovery													
9 (+) Recovery from tailings	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	5,4
0 (-) Seepage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	69
 (+) Total precipitation runoff 	128,400	71,546	53,756	52,289	50,822	50,822	372,147	386,091	189,289	160,312	192,224	150,571	1,8
2 (-) Evaporation from pond	4,065	0	0	0	0	0	0	12,737	30,352	28,997	24,932	13,550	11
3 (-) Evaporation from beach	9,828	0	0	0	0	0	0	30,794	73,382	70,106	60,278	32,760	2
4 (+) Consolidation to final density	113,429	113,429	113,429	113,429	113,429	113,429	113,429	113,429	113,429	113,429	113,429	113,429	1,3
5 Sub-total (Water recovered as S/N)	621,360	578,399	560,609	559,142	557,674	557,674	879,000	849,412	592,407	568,061	613,866	611,113	7,5
Underdrainage recovery													
6 (+) Underdrainage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	65
7 (-) Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	7
8 Sub-total (Water recovered as U/D)	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	62
Unrecoverable Water 9 Water retained in tailings	193,400	193,400	193,400	193,400	193,400	193,400	193,400	193,400	193,400	193,400	193,400	193,400	2,3
Water retained in tailings Evaporation from beach and pond	13,893	195,400	195,400	193,400	193,400	0	193,400	43,531	193,400	99,103	85,210	46,310	39
1 Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	7
2 Sub-total (Unrecoverable water)	213,133	199,240	199,240	199,240	199,240	199,240	199,240	242,772	302,975	298,344	284,451	245,550	2,7
3 >>> Total Water Output	886,753	829,899	812,109	810,642	809,175	809,175	1,130,500	1,144,443	947,642	918,665	950,576	908,924	10,
4 Monthly water available (excluding stored water in TSF)	673,620	630,659	612,869	611,402	609,934	609,934	931,260	901,672	644,667	620,321	665,126	663,373	8,1
5 Available stored water in TSF at beginning of month	1,136,187	1,109,579	1,033,977	930,874	82.5,502	717,863	610,223	999,307	1,341,963	1,319,640	1,257,153	1,257,890	0.40
6 Total Monthly Water Available	1,809,807	1,740,238	1,646,846	1,542,275	1,435,437	1,327,797	1,541,483	1,900,978	1,986,630	1,939,961	1,923,279	1,921,263	
7 Water included with slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,1
8 Fresh water input to mill	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	21
9 Water in ore	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	19
O Water for dust control on roads	25,000	0	0	0	0	0	0	25,000	25,000	25,000	25,000	25,000	14
1 Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,8
2 Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	
3 Monthly precipitation water surplus/deficit	-74,961	-92,922	-110,712	-112,179	-113,646	-113,646	207,679	153,091	-103,913	-128,259	-82,455	-85,207	-65
4 Annual cumulative precipitation surplus/deficit	-74,961	-167,882	-278,594	-390,773	-504,419	-618,065	-410,386	-257,294	-361,208	-489,467	-571,922	-657,129	
5 Total water in TSF at end of month (incl. mine site runoff)	1,109,579	1,033,977	930,874	825,502	717,863	610,223	999,307	1,341,963	1,319,640	1,257,153	1,257,890	1,233,138	

ight Piésold Ltd.			TAI	RIAL META MT. POLLI LINGS STO NTHLY W.	LE A.3 LS CORPOF EY PROJEC RAGE FACI ATER BALA AR 3	r Lity							
CONS				10.00			27 2 12				1940.000		
	min. fresh water n				prepared basi				1299-19	12	dry	ave.	1
tails % solids = 35%		sity $(t/m^3) =$			prepared basi	25 (2)				moff coeff. =	20%	24 %	2
tails S.G. = 2.78		usity $(t/m^3) =$				a area (ha) =		P		moff coeff. =	90%	90%	9
initial pond volume $(m^3) = 1,233,138$	ALCONTRACTOR	it area (ha) =				d area (ha) =				moff coeff. =	90%	90%	5
water content of ore = 4% 26/851453	pit g/w infiltratio	a (m ³ /mo) =	39,818	0	beach evapora	tion factor =	0.80		pit area ru	moff coeff. =	45%	50%	5
DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AN
A Rainfall (mm/month)	48.3	17.3	7.6	6.8	6.0	6.0	24.2	45.3	81.5	65.7	83.0	58.9	4
B Snowfall (mm/month)	12.0	39.7	66.7	68.1	51.7	38.2	18.7	5.3	0.0	0.0	0.0	1.5	30
C Evaporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	4
	10.0	0.0	0.0			0.0	0.0	47.5	110.0	101.0	72.0		
<water in=""> (m³)</water>	750 252	750 252	759 252	750 252	759 253	750 757	759 252	760 753	750 959	750 252	750 757	750 757	0.1/
1 With slurry Precipitation onto nond	758,353	758,353 5,740	758,353 2,522	758,353 2,256	758,353	758,353 1,991	758,353 60,124	758,353 62,646	758,353 27,042	758,353 21,799	758,353 27,573	758,353 20,037	9,10
2 Precipitation onto pond 3 Beach runoff	45,529	16,308	7,164	6,410	5,656	5,656	170,809	177,975	76,824	61,931	78,333	56,924	70
4 Unprep'd basin runoff	6,256	2,241	984	881	777	777	23,470	24,455	10,556	8,510	10,763	7,822	97
5 Prep'd basin runoff	16,509	5,913	2,598	2,324	2,051	2,051	61,934	64,533	27,856	22,456	28,403	20,640	25
6 Recovery from open pit: precipitation	6,603	2,365	1,039	930	820	820	24,772	25,811	11,142	8,982	11,360	8,255	10
7 g/w infiltration	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	47
8 >>> Total Water Input	889,093	830,737	812,477	810,971	809,465	809,465	1,139,279	1,153,591	951,590	921,848	954,602	911,849	10,9
9 (+) Recovery from tailings 0 (-) Seepage 1 (+) Total precipitation runoff 2 (-) Evaporation from pond 3 (-) Evaporation from beach 4 (+) Consolidation to final density 5 Sub-total (Water recovered as S/N) Underdrainage recovery 6 (+) Underdrainage 7 (-) Seepage losses 8 Sub-total (Water recovered as U/D) Unrecoverable Water 9 9 Water retained in tailings 1 Seepage losses 2 Sub-total (Unrecoverable water) 3 >> > Total Water Output	451,524 58,100 130,740 4,980 12,576 139,605 646,213 58,100 5,840 52,260 167,224 17,556 5,840 190,620 889,093	451,524 58,100 72,384 0 139,605 605,413 58,100 5,840 52,260 167,224 0 5,840 173,064 830,737	451,524 58,100 54,125 0 139,605 587,153 58,100 5,840 52,260 167,224 0 5,840 173,064 812,477	451,524 58,100 52,619 0 139,605 585,647 58,100 5,840 52,260 167,224 0 5,840 173,064 810,971	451,524 58,100 51,113 0 139,605 584,141 58,100 5,840 52,260 167,224 0 5,840 173,064 809,465	451,524 58,100 51,113 0 139,605 584,141 58,100 5,840 52,260 167,224 0 5,840 173,064 809,465	451,524 58,100 380,926 0 139,605 913,955 58,100 5,840 52,260 167,224 0 5,840 173,064 1,139,279	451,524 58,100 395,238 15,604 39,405 139,605 873,258 58,100 5,840 52,260 167,224 55,009 5,840 228,073 1,153,591	451,524 58,100 193,238 37,184 93,901 139,605 595,181 58,100 5,840 52,260 167,224 131,085 5,840 304,149 951,590	451,524 58,100 163,495 35,524 89,709 139,605 571,291 58,100 5,840 52,260 167,224 125,233 5,840 298,297 921,848	451,524 58,100 196,250 30,544 77,133 139,605 621,601 58,100 5,840 52,260 167,224 107,677 5,840 280,741 954,602	451,524 58,100 153,497 16,600 41,920 139,605 628,005 58,100 5,840 52,260 167,224 58,520 5,840 231,584 911,849	5,41 697 1,85 140 354 1,67 7,75 697 70 627 2,00 499 70 2,57 10,99
4 Monthly water available (excluding stored water in TSF)	698,473	657,673	639,413	637,907	636,401	636,401	966,215	925,518	647,441	623,551	673,861	680,265	8,42
5 Available stored water in TSF at beginning of month 6 Total Monthly Water Available	1,233,138	1,232,253	1,183,976	1,107,554	1,028,811	947,746	866,681	1,293,983	1,663,887	1,562,747 2,186,298	1,437,718 2,111,579	1,447,687	-
7 Water included with slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,10
8 Fresh water input to mill	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	218
9 Water in ore	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	198
0 Water for dust control on roads	25,000	0	0	0	0	0	0	25,000	25,000	25,000	25,000	25,000	150
1 Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,8
2 Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	0,0.
3 Monthly precipitation water surplus/deficit	-50,108	-65,908	-84,168	-85,673	-87,179	-87,179	242,634	176,937	-101,139	-125,030	-74,719	-68,315	-40
4 Annual cumulative precipitation surplus/deficit	-50,108	-116,016	-200,183	-285,857	-373,036	-460,215	-217,581	-40,644	-141,783	-266,813	-341,532	-409,848	1
5 Total water in TSF at end of month (incl. mine site runoff)	1,232,253	1,183,976	1,107,554	1,028,811	947,746	866,681	1,293,983	1,663,887	1,562,747	1,437,718	1,447,687	1,440,914	

consulting Engineers			TA	RIAL META MT. POLLE LINGS STO DNTHLY WA	EY PROJECT RAGE FACT	r Lity							
	1.2.2					1					. I	(1) (1) (1)	1.677
	min. fresh water m				prepared bash						dry	ave.	w
tails % solids = 35%	initial dry den			1	prepared basi	Sector Sector Con		· · · · · · · · · · · · · · · · · · ·	rep'd basin ru		20%	24%	29
tails S.G. = 2.78		sity $(t/m^3) =$				n area (ha) =		p	rep'd basin ru		90%	90%	90
initial pond volume $(m^3) = 1,440,914$		t area (ha) =			10003	d area (ha) =				noff coeff. =	90%	90%	90
water content of ore = 4%	pit g/w infiltratio	$m (m^{3/mo}) =$	39,818	1	each evapora	tion factor =	0.80		pit area ru	noff coeff. =	45%	50%	55
2:00PDATA\{{24WATERBALSTATWRALXLS		-	7.2 A.M.		No. Martine and	-	a constant		-		- Concerne		r
DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANN
A Rainfall (mm/month)	48.3	17.3	7.6	6.8	6.0	6,0	24.2	45.3	81.5	65.7	83.0	58.9	450
B Snowfall (mm/month) C Evaporation (mm/month)	12.0 15.0	39.7 0.0	66.7 0.0	68.1 0.0	51.7 0.0	38.2	18.7 0.0	5.3 47.0	0.0	0.0 107.0	0.0	1,5 50,0	301
		1222	37753	3360	<i>212</i>)	312	805	249652		00030	2022		
<water in=""> (m³) 1 With slurry</water>	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100
2 Precipitation onto pond	18,970	6,795	2,985	2,671	2,357	2,357	71,170	74,156	32,010	25,805	32,639	23,718	295,
3 Beach runoff	52,437	18,782	8,251	7,382	6,514	6,514	196,723	204,977	88,480	71,327	90,217	65,561	817.
4 Unprep'd basin runoff	3,012	1,079	474	424	374	374	11,300	11,774	5,083	4,097	5,182	3,766	46,9
5 Prep'd basin runoff	19,115	6,847	3,008	2,691	2,375	2,375	71,714	74,722	32,255	26,002	32,888	23,899	297,
6 Recovery from open pit: precipitation	6,603	2,365	1,039	930	820	820	24,772	25,811	11,142	8,982	11,360	8,255	102,
7 g/w infiltration	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	477,
8 >>> Total Water Input	898,308	834,038	813,927	812,269	810,610	810,610	1,173,850	1,189,612	967,139	934,382	970,457	923,371	11,13
9 (+) Recovery from tailings 0 (-) Seepage 1 (+) Total precipitation runoff 2 (-) Evaporation from pond 3 (-) Evaporation from beach 4 (+) Consolidation to final density 5 Sub-total (Water recovered as S/N) Underdrainage recovery 6 (+) Underdrainage 7 (-) Seepage losses 8 Sub-total (Water recovered as U/D) Unrecoverable Water 9 Water retained in tailings 0 Evaporation from beach and pond 11 Seepage losses 2 Sub-total (Unrecoverable water) 3 >>> Total Water Output	451,524 58,100 139,955 5,895 14,484 139,605 652,605 58,100 5,840 52,260 167,224 20,379 5,840 193,443 898,308	451,524 58,100 75,685 0 139,605 608,713 58,100 5,840 52,260 167,224 0 5,840 173,064 834,038	451,524 58,100 55,575 0 139,605 588,603 58,100 5,840 52,260 167,224 0 5,840 173,064 813,927	451,524 58,100 0 139,605 586,944 58,100 5,840 52,260 167,224 0 5,840 173,064 812,269	451,524 58,100 52,257 0 139,605 585,286 58,100 5,840 52,260 167,224 0 5,840 173,064 810,610	451,524 58,100 52,257 0 139,605 585,286 58,100 5,840 52,260 167,224 0 5,840 173,064 810,610	451,524 58,100 415,497 0 139,605 948,526 58,100 5,840 52,260 167,224 0 5,840 173,064 1,173,850	451,524 58,100 431,260 18,471 45,383 139,605 900,434 58,100 5,840 52,260 167,224 63,854 5,840 236,919 1,189,612	451,524 58,100 208,787 44,016 108,147 139,605 589,652 58,100 5,840 52,260 167,224 152,163 5,840 325,228 967,139	451,524 58,100 176,030 42,051 103,319 139,605 563,688 58,100 5,840 52,260 167,224 145,370 5,840 318,435 934,382	451,524 58,100 212,104 36,156 88,835 139,605 620,141 58,100 5,840 52,260 167,224 124,991 5,840 298,056 970,457	451,524 58,100 165,018 19,650 48,280 139,605 630,116 58,100 5,840 52,260 167,224 67,930 5,840 240,994 923,371	5,418 697," 2,038 166," 408," 1,675 7,859 697," 70,0 627," 2,006 574," 70,0 627," 2,051 11,138
4 Monthly water available (excluding stored water in TSF)	704,865	660,973	640,863	639,204	637,546	637,546	1,000,786	952,694	641,912	615,948	672,401	682,376	8,487,
5 Available stored water in TSF at beginning of month	1,440,914	1,447,292	1,402,627	1,327,792	1,250,468	1,170,656	1,090,844	1,555,981	1,760,095	1,653,426	1,520,793	1,444,614	-1.0/1
6 Total Monthly Water Available	2,145,779	2,108,265	2,043,490	1,966,996	1,888,014	1,808,202	2,091,630	2,508,675	2,402,007	2,269,374	2,193,194	2,126,990	
7 Water included with slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100,
8 Fresh water input to mill	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	218,4
9 Water in ore	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	198,8
Water for dust control on roads	25,000	0	0	0	0	0	0	25,000	25,000	25,000	25,000	25,000	150,0
1 Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,832
2 Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	0,000
3 Monthly precipitation water surplus/deficit	-43,716	-62,607	-82,718	-84,376	-86,035	-86,035	277,205	204,113	-106,669	-132,633	-76,179	-66,204	-345,
Annual cumulative precipitation surplus/deficit	-43,716	-106,323	-189,041	-273,417	-359,451	-445,486	-168,281	35,832	-70,836	-203,469	-279,648	-345,853	-3+3,
55 Total water in TSF at end of month (incl. mine site runoff)	1,447,292	1,402,627	1,327,792	1,250,468	1,170,656	1,090,844		1,760,095	1,653,426	1,520,793	1,444,614	1,441,040	
a care water in the avenue of monar (mer, mine she fulloff)	1,4477,292	1,402,021	1,041,172	1,000,400	1,110,000	0	1,000,001	1,100,033	1,000,420	12000,193	**************************************	734479040	10

	Knig	consulting Engineers			TAI	RIAL META MT. POLLE LINGS STO DNTHLY W/	EY PROJEC RAGE FACI	r LITY					1		
			iin. fresh water m	akeup (%) =	2%	un	prepared bash	n area (ha) =	26				dry	ave.	wet
		tails % solids = 35%	initial dry den				prepared basis				rep'd basin ru		20%	24%	29%
		tails S.G. = 2.78 initial pond volume (m ³) = $1.441,040$	10 C	sity $(t/m^3) =$ t area (ha) =				h area (ha) $=$ d area (ha) $=$		р	rep'd basin ru beach ru	noff coeff. =	90% 90%	90% 90%	90% 90%
		2. 전도 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	pit g/w infiltratio)	poin beach evapora					noff coeff. =	45%	50%	55%
		595 HISI VORDATANGRAWATERBALISTATWBALIXIS													
	a	DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	МАЎ	JUN	JUL	AUG	SEP	ANNUAL
		Rainfall (mm/month)	48.3	17.3	7.6	6,8	6,0	6,0	24.2	45.3	81.5	65.7	83.0	58,9	450.4
		nowfall (mm/month) Svaporation (mm/month)	12,0 15.0	39.7 0.0	66.7 0.0	68.1 0.0	51.7 0.0	38.2 0.0	18.7 0.0	5.3 47.0	0,0	0.0	0.0	1,5 50.0	301.8 423.0
	-		45.00	310				785							
		<water in=""> (m³)</water>	700 000	760 262	750 252	760 757	750 050	750 252	750 252	758,353	758,353	758,353	758,353	758,353	9,100,232
	1	With slurry Precipitation onto pond	758,353 21,915	758,353 7,849	758,353 3,448	758,353 3,085	758,353	758,353	758,353 82,217	85,667	36,979	29,810	37,705	27,400	341,520
	3	Beach runoff	60,648	21,723	9,543	8,538	7,534	7,534	227,528	237,074	102,335	82,496	104,344	75,827	945,122
	4	Unprep'd basin runoff	3,012	1,079	474	424	374	374	11,300	11,774	5,083	4,097	5,182	3,766	46,940
	5	Prep'd basin runoff	8,254	2,957	1,299	1,162	1,025	1,025	30,967	32,267	13,928	11,228	14,202	10,320	128,634
	6	Recovery from open pit: precipitation	10,461	3,747	1,646	1,473	1,300 39,818	1,300 39,818	39,246 39,818	40,893 39,818	17,652 39,818	14,230 39,818	17,998 39,818	13,079 39,818	163,023 477,816
	0	g/w infiltration	39,818 902,461	39,818 835,525	39,818 814,581	39,818 812,853	811,126	811,126	1,189,429	1,205,845	974,146	940,031	977,601	928,563	11,203,287
		<water out=""> (m³)</water>		GRAMORIA	100040.00			Contrat Poort		- AND	Contraction of the	2000 2002 200	C. C. Margareza		
	5 9 10 11 12 13	 Recovery (+) Recovery from tailings (-) Seepage (+) Total precipitation runoff (-) Evaporation from pond (-) Evaporation from beach 	451,524 58,100 144,108 6,810 16,752	451,524 58,100 77,172 0 0	451,524 58,100 56,228 0 0	451,524 58,100 54,501 0 0	451,524 58,100 52,773 0 0	451,524 58,100 52,773 0 0	451,524 58,100 431,076 0 0	451,524 58,100 447,492 21,338 52,490	451,524 58,100 215,794 50,848 125,082	451,524 58,100 181,678 48,578 119,498	451,524 58,100 219,249 41,768 102,746	451,524 58,100 170,210 22,700 55,840	5,418,284 697,200 2,103,055 192,042 472,406
	14 15 (S	 (+) Consolidation to final density Sub-total (Water recovered as S/N) 	139,605 653,574	139,605 610,201	139,605 589,256	139,605 587,529	139,605 585,802	139,605 585,802	139,605 964,105	139,605 906,693	139,605 572,893	139,605 546,631	139,605 607,763	139,605 624,698	1,675,256 7,834,947
		Jnderdrainage recovery													
	16	(+) Underdrainage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	697,200
	17	(-) Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	70,080
=	20.24	tub-total (Water recovered as U/D)	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	627,120
\leq		Jnrecoverable Water Water retained in tailings	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	2,006,692
N.	19 20	Evaporation from beach and pond	23,562	0	0	0	0	0	0	73,828	175,930	168,076	144,514	78,540	664,448
TIC	21	Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	70,080
GAT	22 .5	Sub-total (Unrecoverable water)	196,626	173,064	173,064	173,064	173,064	173,064	173,064	246,892	348,994	341,140	317,578	251,604	2,741,220
NOL	23	>>> Total Water Output	902,461	835,525	814,581	812,853	811,126	811,126	1,189,429	1,205,845	974,146	940,031	977,601	928,563	11,203,287
INVESTIGATION KP		Aonthly water available (excluding stored water in TSF)	705,834	662,461	641,516	639,789	638,062	638,062	1,016,365	958,953	625,153	598,891	660,023	676,958	8,462,067
1-9		Available stored water in TSF at beginning of month	1,441,040	1,461,562	1,423,104	1,350,995	1,276,111	1,198,451	1,120,791	1,650,935	1.861,307	1,737,879	1.588,190	1,499,633	
		Focal Monthly Water Available	2,146,875	2,124,023	2,064,620 758,353	1,990,784	1,914,172 758,353	1,836,513	2,137,156 758,353	2,609,888 758,353	2,486,460 758,353	2,336,770 758,353	2,248,213 758,353	2,176,591 758,353	9,100,232
311		Vater included with slurry Presh water input to mill	758,353 18,200	758,353 18,200	18,200	18,200	18,200	758,353 18,200	18,200	18,200	18,200	18,200	18,200	18,200	218,406
0		Vater in ore	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,200	16,572	198,860
of 500		water in ore Vater for dust control on roads	25,000	0	0	0	0	0	0	25,000	25,000	25,000	25.000	25,000	150,000
00	100 C	Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,832,966
		Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	0
	33 N	fonthly precipitation water surplus/deficit	-42,746	-61,120	-82,064	-83,792	-85,519	-85,519	292,784	210,373	-123,428	-149,690	-88,557	-71,622	-370,900
	34 A	Annual cumulative precipitation surplus/deficit	-42,746	-103,866	-185,930	-269,722	-355,241	-440,760	-147,975	62,397	-61,031	-210,720	-299,277	-370,900	
		Fotal water in TSF at end of month (incl. mine site runoff)	1,461,562	1,423,104	1,350,995	1,276,111	1,198,451	1,120,791	1,650,935	1,861,307	1,737,879	1,588,190	1,499,633	1,507,113	Transmoor
	36 E	Excess runoff not diverted into tailings pond	0	0	0	0	0	0	0	247,868	106,757	86,060	108,852	0	549,537

			-	RIAL META MT. POLLI	LE A.6 LS CORPOR EY PROJECT RAGE FACI	r							
night Piésold Ltd.				ONTHLY WA	ATER BALA								
CONSULTING ENGINEERS				YE	AR 6								
daily ore throughput (tpd) = 13,425	min. fresh water m	akeup (%) =	2%	un	prepared basis	n area (ha) =	15				dry	ave,	wet
tails % solids = 35%	initial dry den	sity $(t/m^3) =$	0.9		prepared basi	n area (ha) =	22	unpr	ep'd basin ru	nolf coeff. =	20%	24%	299
tails S.G. = 2.78		sity $(t/m^3) =$				h area (ha) =		pr	seen ny paosing sana	noff coeff. =	90%	90%	905
initial pond volume $(m^3) = 1,507,113$		it area (ha) =			10 C	d area (ha) =				noff coeff. =	90%	90%	905
water content of ore $= 4\%$	pit g/w infiltratio	$n (m^{3}/m^{0}) =$	39,818		beach evapora	tion factor =	0.80		pit area ru	noff coeff. =	45%	50%	559
24/05 HOS JUDBEDATANSI (WATERBALSTATWINAL 30.5													
DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNU
A Rainfall (mm/month)	48.3	17,3	7.6	6.8	6.0	6.0	24.2	45.3	81.5	65.7	83.0	58.9	450.
B Snowfall (mm/month)	12.0	39.7	66.7	68.1	51.7	38.2	18.7	5.3	0.0	0.0	0,0	1,5	301
C Evaporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423
<water in=""> (m³)</water>													
1 With slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100
2 Precipitation onto pond	24,811	8,887	3,904	3,493	3,082	3,082	93,083	96,988	41,866	33,749	42,688	31,021	386,0
3 Beach runoff	61,516	22,034	9,680	8,661	7,642	7,642	230,787	240,471	103,801	83,678	105,839	76,913	958,
4 Unprep'd basin runoff	1,738	622	273	245	216	216	6,519	6,793	2,932	2,364	2,990	2,173	27,0
5 Prep'd basin runoff	9,558	3,423	1,504	1,346	1,187	1,187	35,857	37,361	16,127	13,001	16,444	11,950	148,
6 Recovery from open pit: precipitation 7 g/w infiltration	10,461 39,818	3,747 39,818	1,646 39,818	1,473 39,818	1,300 39,818	1,300 39,818	39,246 39,818	40,893 39,818	17,652 39,818	14,230 39,818	17,998 39,818	13,079 39,818	163, 477,
8 >>> Total Water Input	906,255	836,884	815,178	813,387	811,597	811,597	1,203,663	1,220,676	980,548	945,192	984,129	933,306	11,26
	2001220	000,001			(daageer)	exaper?	1,000,000			0.0080300.	e e Merge		Contra Co
<water out=""> (m³)</water>													
Supernatant Recovery	1000000	100 000		101 001	150 501	151 591	101 004	151 591	151 501	151 501	151 501	101 001	5.440
9 (+) Recovery from tailings	451,524	451,524 58,100	451,524 58,100	451,524 58,100	451,524 58,100	451,524 58,100	451,524 58,100	451,524 58,100	451,524 58,100	451,524 58,100	451,524 58,100	451,524 58,100	5,418 697,
10 (-) Seepage 11 (+) Total precipitation runoff	58,100 147,902	78,531	56,825	55,035	53,245	53,245	445,311	462,324	222,196	186,839	225,776	174,954	2,162
(+) Total precipitation runoff (-) Evaporation from pond	7,710	0	0	0	0	0	0	24,158	57,568	54,998	47,288	25,700	217,
 (c) Evaporation from beach (c) Evaporation from beach 	16,992	0	0	0	0	0	0	53,242	126,874	121,210	104,218	56,640	479.
 (+) Consolidation to final density 	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	1,675
15 Sub-total (Water recovered as S/N)	656,228	611,560	589,853	588,063	586,273	586,273	978,339	917,953	570,783	543,660	607,299	625,642	7,861
Underdrainage recovery	2000 A. A. A.												
 (+) Underdrainage 	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	697,
17 (-) Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	70,0
18 Sub-total (Water recovered as U/D)	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	627,
Unrecoverable Water	1.00 00.1	109 000	125 00 1	107 004	101 221	1/7 004	167 004	107 001	107 001	107 004	127 004	167.004	0.00
 Water retained in tailings Evaporation from beach and pond 	167,224	167,224 0	167,224 0	167,224 0	167,224 0	167,224 0	167,224 0	167,224 77,400	167,224 184,442	167,224 176,208	167,224 151,506	167,224 82,340	2,000
20 Evaporation from beach and pond 21 Seepage losses	24,702 5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	70,
22 Sub-total (Unrecoverable water)	197,766	173,064	173,064	173,064	173,064	173,064	173,064	250,464	357,506	349,272	324,570	255,404	2,77
23 >>> Total Water Output	906,255	836,884	815,178	813,387	811,597	811,597	1,203,663	1,220,676	980,548	945,192	984,129	933,306	11,26
24 Monthly water available (excluding stored water in TSF)	708,488	663,820	642,113	640,323	638,533	638,533	1,030,599	970,213	623,043	595,920	659,559	677,902	8,489
25 Available stored water in TSF at beginning of month	1,507,113	1,467,021	1,432,504	1,362,126	1,288,791	1,212,498	1,136,205	1,707,627	1,929,259	1.803,721	1,651,061	1,562,039	
26 Total Monthly Water Available	2,215,602	2,130,841	2,074,617	2,002,449	1,927,324	1,851,031	2,166,804	2,677,840	2,552,302	2,399,641	2,310,620	2,239,941	0.00
27 Water included with slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100
28 Fresh water input to mill 29 Water in ore	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	218,
30 Water for dust control on roads	25,000	0	0	0	0	0	0	25,000	25,000	25,000	25,000	25,000	198,
31 Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,832
32 Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	(
33 Monthly precipitation water surplus/deficit	-40,092	-59,761	-81,467	-83,257	-85,048	-85,048	307,018	221,632	-125,538	-152,661	-89,022	-70,679	-343
34 Annual cumulative precipitation surplus/deficit	-40,092	-99,853	-181,320	-264,578	-349,625	-434,673	-127,654	93,978	-31,560	-184,221	-273,242	-343,921	
35 Total water in TSF at end of month (incl. mine site runoff)	1,467,021	1,432,504	1,362,126		1,212,498	1,136,205	1,707,627	1,929,259	1,803,721	1,651,061	1,562,039	1,491,361	
36 Excess runoff not diverted into tailings pond	70,477	0	0	0	0	0	0	276,047	118,921	95,866	121,255	88,116	770

ight Piésold Ltd.			TAI	RIAL META MT. POLLI LINGS STO DITHLY WA	LE A.7 LS CORPOR EY PROJECT RAGE FACIN ATER BALAN AR 7	LITY							
CONS <u>LESTING</u> , MGINEERS daily ore throughput (tpd) = 13,425 tails % solids = 35% tails S.G. = 2.78	min. fresh water m initial dry den final dry den	and the second second	0.9		prepared basin prepared basin beach		13			moff coeff. = moff coeff. =	<u>dry</u> 20% 90%	<u>ave.</u> 24 <i>%</i> 90%	
initial pond volume (m ³) = 1,491,361 water content of ore = 4%	Research and the second	t area (ha) =	65	e i		l area (ha) =	58	P	beach ru	unoff coeff. = unoff coeff. =	90% 45%	90% 50%	
INGRIDATA/IGRIWATERBALISTATWRALISTS	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AN
A Rainfall (mm/month)	48.3	17.3	7.6	6,8	6.0	6,0	24.2	45.3	81.5	65.7	83.0	58.9	4
B Snowfall (mm/month)	12,0	39.7	66.7	68.1	51.7	38.2	18.7	5.3	0.0	0.0	0,0	1.5	1
C Evaporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	
<water in=""> (m³)</water>													
1 With slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,
2 Precipitation onto pond	27,756	9,941	4,367	3,908	3,448	3,448	104,130	108,499	46,834	37,755	47,754	34,703	4
3 Beach runoff	62,776	22,485	9,878	8,838	7,798	7,798	235,514	245,395	105,927	85,391	108,006	78,488	9
4 Unprep'd basin runoff	1,738	622	273	245	216	216	6,519	6,793	2,932	2,364	2,990	2,173	
5 Prep'd basin runoff 6 Recovery from open pit: precipitation	5,648 16,753	2,023 6,001	889 2,636	795 2,359	702	702 2,081	21,188 62,852	22,077 65,489	9,530 28,269	7,682 22,789	9,717 28,824	7,061 20,946	2
6 Recovery from open pit: precipitation 7 g/w infiltration	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	4
8 >>> Total Water Input	912,841	839,243	816,214	814,315	812,415	812,415	1,228,374	1,246,424	991,663	954,151	995,461	941,541	11
<water out=""> (m³)</water>				200 - 100 - 200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100									1
Supernatant Recovery	12.20%									05.965×0710×1	10.25° - 2003-	17535-1286-0-	
9 (+) Recovery from tailings	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	5,
0 (-) Seepage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100 233,310	58,100 195,799	58,100 237,108	58,100	2,
(+) Total precipitation runoff (-) Evaporation from pond	154,489 8,625	80,891 0	57,861 0	55,962 0	54,063 0	54,063 0	470,021 0	488,071 27,025	64,400	61,525	52,900	183,189 28,750	2
3 (-) Evaporation from beach	17,340	0	0	0	0	0	0	54,332	129,472	123,692	106,352	57,800	4
4 (+) Consolidation to final density	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	1,
5 Sub-total (Water recovered as S/N)	661,552	613,919	590,890	588,990	587,091	587,091	1,003,049	939,743	572,466	543,610	610,885	629,667	7,
Underdrainage recovery	2240,0250	92370 MIC	122743424	0.0000000	1.22530330	9-1227-80.000		1227-1220	12200.222	0 <u>00</u> 00020	1221-1-212	12011312-01	
6 (+) Underdrainage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	6
7 (-) Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840 52,260	5,840 52,260	5,840 52,260	6
8 Sub-total (Water recovered as U/D)	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,200	56,200	52,200	0
Unrecoverable Water 9 Water retained in tailings	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	2.
Evaporation from beach and pond	25,965	0	0	0	0	0	0	81,357	193,872	185,217	159,252	86,550	7
1 Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	18
2 Sub-total (Unrecoverable water)	199,029	173,064	173,064	173,064	173,064	173,064	173,064	254,421	366,936	358,281	332,316	259,614	2,
3 >>> Total Water Output	912,841	839,243	816,214	814,315	812,415	812,415	1,228,374	1,245,424	991,663	954,151	995,461	941,541	11
4 Monthly water available (excluding stored water in TSP)	713,812	666,179	643,150	641,250	639,351	639,351	1,055,309	992,003	624,726	595,870	663,145	681,927	8,
5 Available stored water in TSF at beginning of month	1,491,361	1,530,099	1,472,697	1,403,832	1,331,851	1,256,753	1,181,655	1,789,153	2,032,575	1,908,721	1,756,010	1,670,575	-
6 Total Monthly Water Available 7 Water included with slurry	2,205,173	2,196,277 758,353	2,115,847	2,045,083 758,353	1,971,202 758,353	1,896,104 758,353	2,236,964 758,353	758,353	2,657,302	2,504,591 758,353	2,419,155 758,353	2,352,502 758,353	9,
8 Fresh water input to mill	758,353 18,200	18,200	758,353 18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	2
9 Water in ore	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	Ĩ
O Water for dust control on roads	25,000	0	0	0	0	0	0	25,000	25,000	25,000	25,000	25,000	1
1 Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,
2 Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	
3 Monthly precipitation water surplus/deficit	-34,769	-57,402	-80,431	-82,330	-84,229	-84,229	331,729	243,422	-123,854	-152,711	-85,436	-66,653	-2
4 Annual cumulative precipitation surplus/deficit	-34,769	-92,170	-172,601	-254,931	-339,160	-423,390	-91,661	151,761	27,907	-124,804	-210,239	-276,893	1
5 Total water in TSF at end of month (incl. mine site runoff)	1,530,099	1,472,697	1,403,832	1,331,851	1,256,753	1,181,655	1,789,153	2,032,575	1,908,721	1,756,010	1.670,575	1,603,921	1.

ight Piésold Ltd. CONSULTING ENGINEERS			TAI	MT. POLLI LINGS STO ONTHLY W/	LS CORPOR EY PROJECT RAGE FACI ATER BALA AR 8	r Lity							
and the second	in. fresh water m	akeup (%) =	2%	un	prepared basir	1 area (ha) =	6				dry	ave.	w
tails % solids = 35%	initial dry den				prepared basir	n area (ha) =	18	-	-	noff coeff. =	20%	24%	29
tails S.G. = 2.78	final dry den				beach	1 area (ha) =	143	P	the second second	moff coeff. =	90%	90%	90
initial pond volume $(m^3) = 1,603,921$		t area (ha) =			5 25	i area (ha) =			(Encountry)	noff coeff. =	90%	90%	90
1 101 101 101 101 101 101 101 101 101 1	pit g/w infiltration	$n (m^{3/mo}) =$	39,818	1	beach evapora	tion factor =	0.80		pit area ru	noff coeff. =	45%	50%	55
2/5/55 (4:33													
1/90HDATAND #WATERPLYTATWBALXLS		NIGHT				2410	100		TYTE	77.77	110	CER	1.500
DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANN
Rainfall (mm/month)	48_3	17.3	7.6	6.8	6.0	6.0	24.2	45.3	81.5	65.7	83.0	58.9	450
Snowfall (mm/month)	12,0	39.7	66.7	68.1	51.7	38.2	18.7	5.3	0.0	0.0	0.0	1,5	301
Evaporation (mm/month)	15,0	0.0	0.0	0.0	0.0	0.0	0,0	47.0	112.0	107.0	92.0	50.0	423
<water in=""> (m³)</water>		-											
With slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100
Precipitation onto pond	30,604	10,962	4,815	4,309	3,802	3,802	114,814	119,631	51,640	41,629	52,654	38,263	476,
Beach runoff	61,951	22,189	9,748	8,722	7,696	7,696	232,417	242,169	104,534	84,269	106,586	77,456	965,
Unprep'd basin runoff	695	249	109	98	86	86	2,608	2,717	1,173	946	1,196	869	10,8
Prep'd basin runoff	7,820	2,801	1,230	1,101	971	971	29,337	30,568	13,195	10,637	13,454	9,777	121,
Recovery from open pit: precipitation	16,753	6,001	2,636	2,359	2,081	2,081	62,852	65,489	28,269	22,789	28,824	20,946	261,
g/w infiltration	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	477,
>>> Total Water Input	915,993	840,372	816,710	814,759	812,807	812,807	1,240,199	1,258,746	996,981	958,439	1,000,884	945,482	11,414
<water out=""> (m³) Supernatant Recovery (+) Recovery from tailings</water>	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	5,418
(-) Seepage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	697,
(+) Total precipitation runoff	157,641	82,020	58,357	56,406	54,454	54,454	481,847	500,393	238,629	200,086	242,532	187,130	2,313
(-) Evaporation from pond	9,510	0	0	0	0	0	0	29,798	71,008	67,838	58,328	31,700	268,
(-) Evaporation from beach	17,112	0	0	0	0	0	0	53,618	127,770	122,066	104,954	57,040	482,
(+) Consolidation to final density	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	1,675
Sub-total (Water recovered as S/N)	664,047	615,048	591,386	589,434	587,483	587,483	1,014,875	950,006	572,879	543,211	612,278	631,418	7,959
Underdrainage recovery			-			53.400	50.400	50 100	CO 100	10.100	00 100	60.100	107
(+) Underdrainage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	697, 70,0
(-) Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	1 2082
Sub-total (Water recovered as U/D)	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	627,
Unrecoverable Water Water retained in tailings	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	2,006
Evaporation from beach and pond	26,622	0	0	0	0	0	0	83,416	198,778	189,904	163,282	88,740	750,
Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	70,0
Sub-total (Unrecoverable water)	199,686	173,064	173,064	173,064	173,064	173,064	173,064	256,480	371,842	362,968	336,346	261,804	2,827
>>> Total Water Output	915,993	840,372	816,710	814,759	812,807	812,807	1,240,199	1,258,746	996,981	958,439	1,000,884	945,482	11,414
Monthly water available (excluding stored water in TSF)	716,307	667,308	643,646	641,694	639,743	639,743	1,067,135	1,002,266	625,139	595,471	664,538	683,678	8,586
Available stored water in TSF at beginning of month	1,603,921	1,571,648	1,515,375	1,435,440	1,364,329	1,289,999	1,215,669	1,846,359	2,100,044	1,976,603	1,823,493	1,739,451	-
Total Monthly Water Available	2,320,228	2,238,956	2,159,021	2,077,135	2,004,072	1,929,742	2,282,804	2,848,624	2,725,183	2,572,074	2,488,032	2,423,129	
Water included with slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100
Fresh water input to mill	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	218,
Water in ore	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	198,
Water for dust control on roads	25,000	0	0 202 691	0	0	0	0	25,000	25,000	25,000	25,000	25,000	150,
Total Mill Water Reguired	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,832
Additional makeup water required	0	0	0				343,554	253,685		-153,110	-84,042	-64,902	1
Monthly precipitation water surplus/deficit Annual cumulative precipitation surplus/deficit	-32,273	-56,273 -88,546	-79,935 -168,481	-81,886 -250,367	-83,838 -334,205	-83,838 -418,043	-74,488	253,685	-123,441 55,756	-153,110 -97,354	-84,042 -181,396	-04,902	-246,
Annual cumulative precipitation surplus/deficit Total water in TSF at end of month (incl. mine site runoff)	1,571,648	-88,546	-168,481 1,435,440	-250,367	-334,205	-418,043	-/4,488	2,100,044	1,976,603	1,823,493	-181,396	1,674,549	
	1.2/1.048	1.010.0/0	1,433,440	1.304.329	1,409,999	1.412,009	1.040.339	A. MAL 1944	1.270.003	1.062.493	1.107.401	1.0/4,249	1.

ight Piésold Ltd.			TAI	RIAL META MT. POLLI LINGS STO NTHLY WA	LE A.9 LS CORPOR EV PROJECT RAGE FACIN TER BALAN	C LITY							
CONSULTING ENGINEERS					<u>AR 9</u>								
	in. fresh water m				prepared basir				and the design		<u>dry</u> 20%	ave. 24 %	
tails % solids = 35% tails S.G. = 2.78	initial dry den final dry den	sity $(t/m^3) =$		1	prepared basir beact	area (ha) =			rep'd basin ru rep'd basin ru		20%	24 % 90 %	
initial pond volume $(m^3) = 1,674,549$		t area (ha) =				l area (ha) =		P		noff coeff. =	90%	90%	
	pit g/w infiltration			1	each evapora	121 60				noff coeff. =	45%	50%	
2,6,85 14:53	* 200 * 0000000000000000000000000000000000												
7:VOPDATAW624WATEEBAL/STATWBAL XLS	- Participant	No. 69205	Lesson 1	27.00.4-2	60.000.00		1000	4000004.87	55402605			11-1-22	T
DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
Rainfall (mm/month)	48,3	17.3	7.6	6.8	6.0	6,0	24.2	45.3	81.5	65.7	83.0	58.9	
Snowfall (mm/month)	12.0	39.7	66.7	68.1	51.7	38.2	18.7	5.3	0.0	0.0	0.0	1,5 50,0	Ł
Evaporation (mm/month)	15,0	0.0	0.0	0.0	0.0	0,0	0.0	47.0	112.0	107.0	92.0	50.0	+
<water in=""> (m³)</water>													
With slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	
Precipitation onto pond	33,597	12,034	5,286	4,730	4,173	4,173	126,042	131,330	56,690	45,700	57,803	42,005	
Beach runoff	60,561	21,691	9,529	8,526	7,523	7,523	227,202	236,734	102,188	82,377	104,194	75,718	
Unprep'd basin runoff	695	249	109	98	86	86	2,608	2,717	1,173	946	1,196	869 8,148	L
5 Prep'd basin runoff	6,517	2,334 6,001	1,025 2,636	917 2,359	810 2,081	810 2,081	24,448 62,852	25,474 65,489	10,996 28,269	8,864 22,789	11,212 28,824	20,946	L
Recovery from open pit: precipitation g/w infiltration	16,753 39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	E
	916,293	840,479	816,757	814,801	812,844	812,844	1,241,322	1,259,915	997,486	958,846	1,001,399	945,857	
s >>> Total Water Input	910,295	840,479	810,757	814,001	612,044	012,044	1,241,522	1,239,915	337,400	330,040	1,001,339	3451051	+
<water out=""> (m³)</water>													L
Supernatant Recovery	1020.02507	012078283	12512217	V23/225/	6103 - 220 C	122 223		1.51.55.1	12421447		151 501	101 001	L
(+) Recovery from tailings	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524 58,100	451,524 58,100	
) (-) Scepage	58,100	58,100	58,100	58,100 56,448	58,100 54,492	58,100 54,492	58,100 482,969	58,100 501,563	58,100 239,134	58,100 200,493	243,047	187,504	L
(+) Total precipitation runoff	157,940 10,440	82,127 0	58,404 0	50,448 0	0 0	0	482,909	32,712	77,952	74,472	64,032	34,800	
(-) Evaporation from pond (-) Evaporation from beach	16,728	0	0	0	0	0	0	52,414	124,902	119,326	102,598	55,760	
(+) Consolidation to final density	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	
Sub-total (Water recovered as S/N)	663,800	615,155	591,433	589,476	587,520	587,520	1,015,998	949,465	569,308	539,723	609,445	629,972	
Underdrainage recovery													
(+) Underdrainage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	
(-) Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	
Sub-total (Water recovered as U/D)	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	
Unrecoverable Water													
Water retained in tailings	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	Ŀ
Evaporation from beach and pond	27,168	0	0	0	0	0	0	85,126	202,854	193,798	166,630	90,560	L
Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	
Sub-total (Unrecoverable water)	200,232	173,064	173,064	173,064	173,064	173,064	173,064	258,191	375,919	366,863	339,695	263,624	
>>> Total Water Output	916,293	840,479	816,757	814,801	812,844	812,844	1,241,322	1,259,915	997,486	958,846	1,001,399	945,857	ļ
Monthly water available (excluding stored water in TSF)	716,060	667,415	643,693	641,736	639,780	639,780	1,068,258	1,001,725	621,568	591,983	661,705	682,232	1
Available stored water in TSF at beginning of month	1,674,549	1,642,028	1,585,863	1,505,975	1,424,131	1,350,214	1,276,298	1,919,476	2,172,620	2,045,607	1,889,010	1,802,134	+
Total Monthly Water Available	2,390,609	2,309,444	2,229,556	2,147,712	2,063,911	1,989,994	2,344,556	2,921,201	2,794,188	2,637,591	2,550,715	2,484,366	+
Water included with slurry Fresh water input to mill	758,353 18,200	758,353 18,200	758,353 18,200	758,353 18,200	758,353 18,200	758,353 18,200	758,353 18,200	758,353 18,200	758,353 18,200	758,353 18,200	758,353 18,200	18,200	
Water in ore	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	
Water for dust control on roads	25,000	0	0	0	0	0	0	25,000	25,000	25,000	25,000	25,000	1
Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	T
Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	T
Monthly precipitation water surplus/deficit	-32,520	-56,165	-79,888	-81,844	-83,801	-83,801	344,677	253,144	-127,013	-156,597	-86,876	-66,348	
Annual cumulative precipitation surplus/deficit	-32,520	-88,686	-168,573	-250,417	-334,218	-418,019	-73,341	179,803	52,790	-103,808	-190,684	-257,032	1
5 Total water in TSF at end of month (incl. mine site runoff)	1,642,028	1,585,863	1,505,975	1,424,131	1,350,214	1,276,298	1,919,476	2,172,620	2,045,607	1,889,010	1,802,134	1,735,786	
5 Excess runoff not diverted into tailings pond	79,566	28,499	12,520	11,202	0	0	0	311,575	134,256	108,229	136,892	99,479	1

igl	ht Piésold Ltd.			TAI	RIAL META MT. POLLI LINGS STO NTHLY WA	EY PROJEC RAGE FACI	r LITY							
	daily ore throughput (tpd) = 13,425	min. fresh water m	akeup (%) =	2%	3171	prepared bash	area (ha) =	0				dry	avc.	We
	tails % solids = 35%	initial dry den				prepared basis			POD	rep'd basin ru	noff coeff. =	20%	24%	29
	tails S.G. = 2.78	final dry den					h area (ha) =			rep'd basin ru		90%	90%	90
	initial pond volume $(m^3) = 1,735,786$		t area (ha) =				d area (ha) =				noff coeff. =	90%	90%	90
	water content of ore $= 4\%$	pit g/w infiltration	to the state of the state		1	beach evapora				pit area ru	noff coeff. =	45%	50 %	55
	5 (#53 #DATA162#WATERBALSTATWRALXLE													
DE	SCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNU
A Rai	nfall (mm/month)	48.3	17.3	7.6	6.8	6.0	5.0	24.2	45.3	81.5	65.7	83.0	58.9	450
B Sno	wfall (mm/month)	12.0	39.7	66.7	68.1	51.7	38.2	18.7	5.3	0,0	0.0	0.0	1.5	301
C Eva	aporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423
<1	WATER IN> (m ³)													
1	With slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100
2	Precipitation onto pond	36,541	13,088	5,750	5,144	4,539	4,539	137,089	142,841	61,658	49,705	62,869	45,687	569,
3	Beach runoff	59,648	21,365	9,386	8,398	7,410	7,410	223,779	233,168	100,649	81,137	102,625	74,577	929,
4	Unprep'd basin runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
5	Prep'd basin runoff	7,385	2,645	1,162	1,040	917	917	27,708	28,870	12,462	10,046	12,707	9,234	115,
6	Recovery from open pit: precipitation g/w infiltration	16,753 39,818	6,001 39,818	2,636 39,818	2,359 39,818	2,081 39,818	2,081 39,818	62,852 39,818	65,489 39,818	28,269 39,818	22,789 39,818	28,824 39,818	20,946 39,818	261, 477,
8	>>> Total Water Input	918,499	841,270	817,104	815,111	813,118	813,118	1,249,598	1,268,539	1,001,209	961,847	1,005,195	948,615	11,45
<1	WATER OUT> (m ³)													
Sun	ernatant Recovery													
0	(+) Recovery from tailings	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	5,418
0	(-) Seepage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	697,
1	(+) Total precipitation runoff	160,146	82,917	58,752	56,759	54,766	54,766	491,245	510,186	242,856	203,494	246,842	190,262	2,352
2	(-) Evaporation from pond	11,355	0	0	0	0	0	0	35,579	84,784	80,999	69,644	37,850	320,
3	(-) Evaporation from beach	16,476	0	0	0	0	0	0	51,625	123,021	117,529	101,053	54,920	464,
4	(+) Consolidation to final density	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	1,675
5 Sub	-total (Water recovered as S/N)	665,343	615,945	591,780	589,787	587,794	587,794	1,024,274	956,011	568,079	537,995	609,173	630,520	7,964
-	ferdrainage recovery	141/07/08/07												
6	(+) Underdrainage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	697,
2	(-) Scepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	70,0
	-total (Water recovered as U/D)	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	627,
	recoverable Water	107.004	161 004	167.224	107.004	167 001	167 004	167 004	167 004	167.004	167 004	167 004	167 734	0.004
2	Water retained in tailings	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	2,006
0	Evaporation from beach and pond	27,831	0	5 840	0	0	0	0	87,204	207,805	198,528	170,697	92,770	784,
	-total (Unrecoverable water)	5,840 200,895	5,840 173,064	5,840 173,064	5,840 173,064	5,840 173,064	5,840 173,064	5,840 173,064	5,840 260,268	5,840 380,869	5,840 371,592	5,840 343,761	5,840 265,834	70,0 2,861
3	>>> Total Water Output	918,499	841,270	817,104	815,111	813,118	813,118	1,249,598	1,268,539	1,001,209	961,847	1,005,195	948,615	11,453
4 Mor	nthly water available (excluding stored water in TSF)	717,603	668,205	644,040	642,047	640,054	640,054	1,076,534	1,008,271	620,339	590,255	661,433	682,780	8,591
	allable stored water in TSF at beginning of month	1,735,786	1,704,809	1,649,433	1,569,893	1,488,359	1,415,093	1,341,827	2,004,647	2,264,337	2,136,096	1,977,770	1,890,623	
	al Monthly Water Available	2,453,389	2,373,014	2,293,473	2,211,940	2,128,413	2,055,147	2,418,360	3,012,918	2,884,676	2,726,350	2,639,203	2,573,403	
	ter included with slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100
	sh water input to mill	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	218,
	ter in ore	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	198,
	ter for dust control on roads al Mill Water Required	25,000	0	723 591	723 591	733 591	722 591	212 591	25,000	25,000	25,000	25,000	25,000	150,
	al Mid Water Required ditional makeup water required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,832
	nthenal makeup water required nthly precipitation water surplus/deficit	-30,977	-55,375	-79,541	-81,534	-83,527	-83,527	352,953	259,690	-128,241	-158,326	-87,147	-65,800	-241
	nuly precipitation water surplus/deficit	-30,977	-86,352	-165,893	-247,427	-330,953	-414,480	-61,527	198,164	-128,241 69,922	-158,520	-175,551	-241,351	-241,
	al water in TSF at end of month (incl. mine site runoff)	1,704,809	1,649,433	1,569,893	1,488,359	1,415,093	1,341,827	2,004,647	2,264,337	2,136,096	1,977,770	1,890,623	1,824,823	
- B + P + B	a set of the set of th				and according to		man - manners	and the state of the state	ar par se i prove l'	100 g (0.00 - 100 g 10 - 10 - 10		and the second statement of	a grower growing	

ight Piésold Ltd. CONSULTING ENGINEERS			TAI	LINGS STO	EY PROJEC RAGE FACI	r LITY							
and the second difference of the second s	in. fresh water m	1akeup (%) =	2%	125	prepared basis	n area (ha) =	0				dry	ave.	
tails % solids = 35%		usity $(t/m^3) =$			prepared basi				rep'd basin ru			24 %	
tails S.G. = 2.78		usity $(t/m^3) =$				h area (ha) =		p	rep'd basin ru			90%	
initial pond volume $(m^3) = 1,824,823$	and the second se	it area (ha) =				d area (ha) =				noff coeff. =		90%	
water content of ore = 4%	pit g/w infiltratio	n (m-)/mo) =	39,818		beach evapora	tion factor =	0.80		pit area ru	noff coeff. =	45%	50%	
2.VONDATAUR/WATEBALSTATWIALXIS													
DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	AN
Rainfall (mm/month)	48.3	17.3	7.6	6.8	6.0	5.0	24.2	45.3	81.5	65.7	83.0	58.9	
Snowfall (mm/month)	12.0	39.7	66.7	68.1	51.7	38.2	18.7	5.3	0,0	0.0	0.0	1.5	
Evaporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	
<water in=""> (m³)</water>													
With slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,1
Precipitation onto pond	39,486	14,143	6,213	5,559	4,905	4,905	148,136	154,351	66,627	53,710	67,935	49,368	6
Beach runoff	58,736	21,038	9,242	8,269	7,296	7,296	220,356	229,602	99,109	79,896	101,055	73,437	9
Unprep'd basin runoff	0	0	0	0	0	0	0	0	0	0	0	0	
Prep'd basin runoff	5,648	2,023	889	795	702	702	21,188	22,077	9,530	7,682	9,717	7,061	8
Recovery from open pit: precipitation	16,753	6,001	2,636	2,359	2,081	2,081	62,852	65,489	28,269	22,789	28,824	20,946	20
g/w infiltration	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	4
>>> Total Water Input	918,793	841,375	817,151	815,153	813,155	813,155	1,250,703	1,269,690	1,001,705	962,247	1,005,701	948,983	11,
<water out=""> (m³)</water>													
Supernatant Recovery	1000000												1.00
(+) Recovery from tailings	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	5,4
(-) Seepage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	65
(+) Total precipitation runoff	160,440	83,022	58,798	56,800	54,802	54,802	492,350	511,337	243,353	203,894	247,349 75,256	190,630	2,3
 (-) Evaporation from pond (-) Evaporation from beach 	12,270 16,224	0	0	0	0	0	0	38,446 50,835	91,616 121,139	87,526 115,731	75,250 99,507	40,900 54,080	4
 (-) Evaporation from beach (+) Consolidation to final density 	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	139,605	1.0
Sub-total (Water recovered as S/N)	664,975	616,051	591,826	589,828	587,830	587,830	1,025,378	955,084	563,626	533,666	605,614	628,679	7,5
en man man and an		CONSTRUCT.	and the second	See James		a de lana	- second - o	a set former		Constant,	100000000	10000000	1
Underdrainage recovery (+) Underdrainage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	65
 (+) Underdrainage (-) Seepage losses 	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	7
Sub-total (Water recovered as U/D)	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	6
Unrecoverable Water													1 "
Water retained in tailings	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	2,0
Evaporation from beach and pond	28,494	0	0	0	0	0	0	89,281	212,755	203,257	174,763	94,980	80
Scepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	7
Sub-total (Unrecoverable water)	201,558	173,064	173,064	173,064	173,064	173,064	173,064	262,346	385,820	376,322	347,828	268,044	2,8
>>> Total Water Output	918,793	841,375	817,151	815,153	813,155	813,155	1,250,703	1,269,690	1,001,705	962,247	1,005,701	948,983	11,
Monthly water available (excluding stored water in TSF)	717,235	668,311	644,086	642,088	640,090	640,090	1,077,638	1,007,344	615,886	585,926	657,874	680,939	8,5
Available stored water in TSF at beginning of month	1,824,823	1,793,477	1,738,207	1,658,713	1,577,221	1,493,731	1,420,501	2,084,426	2,343,190	2,210,495	2,047,840	1,957,133	-
Total Monthly Water Available	2,542,058	2,461,788	2,382,293	2,300,801	2,217,311	2,133,821	2,498,140	3,091,770	2,959,076	2,796,421	2,705,714	2,638,072	0.1
Water included with slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,1
Fresh water input to mill Water in ore	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	18,200 16,572	21
Water in ore Water for dust control on roads	25,000	0	0	10,572	10,572	10,372	10,572	25,000	25,000	25,000	25,000	25,000	15
Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,8
Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	1
Monthly precipitation water surplus/deficit	-31,346	-55,270	-79,494	-81,492	-83,490	-83,490	354,058	258,764	-132,695	-162,655	-90,707	-67,642	-2
Annual cumulative precipitation surplus/deficit	-31,346	-86,616	-166,110	-247,602	-331,092	-414,582	-60,524	198,240	65,545	-97,110	-187,817	-255,459	
Total water in TSF at end of month (incl. mine site runoff)	1,793,477	1,738,207	1,658,713	1,577,221	1,493,731	1,420,501	2,084,426	2,343,190	2,210,495	2,047,840	1,957,133	1,889,491	
Excess runoff not diverted into tailings pond	82,595	29,584	12,996	11,628	10,260	0	0	323,418	139,368	112,350	142,105	103,267	96

ight Piésold Ltd. CONSULTING ENGINEERS			TAI	RIAL META MT. POLLE LINGS STO NTHLY WA	EY PROJECT RAGE FACI	r LITY							
daily ore throughput (tpd) = 13,425 m	nin, fresh water m	akeup (%) =	2%	un	prepared basis	1 area (ha) =	0				dry	ave.	we
tails $\%$ solids = 35%	initial dry den				prepared basi			unp	rep'd basin ru	noff coeff. =	(C)	24%	299
tails S.G. $= 2.78$	141 J. Carrier, M. S. (20) 220-23	sity $(t/m^3) =$			beach	area (ha) =	132	p	rep'd basin ru	noff coeff. =	90%	90 %	90 9
initial pond volume $(m^3) = 1,889,491$		t area (ha) =				i area (ha) =		1		noff coeff. =		90%	90 9
water content of ore = 4%	pit g/w infiltration			1	beach evapora	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			pit area ru	noff coeff. =	45%	50%	559
J. CORDATA 162 CWATEBBAL STATWHAL XL3													1
DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNU
Rainfall (mm/month)	48,3	17.3	7.6	6.8	6.0	6,0	24.2	45.3	81.5	65.7	83.0	58.9	450.
Snowfall (mm/month)	12,0	39.7	66.7	68.1	51.7	38.2	18.7	5,3	0.0	0.0	0.0	1,5	301
Evaporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423
<water in=""> (m³)</water>													
With slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100
Precipitation onto pond	42,430	15,198	6,676	5,974	5,271	5,271	159,182	165,861	71,595	57,715	73,001	53,050	661,
3 Beach runoff	57,389	20,556	9,030	8,080	7,129	7,129	215,304	224,337	96,837	78,064	98,738	71,753	894,3
Unprep'd basin runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
5 Prep'd basin runoff	4,344	1,556	684	612	540	540	16,299	16,982	7,331	5,909	7,474 28,824	5,432	67,7
5 Recovery from open pit: precipitation g/w infiltration	16,753	6,001	2,636 39,818	2,359 39,818	2,081 39,818	2,081 39,818	62,852 39,818	65,489 39,818	28,269 39,818	22,789 39,818	39,818	20,946 39,818	261, 477,
g/w minication >>> Total Water Input	39,818 919,088	39,818 841,480	817,197	815,194	813,191	813,191	1,251,807	1,270,841	1,002,202	962,648	1,006,208	949,351	11,46
Supermatant Recovery (+) Recovery from tailings (-) Seepage (+) Total precipitation runoff (-) Evaporation from pond (-) Evaporation from beach (+) Consolidation to final density Sub-total (Water recovered as S/N) Underdrainage recovery (+) Underdrainage (-) Seepage losses Sub-total (Water recovered as U/D) Unrecoverable Water Water retained in tailings Evaporation from beach and pond Seepage losses Sub-total (Unrecoverable water) >>> Total Water Output	451,524 58,100 160,735 13,185 15,852 139,605 664,726 58,100 5,840 52,260 167,224 29,037 5,840 202,101 919,088	451,524 58,100 83,128 0 0 139,605 616,156 58,100 5,840 52,260 167,224 0 5,840 173,064 841,480	451,524 58,100 58,844 0 139,605 591,873 58,100 5,840 52,260 167,224 0 5,840 173,064 817,197	451,524 58,100 56,841 0 139,605 589,870 58,100 5,840 52,260 167,224 0 5,840 173,064 815,194	451,524 58,100 54,839 0 139,605 587,867 58,100 5,840 52,260 167,224 0 5,840 173,064 813,191	451,524 58,100 54,839 0 139,605 587,867 58,100 5,840 52,260 167,224 0 5,840 173,064 813,191	451,524 58,100 493,455 0 139,605 1,026,483 58,100 5,840 52,260 167,224 0 5,840 173,064 1,251,807	451,524 58,100 512,488 41,313 49,670 139,605 954,534 58,100 5,840 52,260 167,224 90,983 5,840 264,047 1,270,841	451,524 58,100 243,850 98,448 118,362 139,605 560,068 58,100 5,840 52,260 167,224 216,810 5,840 389,874 1,002,202	451,524 58,100 204,295 94,053 113,078 139,605 530,193 58,100 5,840 52,260 167,224 207,131 5,840 380,195 962,648	451,524 58,100 247,855 80,868 97,226 139,605 602,790 58,100 5,840 52,260 167,224 178,094 5,840 351,158 1,006,208	451,524 58,100 190,598 43,950 52,840 139,605 627,237 58,100 5,840 52,260 167,224 96,790 5,840 269,854 949,351	5,418 697, 2,362 371, 447, 1,675 7,939 697, 70,0 627, 2,006 818, 70,0 2,895 11,460
Monthly water available (excluding stored water in TSF)	716,986	668,416	644,133	642,130	640,127	640,127	1,078,743	1,006,794	612,328	582,453	655,050	679,497	8,566
Available stored water in TSF at beginning of month Total Monthly Water Available	1,889,491	1,857,897	1,802,733	1,723,285	1,641,834	1,558,381	1,474,927	2,139,957 3,146,751	2,398,170 3,010,499	2,261,918	2,095,790	2,002,260 2,681,757	-
Water included with slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100
Fresh water input to mill	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	218,
Water in ore	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	198,
Water for dust control on roads	25,000	0	0	0	0	0	0	25,000	25,000	25,000	25,000	25,000	150.
Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,832
Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	0
Monthly precipitation water surplus/deficit	-31,594	-55,164	-79,448	-81,451	-83,453	-83,453	355,163	258,213	-136,252	-166,128	-93,531	-69,084	-266,
Annual cumulative precipitation surplus/deficit	-31,594	-86,759	-166,207	-247,657	-331,111	-414,564	-59,401	198,812	62,560	-103,568	-197,099	-266,183	· · · ·
5 Total water in TSF at end of month (incl. mine site runoff)	1,857,897	1,802,733	1,723,285	1,641,834	1,558,381	1,474,927	2,139,957	2,398,170	2,261,918	2,095,790	2,002,260	1,933,176	
6 Excess runoff not diverted into tailings pond	82,595	29,584	12,996	11,628	10,260	10,260	0	323,418	139,368	112,350	142,105	103,267	977,

CONSULTING ENGINEERS			TAL	RIAL META MT. POLLI LINGS STO DNTHLY WA	<u>JE A.13</u> LS CORPOR EY PROJECT RAGE FACI ATER BALA AR 13	<u>r</u> LITY							
	nin. fresh water m	akeup (%) =	2%	un	prepared basis	n area (ha) =	0				dry	ave.	We
tails % solids = 35%	initial dry den				prepared basis			unpi	rep'd basin ru	noff coeff. =	20%	24%	299
tails S.G. $= 2.78$		sity $(t/m^3) =$		08	en central (232)	1 area (ha) =			Constant States States 1	noff coeff. =	90 %	90 %	90 9
initial pond volume $(m^3) = 1,933,176$		I area (ha) =			pon	l area (ha) =	94	-	beach ru	noff coeff. =	90%	90%	909
water content of ore $= 4\%$	pit g/w infiltration	n (m ³ /mo) =	39,818	1	beach evapora	tion factor =	0.80		pit area ru	noff coeff. =	45%	50%	559
1/6/05 14153													
1:508DATAUGAWATERBISTATWRALXLS DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNU
Rainfall (mm/month)	48.3	17.3	7.6	6,8	6.0	6.0	. 24.2	45.3	81.5	65.7	83.0	58.9	450.
Snowfall (mm/month)	12.0	39.7	66.7	68.1	51.7	38,2	18.7	5.3	0.0	0.0	0,0	1.5	301.
Evaporation (mm/month)	15.0	0.0	0.0	0,0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423.
<water in=""> (m³)</water>													
With shurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100,
Precipitation onto pond	45,326	16,235	7,132	6,381	5,631	5,631	170,048	177,183	76,482	61,655	77,984	56,671	706,3
Beach runoff	56,520	20,244	8,893	7,957	7,021	7,021	212,044	220,941	95,371	76,882	97,243	70,666	880,8
Unprep'd basin runoff	0	0 934	0 410	0 367	0 324	0 324	0 9,779	0 10,189	0 4,398	0 3,546	0 4,485	0 3,259	40,6
S Prep'd basin runoff S Recovery from open pit: precipitation	2,607	6,001	2,636	2,359	2,081	2,081	62,852	65,489	28,269	22,789	28,824	20,946	261,0
g/w infiltration	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	477,8
>>> Total Water Input	919,377	841,584	817,243	815,235	813,227	813,227	1,252,894	1,271,973	1,002,691	963,042	1,006,706	949,713	11,466
<water out=""> (m³)</water>							and					0	
Supernatant Recovery													1
(+) Recovery from tailings	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	451,524	5,418,
(-) Seepage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	697,2
(+) Total precipitation runoff	161,025	83,232	58,890	56,882	54,875	54,875	494,541	513,620	244,338	204,689	248,353	191,360	2,366
(-) Evaporation from pond	14,085	0	0	0	0	0	0	44,133	105,168	100,473	86,388	46,950	397,1
(-) Evaporation from beach	15,612	0 139,605		0		139,605	139,605	48,918 139,605	116,570 139,605	111,366	95,754 139,605	52,040 139,605	440,2
 (+) Consolidation to final density Sub-total (Water recovered as S/N) 	139,605 664,356	616,260	139,605 591,918	139,605 589,911	139,605 587,903	587,903	1,027,570	953,598	555,629	525,879	599,240	625,399	7,925,
ba w onde		No a negative	MCARCEN)	exercited (eren (en tel ()		a.joarija 10					or the s	
Underdrainage recovery (+) Underdrainage	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	58,100	697,2
 (+) Underdrainage (-) Seepage losses 	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	70,08
(-) Seepage losses Sub-total (Water recovered as U/D)	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	52,260	627,1
Unrecoverable Water	1000000				1995 F	1.800.00		(1997)		2.24.5.24	00000	20122	1000
	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	167,224	2,006,
Water retained in tailings Evaporation from beach and pond	29,697	0	0	0	0	0	0	93,051	221,738	211,839	182,142	98,990	837,4
Seepage losses	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840	70,0
Scepage losses Sub-total (Unrecoverable water)	202,761	173,064	173,064	173,064	173,064	173,064	173,064	266,115	394,802	384,903	355,206	272,054	2,914,
>>> Total Water Output	919,377	841,584	817,243	815,235	813,227	813,227	1,252,894	1,271,973	1,002,691	963,042	1,006,706	949,713	11,466
Monthly water available (excluding stored water in TSF)	716,616	668,520	644,178	642,171	640,163	640,163	1,079,830	1,005,858	607,889	578,139	651,500	677,659	8,552,
Available stored water in TSF at beginning of month	1,933,176	1,901,211	1,846,151	1.766,748	1,685,338	1,601,921	1,518,504	1,874,753	2,132,030	1,991,339	1,820,897	1,723,817	-
Total Monthly Water Available Water included with slurry	2,649,792 758,353	2,569,731 758,353	2,490,329 758,353	2,408,919 758,353	2,325,502 758,353	2,242,084	2,598,333 758,353	2,880,611 758,353	2,739,919 758,353	2,569,478 758,353	2,472,397 758,353	2,401,475 758,353	9,100,
Fresh water input to mill	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	218,4
Water in ore	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	198,8
Water for dust control on roads	25,000	0	0	0	0	0	0	25,000	25,000	25,000	25,000	25,000	150,0
Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,832,
2 Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	0
3 Monthly precipitation water surplus/deficit	-31,965	-55,061	-79,402	-81,410	-83,417	-83,417	356,249	257,277	-140,691	-170,442	-97,080	-70,922	-280,3
Annual cumulative precipitation surplus/deficit	-31,965	-87,025	-166,428	-247,838	-331,255	-414,672	-58,423	198,854	58,163	-112,279	-209,359	-280,281	i î
5 Total water in TSF at end of month (incl. mine site runoff)	1,901,211	1,846,151	1,766,748	1,685,338	1,601,921	1,518,504	1,874,753	2,132,030	1,991,339	1,820,897	1,723,817	1,652,895	1 000
6 Excess runoff not diverted into tailings pond	82,595	29,584	12,996	11,628	10,260	10,260	309,867	323,418	139,368	112,350	142,105	103,267	1,287,

consulting engineers			TAI	RIAL META MT. POLLI LINGS STO DNTHLY WA	LE A.14 LS CORPOR SY PROJECT RAGE FACI ATER BALAT AR 14								
$\frac{\text{assumptions:}}{\text{daily ore throughput (tpd)} = 13,425$	min. fresh water m	akeun (%) =	2%	תנו	prepared basir	area (ha) =	0				dry	ave,	w
tails % solids = 35%	initial dry den				prepared basin			Units	rep'd basin ru	noff coeff. =	20%	24%	29
tails S.G. = 2,78	final dry den			2	A CONTRACTOR OF A CONTRACT	area (ha) =			rep'd basin ru			90%	90
initial pond volume $(m^3) = 1,652,895$	and the second	t area (ha) =				l area (ha) =		1		noff coeff. =		90%	90
water content of ore $= 4\%$	pit g/w infiltratio				beach evapora					noff coeff. =		50%	55
1/6/95 14/33 3://OBFDATAV624/WATERIALISTATWINE XT.5													
DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNI
Rainfall (mm/month)	48.3	17.3	7.6	6,8	6.0	6.0	24.2	45.3	81.5	65.7	83.0	58.9	450
Snowfall (mm/month)	12.0	39.7	66.7	68.1	51.7	38.2	18,7	5.3	0.0	0.0	0,0	1.5	301
Evaporation (mm/month)	15.0	0.0	0.0	0,0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	42.3
<water in=""> (m³)</water>													
With slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100
Precipitation onto pond	48,271	17,290	7,595	6,796	5,996	5,996	181,095	188,693	81,451	65,660	83,050	60,352	752,
Beach runoff	55,174	19,762	8,682	7,768	6,854	6,854	206,992	215,676	93,098	75,050	94,926	68,983	859,
Unprep'd basin runoff	0	0	0	0,	0	0	0	0	0	0	0	0	0
5 Prep'd basin runoff	1,303	467	205	183	162	162	4,890	5,095	2,199	1,773	2,242	1,630	20,
6 Recovery from open pit: precipitation	16,753	6,001	2,636	2,359	2,081	2,081	62,852	65,489	28,269	22,789	28,824	20,946	261,
g/w infiltration	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	39,818	477,
>>> Total Water Input	919,672	841,690	817,289	815,276	813,264	813,264	1,253,999	1,273,124	1,003,188	963,442	1,007,213	950,081	11,47
Supernatant Recovery (+) Recovery from tailings (-) Seepage (+) Total precipitation runoff (-) Evaporation from pond (-) Evaporation from beach (+) Consolidation to final density Sub-total (Water recovered as S/N) Underdrainage recovery (+) Underdrainage (-) Seepage losses Sub-total (Water recovered as U/D) Unrecoverable Water Water retained in tailings Evaporation from beach and pond Seepage losses Sub-total (Unrecoverable water) >>> Total Water Output	451,524 58,100 161,319 15,000 15,240 139,605 664,107 58,100 5,840 52,260 167,224 30,240 203,304 919,672	451,524 58,100 83,337 0 139,605 616,365 58,100 5,840 52,260 167,224 0 5,840 173,064 841,690	451,524 58,100 58,936 0 139,605 591,965 58,100 5,840 52,260 167,224 0 5,840 173,064 817,289	451,524 58,100 56,924 0 139,605 589,952 58,100 5,840 52,260 167,224 0 5,840 173,064 815,276	451,524 58,100 54,911 0 139,605 587,940 58,100 5,840 52,260 167,224 0 5,840 173,064 813,264	451,524 58,100 54,911 0 139,605 587,940 58,100 5,840 52,260 167,224 0 5,840 173,064 813,264	451,524 58,100 495,646 0 139,605 1,028,674 58,100 5,840 52,260 167,224 0 5,840 173,064 1,253,999	451,524 58,100 514,771 47,000 47,752 139,605 953,048 58,100 5,840 52,260 167,224 94,752 5,840 267,816 1,273,124	451,524 58,100 244,835 112,000 113,792 139,605 552,072 58,100 5,840 52,260 167,224 225,792 5,840 398,856 1,003,188	451,524 58,100 205,090 107,000 108,712 139,605 522,406 58,100 5,840 52,260 167,224 215,712 5,840 388,776 963,442	451,524 58,100 248,860 92,000 93,472 139,605 596,416 58,100 5,840 52,260 167,224 185,472 5,840 358,536 1,007,213	451,524 58,100 191,729 50,000 50,800 139,605 623,957 58,100 5,840 52,260 167,224 100,800 5,840 273,864 950,081	5,418 697, 2,371 423, 429, 1,675 7,914 697, 70,6 627, 2,006 852, 70,6 2,929 11,47.
Monthly water available (excluding stored water in TSF) Available stored water in TSF at beginning of month	716,367	668,625 1,620,682	644,225 1,565,727	642,212 1,486,371	640,200 1,416,630	640,200 1,343,510	1,080,934 1,270,389	1,005,308 1,937,610	604,332 2,194,337	574,666 2,050,088	648,676 1,876,174	676,217 1,776,269	8,541
5 Total Monthly Water Available	2,369,262	2,289,307	2,209,951	2,128,583	2,056,830	1,983,709	2,351,324	2,942,918	2,798,669	2,624,754	2,524,850	2,452,486	
7 Water included with slurry	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	758,353	9,100
8 Fresh water input to mill	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	18,200	218,
Water in ore	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	16,572	198,
Water for dust control on roads	25,000	0	0	0	0	0	0	25,000	25,000	25,000	25,000	25,000	150,
1 Total Mill Water Required	748,581	723,581	723,581	723,581	723,581	723,581	723,581	748,581	748,581	748,581	748,581	748,581	8,832
2 Additional makeup water required	0	0	0	0	0	0	0	0	0	0	0	0	0
3 Monthly precipitation water surplus/deficit	-32,213	-54,955	-79,356	-81,368	-83,381	-83,381	357,354	256,727	-144,249	-173,915	-99,904	-72,364	-291
4 Annual cumulative precipitation surplus/deficit	-32,213	-87,168	-166,524	-247,893	-331,274	-414,655	-57,301	199,426	55,177	-118,737	-218,641	-291,005	
5 Total water in TSF at end of month (incl. mine site runoff)	1,620,682	1,565,727	1,486,371	1,416,630	1,343,510	1,270,389	1,937,610	2,194,337	2,050,088	1,876,174	1,776,269	1,703,906	
6 Excess runoff not diverted into tailings pond	82,595	29,584	12,996	0	0	0	0	323,418	139,368	112,350	142,105	103,267	945,

Knight Piésold Ltd. CONSULTING ENGINEERS

APPENDIX B

.

.

<u> 10</u>

MINE SITE - MONTHLY WATER BALANCES FOR AVERAGE PRECIPITATION

Association des Ingénieurs-Conseils du Canada

INVESTIGATION KP 1-9 321 of 500

CONSULTING ENGINEERS

TABLE B.1 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT MINE SITE RUNOFF MONTHLY WATER BALANCE YEAR 1

Description OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP ANT clainful (mu/month) 51.8 18.5 8.1 7.3 6.4 6.4 25.9 48.6 87.4 70.4 89.1 63.2 43.0 vageration (mu/month) 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.0 75.5 0.0 <td< th=""><th>catchment areas</th><th>(ha):</th><th></th><th></th><th></th><th></th><th>runoff coeff</th><th>ficients:</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	catchment areas	(ha):					runoff coeff	ficients:						
North dump: 0 <th< th=""><th></th><th>East dump:</th><th>the second se</th><th>The second se</th><th></th><th></th><th></th><th></th><th></th><th></th><th>62 %</th><th></th><th></th><th></th></th<>		East dump:	the second se	The second se							62 %			
Mill size Additional ullings area 20 0 5 240 ors use serves				0			undisturbe							
Additional billings area: 0 240 Units								mill site =	65%	70%	75%			
Units and the second se														
Description OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP ANT clainful (mu/month) 51.8 18.5 8.1 7.3 6.4 6.4 25.9 48.6 87.4 70.4 89.1 63.2 43.0 vageration (mu/month) 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 42.0 75.5 0.0 <td< th=""><th>Ad</th><th>ditional tailings area:</th><th>0</th><th>240</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Ad	ditional tailings area:	0	240										
DECRIPTION OCT NOV DEC JAN FER MAR APR MAY JUN JUL AUG SEP ANN alafall (nm/month) 51.8 18.5 8.1 7.3 6.4 6.4 25.9 48.6 \$7.4 70.4 89.1 63.2 44 nowfall (nm/month) 12.9 42.6 77.15 73.1 55.4 41.0 20.1 5.6 0.0 0.0 0.0 16.6 33 veporation (nm/month) 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44 437 386 386 11.657 12.16 5.243 4.227 5.346 3.885 48 waste rock runoff 3.107 1.113 489 437 386 386 11.657 12.146 5.243 4.227 5.346 3.885 48 waste rock runoff 0 0 0 0 0 0 0 0 0 0	1/6/95 14:53													
Install (mm/month) 51.8 18.5 8.1 7.3 6.4 6.4 25.9 48.6 87.4 70.4 89.1 63.2 44 nowfall (mm/month) 15.0 0.0		1												1
nowfall (mur/month) 12.9 42.6 71.5 73.1 55.4 41.0 20.1 5.6 0.0 0.0 0.0 42 Naparation (mm/month) 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 110.0 92.0 50.0 42 CATCHMENT RUNOFF> (n ³) 3.107 1.113 489 437 386 11.657 12.146 5.243 4.227 5.346 3.885 48 Waste rock runoff 3.107 1.113 489 437 386 11.681 32.640 34.010 14.681 11.855 14.969 10.878 48 Waste rock runoff 0 <	DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNL
vrageration (mm/month) 15.0 0.0 0.0 0.0 0.0 47.0 11.0 107.0 92.0 50.0 44 CATCENNENT RUNOFF> (m ³) ast Water Dump Waster ock runoff 3,107 1,113 489 437 386 31.65 12,146 5,243 4,227 5,346 3,885 48 Vest Wate Dump Waster ock runoff 8,700 3,116 1,369 1,225 1,081 1,081 32,640 34,010 14,681 11,835 14,969 10,878 123 Vest Waste Dump Waster ock runoff 0	Rainfall (mm/month)	51.8												483
CarCeIMENT RUNOFF> (m ³) at Waste rock runoff 3,107 1,113 489 437 386 386 11,657 12,146 5,243 4,227 5,346 3,885 48 Waste rock runoff 8,700 3,116 1,369 1,225 1,081 1,081 32,640 34,010 14,681 11,853 14,969 10,878 133 West Waste Dump 0	Snowfall (mm/month)	12.9	42.6	71.5	73.1	55.4	41.0	20.1	5.6	0.0	0.0	0.0	1.6	323
last Waste Dump 3,107 1,113 489 437 386 326 32,640 34,010 14,681 4,227 5,346 38,855 437 138 Waste rock runoff 0 0,116 1,225 1,081 1,081 32,640 34,010 14,681 11,835 14,969 10,878 138 West Waste Dump 0	Evaporation (mm/month)	15.0	0.0	0.0	0.0	0,0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423
Wase rock runoff Undisturbed catchment runoff 3,107 1,113 489 437 386 386 11,657 12,146 5,243 4,227 5,346 3,885 483 Vest Wase Dump Wast rock runoff 0 0 0 0 0 0 0 0 0 0 0,678 13,895 14,969 10,878 13 Vest Waste Dump Waste rock runoff 0	<catchment runoff=""> (m³)</catchment>	1												-
Undisturbed catchment runoff 8,700 3,116 1,369 1,225 1,081 1,081 32,640 34,010 14,681 11,835 14,969 10,878 133 Vest Waste Dump 0	East Waste Dump													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Waste rock runoff	3,107	1,113	489	437	386	386	11,657	12,146	5,243	4,227	5,346	3,885	48,4
Waste rock runoff 0	Undisturbed catchment runoff	8,700	3,116	1,369	1,225	1,081	1,081	32,640	34,010	14,681		14,969	10,878	135,
Undisturbed catchment runoff 0 <th< td=""><td>West Waste Dump</td><td>37.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	West Waste Dump	37.												
Undisturbed catchment runoff 0 <th< td=""><td>Waste rock runoff</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	Waste rock runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Waste rock runoff 0	Undisturbed catchment runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Waste rock runoff 0	North Waste Dump													
Undisturbed catchment runoff 0 <th< td=""><td>Waste rock runoff</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	Waste rock runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Catchment runoff 7,872 2,819 1,239 1,108 978 978 29,532 31,321 13,282 10,707 13,543 9,842 123 additional Tailings Area Catchment Catchment runoff 27,804 9,959 4,375 3,914 3,454 3,454 104,311 108,687 46,916 37,820 47,837 34,763 433 CTOTAL RUNOFF> (m ³) East waste dump 11,808 4,229 1,858 1,662 1,467 1,467 44,298 46,156 19,924 16,061 20,315 14,763 184 North waste dump 0	Undisturbed catchment runoff	0		0	0	0	0	0	0	0	0	0	0	0
additional Tailings Area Catchment Catchment runoff 27,804 9,959 4,375 3,914 3,454 3,454 104,311 108,687 46,916 37,820 47,837 34,763 433 c TOTAL RUNOFF> (m ³) East waste dump 11,808 4,229 1,858 1,662 1,467 1,467 44,298 46,156 19,924 16,061 20,315 14,763 184 North waste dump 0	Mill Site													-
Catchment runoff 27,804 9,959 4,375 3,914 3,454 104,311 108,687 46,916 37,820 47,837 34,763 433 CTOTAL RUNOFF> (m ³) East waste dump 11,808 4,229 1,858 1,662 1,467 1,467 44,298 46,156 19,924 16,061 20,315 14,763 184 North waste dump 0 <td></td> <td>7,872</td> <td>2,819</td> <td>1,239</td> <td>1,108</td> <td>978</td> <td>978</td> <td>29,532</td> <td>31,321</td> <td>13,282</td> <td>10,707</td> <td>13,543</td> <td>9,842</td> <td>123,2</td>		7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,2
Catchment runoff 27,804 9,959 4,375 3,914 3,454 104,311 108,687 46,916 37,820 47,837 34,763 433 CTOTAL RUNOFF> (m ³) East waste dump 11,808 4,229 1,858 1,662 1,467 1,467 44,298 46,156 19,924 16,061 20,315 14,763 184 North waste dump 0 <td>Additional Tailings Area Catchment</td> <td></td> <td>1</td>	Additional Tailings Area Catchment													1
East waste dump 11,808 4,229 1,858 1,662 1,467 1,467 44,298 46,156 19,924 16,061 20,315 14,763 184 North waste dump 0		27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,2
East waste dump 11,808 4,229 1,858 1,662 1,467 1,467 44,298 46,156 19,924 16,061 20,315 14,763 184 North waste dump 0	<total renoff=""> (m³)</total>													
North waste dump 0		11,808	4,229	1.858	1.662	1.467	1.467	44.298	46,156	19,924	16.061	20.315	14.763	184,0
West waste dump 0					1.1.1.1		12			1.00		125		0
Mill site 7,872 2,819 1,239 1,108 978 978 29,532 31,321 13,282 10,707 13,543 9,842 123 Additional tailings area catchment 27,804 9,959 4,375 3,914 3,454 3,454 104,311 108,687 46,916 37,820 47,837 34,763 433 Total Waste Dumps and Mill Site 19,679 7,049 3,097 2,771 2,445 2,445 73,829 77,477 33,206 26,769 33,858 24,605 307														0
Additional tailings area catchment 27,804 9,959 4,375 3,914 3,454 3,454 104,311 108,687 46,916 37,820 47,837 34,763 433 Total Waste Dumps and Mill Site 19,679 7,049 3,097 2,771 2,445 73,829 77,477 33,206 26,769 33,858 24,605 307		9.755	0.5	1000	22			100				1.20	1.000	123,2
		A 4 4 5 4 7 5 5 5							P200 110 1 10 10 10 10				2020.00000	433,2
	Total Waste Dumps and Mill Site	19.679	7.049	3.097	2.771	2.445	2.445	73.829	77 477	33,206	26.769	33,858	24.605	307,2
	Grand Total (including additional tails catchment		17,007	7,471	6,685	5,899	5,899	178,140	186,164	80,122	64,589	81,695	59,367	740,

E

CONSULTING ENGINEERS

TABLE B.2 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT MINE SITE RUNOFF MONTHLY WATER BALANCE YEAR 2

catchment areas (ha):			runoff coefficients:			
	dist'bd	undist'bd	5	dry	ave.	wet
East dump:	15	65	waste rock =	58%	60 %	62.%
West dump:	0	0	undisturbed catchment =	20%	24%	29%
North dump:	0	0	mill site =	65%	70%	75%
Mill site:	20	5				
Additional tailings area:	0	240				

2/6/95 14:53

J. CONDATAVICS WATERBALSTATWBALSIS

DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
Rainfall (mm/month)	51.8	18.5	8.1	7.3	6.4	6.4	25.9	48.6	87.4	70.4	89.1	63.2	483.2
Snowfall (mm/month)	12.9	42.6	71.5	73.1	55.4	41.0	20.1	5.6	0.0	0.0	0.0	1.6	323.8
Evaporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423.0
<catchment runoff=""> (m³) East Waste Dump</catchment>													
Waste rock runoff	4,557	1,632	717	642	566	566	17,097	17,815	7,690	6,199	7,841	5,698	71,020
Undisturbed catchment runoff	8,120	2,908	1,278	1,143	1,009	1,009	30,464	31,743	13,702	11,046	13,971	10,153	126,545
West Waste Dump													
Waste rock runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Undisturbed catchment runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
North Waste Dump													
Waste rock runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Undisturbed catchment runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Mill Site													
Catchment runoff	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,22
Additional Tailings Area Catchment													
Catchment runoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
<total runoff=""> (m³)</total>													
East waste dump	12,678	4,541	1,995	1,785	1,575	1,575	47,562	49,557	21,392	17,245	21,812	15,851	197,56
North waste dump	0	0	0	0	0	0	0	0	0	0	0	0	0
West waste dump	0	0	0	0	0	0	0	0	0	0	0	0	0
Mill site	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,22
Additional tailings area catchment	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,29
Total Waste Dumps and Mill Site	20,549	7,360	3,233	2,893	2,553	2,553	77,093	80,878	34,674	27,952	35,355	25,692	320,78
Grand Total (including additional tails catchment)	48,353	17,319	7,608	6,807	6,007	6,007	181,404	189,565	81,590	65,772	83,192	60,455	754,08

CONSULTING ENGINEERS

TABLE B.3 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT MINE SITE RUNOFF MONTHLY WATER BALANCE YEAR 3

catchment areas (ha):				runoff coefficients:				
		dist'bd	undist'bd	17	dry	ave,	wet	
I	East dump:	19	61	waste rock =	58%	60%	62 %	
W	/est dump:	0	0	undisturbed catchment =	20%	24%	29%	
N	orth dump:	0	0	mill site =	65%	70%	75%	
	Mill site:	20	5					
Additional tai	lings area:	0	240					

2/6/95 14:53

1:70BDATA1124WATERADSTATWBALXIS

DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
Rainfall (mm/month)	51,8	18.5	8.1	7.3	6,4	6,4	25.9	48.6	87.4	70.4	89.1	63.2	483.2
Snowfall (mm/month)	12.9	42.6	71.5	73.1	55.4	41.0	20.1	5.6	0.0	0.0	0.0	1.6	323.8
Evaporation (mm/month)	15.0	0.0	0.0	0.0	0,0	0,0	0.0	47.0	112.0	107.0	92.0	50.0	423.0
<catchment runoff=""> (m³)</catchment>													
East Waste Dump	CPT/OP/IA												10000000
Waste rock runoff	6,007	2,152	945	846	746	746	22,537	23,483	10,137	8,171	10,336	7,511	93,617
Undisturbed catchment runoff	7,540	2,701	1,186	1,062	937	937	28,288	29,475	12,723	10,257	12,973	9,427	117,500
West Waste Dump				12									
Waste rock runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Undisturbed catchment runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
North Waste Dump													
Waste rock runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Undisturbed catchment runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Mill Site													
Catchment runoff	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,223
Additional Tailings Area Catchment													-
Catchment runoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
<total runoff=""> (m³)</total>													
East waste dump	13,548	4,852	2,132	1,907	1,683	1,683	50,826	52,958	22,860	18,428	23,309	16,938	211,121
North waste dump	0	0	0	0	0	0	0	0	0	0	0	0	0
West waste dump	0	0	0	0	0	0	0	0	0	0	0	0	0
Mill site	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,22
Additional tailings area catchment	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,29
Total Waste Dumps and Mill Site	21,419	7,672	3,370	3,016	2,661	2,661	80,357	84,279	36,142	29,136	36,852	26,780	334,34
Grand Total (including additional tails catchment)	49,223	17,631	7,745	6,930	6,115	6,115	184,668	192,966	83,058	66,956	84,688	61,543	767,63

Knight Piésold Ltd. CONSULTING ENGINEERS

TABLE B.4 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT MINE SITE RUNOFF MONTHLY WATER BALANCE YEAR 4

catchment areas (ha):			runoff coefficients;				
	dist'bd	undist'bd		dry	ave.	wet	
East dump:	24	56	waste rock =	58%	60 %	62.%	
West dump:	0	0	undisturbed catchment =	20%	24 %	29%	
North dump:	0	0	mill site =	65%	70%	75%	
Mill site:	20	5					
Additional tailings area:	0	240					

2/6/95 14:53

I:TOBIDATA11EAWATERBALSTATWBALXLS

DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUA
Rainfall (nm/month)	51.8	18,5	8,1	7.3	6,4	б,4	25.9	48.6	87.4	70.4	89.1	63.2	483.2
Snowfall (mm/month)	12,9	42.6	71.5	73.1	55.4	41.0	20.1	5.6	0.0	0.0	0.0	1.6	323.8
Evaporation (mm/month)	15,0	0,0	0.0	0.0	0,0	0.0	0.0	47.0	112,0	107.0	92.0	50.0	423.0
< CATCHMENT RUNOFF> (m ³)													
East Waste Dump		a (7)	1.100	1 0 00	00.0	00 C	-		10 500				
Waste rock runoff	7,457	2,671	1,173	1,050 980	926 865	92.6 865	27,977	29,151	12,583	10,144	12,830	9,324	116,21
Undisturbed catchment runoff	6,960	2,493	1,095	980	603	C08	26,112	27,208	11,744	9,468	11,975	8,702	108,46
West Waste Dump													
Waste rock runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Undisturbed catchment runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
North Waste Dump													
Waste rock runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Undisturbed catchment runoff	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0
Mill Site													
Catchment runoff	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,22
Additional Tailings Area Catchment													
Catchment runoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
<total runoff=""> (m³)</total>													
East waste dump	14,418	5,164	2,269	2,030	1,791	1,791	54,090	56,359	24,328	19,612	24,805	18,026	224,68
North waste dump	0	0	0	0	0	0	0	0	0	0	0	0	0
West waste dump	0	0	0	0	0	0	0	0	0	0	0	0	0
Mill site	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,22
Additional tailings area catchment	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,29
Total Waste Dumps and Mill Site	22,289	7,984	3,507	3,138	2,769	2,769	83,621	87,680	37,610	30,319	38,349	27,868	347,90
Grand Total (including additional tails catchment)	50,093	17,942	7,882	7,052	6,223	6,223	187,932	196,367	84,526	68,139	86,185	62,631	781,19

CONSULTING ENGINEERS

TABLE B.5 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT MINE SITE RUNOFF MONTHLY WATER BALANCE YEAR 5

catchment areas (ha):			runoff coefficients:				
	dist'bd	undist'bd		dry	ave.	wet	
East dump:	29	51	waste rock =	58%	60%	62 %	
West dump:	0	0	undisturbed catchment =	20%	24%	29%	
North dump:	9	76	mill site =	65%	70%	75%	
Mill site:	20	5					
Additional tailings area:	0	240					

2/6/95 14:53

DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAI
Rainfall (mm/month)	51.8	18.5	8,1	7.3	6,4	6.4	25.9	48.6	87.4	70.4	89,1	63.2	483.2
Snowfall (mm/month)	12.9	42.6	71.5	73.1	55.4	41.0	20.1	5.6	0.0	0.0	0.0	1.6	323.8
Evaporation (mm/month)	15.0	0,0	0.0	0.0	0,0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423.0
<catchment runoff=""> (m³) East Waste Dump</catchment>											4		
Waste rock runoff	8,907	3,190	1,402	1,254	1,107	1,107	33,417	34,820	15,030	12,116	15,325	11,137	138,812
Undisturbed catchment runoff	6,380	2,285	1,004	898	793	793	23,936	24,941	10,766	8,679	10,977	7,977	99,428
West Waste Dump													
Waste rock runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
Undisturbed catchment runoff	0	0	0	0	0	0	0	0	0	0	0	0	0
North Waste Dump													
Waste rock runoff	2,900	1,039	456	408	360	360	10,880	11,337	4,894	3,945	4,990	3,626	45,195
Undisturbed catchment runoff	9,405	3,369	1,480	1,324	1,168	1,168	35,283	36,763	15,869	12,793	16,181	11,758	146,560
Mill Site													
Catchment runoff	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,221
Additional Tailings Area Catchment	1												
Catchment runoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
<total runoff=""> (m³)</total>						4							
East waste dump	15,288	5,476	2,406	2,152	1,899	1,899	57,354	59,760	25,796	20,795	26,302	19,114	238,240
North waste dump	12,305	4,407	1,936	1,732	1,529	1,529	46,163	48,100	20,763	16,737	21,170	15,384	191,754
West waste dump	0	0	0	0	0	0	0	0	0	0	0	0	0
Mill site	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,221
Additional tailings area catchment	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
Total Waste Dumps and Mill Site	35,464	12,702	5,580	4,993	4,405	4,405	133,048	139,180	59,841	48,240	61,016	44,340	553,210
Grand Total (including additional tails catchment)	63,268	22,661	9,955	8,907	7,859	7,859	237,359	247,868	106,757	86,060	108,852	79,103	986,505

CONSULTING ENGINEERS

				1	IAL META MT. POLLE MINE SIT NTHLY WA	EY PROJEC E RUNOFF ATER BALA AR 6	T							
	<u>catchment areas (ha);</u> Additiona	East dump: West dump: North dump: Mill site: tailings area:	<u>dist'bd</u> 33 0 19 20 0	<u>undist'bd</u> 47 37 66 5 240		.1441	<u>runoff coeff</u> undisturbed	icients: waste rock = i catchment = mill site =	<u>dry</u> 58% 20% 65%	<u>avc.</u> 60% 24% 70%	wet 62% 29% 75%			
2/6/95 14:53 J:VOBIDATAN CONWATERINALISTATWINAL XI.S														
DESCRIPTION		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
Rainfall (mm/month) Snowfall (mm/month) Evaporation (mm/month)		51.8 12.9 15.0	18.5 42.6 0.0	8.1 71.5 0.0	7.3 73.1 0.0	6,4 55,4 0.0	6.4 41.0 0.0	25.9 20.1 0.0	48.6 5.6 47.0	87,4 0.0 112.0	70.4 0.0 107.0	89.1 0.0 92.0	63.2 1.6 50.0	483.2 323.8 423.0
<catchment runoff=""> (m³) East Waste Dump Waste rock runoff Undisturbed catchment runoff</catchment>		10,357 5,800	3,710 2,077	1,630 913	1,458 817	1,287 721	1,287 721	38,858 21,760	40,488 22,673	17,477 9,787	14,089 7,890	17,820 9,979	12,950 7,252	161,409 90,389
West Waste Dump Waste rock runoff Undisturbed catchment runoff		0 4,599	0 1,647	0 724	0 647	0 571	0 571	0 17,253	0 17,977	0 7,760	0 6,255	0 7,912	0 5,750	0 71,666
North Waste Dump Waste rock runoff Undisturbed catchment runoff		5,800 8,245	2,077 2,953	913 1,297	817 1,161	721 1,024	721 1,024	21,760 30,931	22,673 32,228	9,787 13,912	7,890 11,215	9,979 14,185	7,252 10,308	90,389 128,482
Mill Site Catchment runoff Additional Tailings Area Catchment		7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,221
Catchment runoff		27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
<total runoff=""> (m³) East waste dump North waste dump West waste dump Mill site Additional tailings area catchmer</total>	ıt	16,158 14,045 4,599 7,872 27,804	5,787 5,031 1,647 2,819 9,959	2,542 2,210 724 1,239 4,375	2,275 1,977 647 1,108 3,914	2,007 1,745 571 978 3,454	2,007 1,745 571 978 3,454	60,618 52,691 17,253 29,532 104,311	63,161 54,902 17,977 31,321 108,687	27,264 23,699 7,760 13,282 46,916	21,978 19,104 6,255 10,707 37,820	27,799 24,164 7,912 13,543 47,837	20,202 17,560 5,750 9,842 34,763	251,799 218,871 71,666 123,221 433,294
Total Waste Dumps and Mill Sit Grand Total (including additiona		42,673 70,477	15,284 25,243	6,715 11,090	6,008 9,922	5,301 8,755	5,301 8,755	160,093 264,404	167,360 276,047	72,005 118,921	58,046 95,866	73,418 121,255	53,353 88,116	665,557 1,098,850

1

1

CONSULTING ENGINEERS

TABLE B.7 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT MINE SITE RUNOFF MONTHLY WATER BALANCE YEAR 7

		punoff coefficients			
dist'bd	undist bd	Tuntur coerricients.	dry	ave.	wet
38	42	waste rock =	58%	60%	62 %
2	35	undisturbed catchment =	20%	24%	29%
28	57	mill site =	65%	70%	75%
20	5				
0	240				
	2 28 20	38 42 2 35 28 57 20 5	38 42 waste rock = 2 35 undisturbed catchment = 28 57 mill site = 20 5 5		$\begin{array}{c ccccc} \underline{dist'bd} & \underline{undist'bd} \\ \hline 38 & 42 & waste rock = & 58\% & 60\% \\ \hline 2 & 35 & undisturbed catchment = & 20\% & 24\% \\ \hline 28 & 57 & mill site = & 65\% & 70\% \\ \hline 20 & 5 & \end{array}$

2/1/95 14:53

J:JOBOATAWATERBALSTATWIALXLS

DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAI
Rainfall (mm/month)	51.8	18,5	8,1	7.3	6,4	6,4	25.9	48,6	87.4	70.4	89.1	63.2	483.2
Snowfall (mm/month)	12.9	42.6	71.5	73.1	55.4	41.0	20.1	5.6	0.0	0.0	0.0	1.6	323.8
Evaporation (mm/month)	15.0	0,0	0.0	0.0	0,0	0,0	0.0	47.0	112.0	107.0	92.0	50.0	423.0
<catchment runoff=""> (m³)</catchment>													
East Waste Dump												8	100.000
Waste rock runoff	11,808	4,229	1,858	1,662	1,467	1,467	44,298	46,156	19,924	16,061	20,315	14,763	184,007
Undisturbed catchment runoff	5,220	1,870	821	735	648	648	19,584	20,406	8,808	7,101	8,981	6,527	81,350
West Waste Dump													
Waste rock runoff	699	250	110	98	87	87	2,623	2,733	1,180	951	1,203	874	10,895
Undisturbed catchment runoff	4,319	1,547	680	608	537	537	16,204	16,883	7,288	5,875	7,431	5,400	67,308
North Waste Dump													1
Waste rock runoff	8,700	3,116	1,369	1,225	1,081	1,081	32,640	34,010	14,681	11,835	14,969	10,878	135,58
Undisturbed catchment runoff	7,085	2,538	1,115	997	880	880	26,579	27,694	11,954	9,637	12,189	8,858	110,40
Mill Site													
Catchment runoff	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,22
Additional Tailings Area Catchment													
Catchment rmoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
<total runoff=""> (m³)</total>													
East waste dump	17,028	6,099	2,679	2,397	2,115	2,115	63,882	66,562	28,732	23,162	29,296	21,289	265,35
North waste dump	15,785	5,654	2,484	2,222	1,961	1,961	59,219	61,704	26,635	21,471	27,158	19,735	245,98
West waste dump	5,018	1,797	790	706	623	623	18,826	19,616	8,468	6,826	8,634	6,274	78,203
Mill site	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,22
Additional tailings area catchment	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,29
Total Waste Dumps and Mill Site	45,702	16,370	7,191	6,434	5,677	5,677	171,459	179,203	77,117	62,167	78,631	57,141	712,76
Grand Total (including additional tails catchment)	73,506	26,328	11,566	10,349	9,131	9,131	275,770	287,890	124,033	99,987	126,468	91,904	1,146,0

.

CONSULTING ENGINEERS

TABLE B.8 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT MINE SITE RUNOFF MONTHLY WATER BALANCE YEAR 8

catchment areas (ha):			runoff coefficients:			
	dist'bd	undist bd		dry	ave.	wet
East dump	43	37	waste rock =	58%	60%	62 %
West dump	5	33	undisturbed catchment =	20%	24 %	29%
North dump	37	48	mill site =	65%	70%	75%
Mill site	20	5				
Additional tailings area	. 0	240				

^{2/6/95 14:53}

TOORDATA HO WATERBAL STATWIAL XLS OCT NOV DEC FEB APR JUL AUG SEP ANNUAL JAN MAR MAY JUN DESCRIPTION 51.8 25.9 48.6 87.4 70.4 89.1 63.2 483.2 A Rainfall (mm/month) 18.5 8.1 7.3 6.4 6.4 1.6 323.8 B Snowfall (mm/month) 12,9 42.6 71.5 73.1 55.4 41.0 20.1 5.6 0.0 0.0 0.0 423.0 15.0 0.0 0.0 0.0 47.0 112.0 107.0 92.0 50.0 C Evaporation (mm/month) 0.0 0.0 0.0 <CATCHMENT RUNOFF> (m3) East Waste Dump 13,258 4,749 2.086 1.866 1.647 1.647 49,738 51.824 22.370 18,034 22,810 16,576 206,604 Waste rock runoff 1,662 576 17,408 18,139 6,312 7,983 5,801 72,311 Undisturbed catchment runoff 4,640 730 653 576 7,830 West Waste Dump Waste rock runoff 1,398 501 220 197 174 174 5,246 5,466 2,359 1,902 2,406 1,748 21,790 6,950 5,050 Undisturbed catchment runoff 4,039 1,447 636 569 502 502 15,154 15,790 6,816 5,495 62,950 North Waste Dump 11,600 4.155 1,825 1.633 1.441 1.441 43,520 45.346 19,574 15,779 19,958 14,504 180,779 Waste rock runoff Undisturbed catchment runoff 5,924 2,122 932 834 736 736 22,227 23,159 9,997 8,059 10,193 7,407 92,326 Mill Site 13,543 Catchment runoff 7,872 2,819 1,239 1,108 978 978 29,532 31,321 13,282 10,707 9,842 123,221 Additional Tailings Area Catchment Catchment runoff 27,804 9.959 4,375 3.914 3,454 3,454 104.311 108.687 46,916 37.820 47,837 34,763 433,294 <TOTAL RUNOFF> (m3) 2,520 2,223 2.223 67,146 24,345 30,793 22,377 278.915 East waste dump 17,898 6,411 2,816 69,963 30,200 North waste dump 17,525 6,277 2,758 2,467 2.177 2,177 65,747 68,506 29,571 23,838 30,151 21,911 273,105 10 11 West waste dump 5,438 1,948 856 766 675 675 20,400 21,256 9,175 7,397 9,356 6,799 84,740 12 Mill site 7.872 2.819 1.239 1.108 978 978 29,532 31,321 13.282 10,707 13,543 9.842 123,221 13 Additional tailings area catchment 27,804 9,959 4,375 3,914 3,454 3,454 108,687 46,916 37,820 47,837 34,763 433,294 104,311 Total Waste Dumps and Mill Site 182,825 191,045 60,929 759,981 14 48,732 17,455 7,668 6,861 6,054 6,054 82,229 66,288 83,843 Grand Total (including additional tails catchment) 76,536 27,413 12,043 10,775 9,508 9,508 287,135 299,733 129,145 104,108 131,680 95,692 1,193,275 15

Knight Piésold Ltd. CONSULTING ENGINEERS

TABLE B.9 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT MINE SITE RUNOFF MONTHLY WATER BALANCE YEAR 9

catchment areas (ha):				runoff coefficients:			
		dist'bd	undist'bd	A	dry	ave.	wet
	East dump:	47	33	waste rock =	58%	60 %	62 %
	West dump:	7	30	undisturbed catchment =	20%	24%	29%
	North dump:	47	38	mill site =	65%	70%	75%
	Mill site:	20	5				
Addition	al tailings area:	0	240				

2/6/95 14:55

I-TOMDATANELSWATERBADSTATWBALXLS

DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
Rainfall (mm/month)	51.8	18.5	8.1	7.3	6.4	6,4	25.9	48.6	87.4	70.4	89.1	63.2	483.2
Snowfall (mm/month)	12.9	42,6	71.5	73.1	55.4	41.0	20.1	5,6	0.0	0.0	0.0	1.6	323.8
Evaporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0,0	0.0	47.0	112.0	107.0	92.0	50,0	423,0
<catchment runoff=""> (m³) East Waste Dump</catchment>													
Waste rock runoff	14,708	5,268	2,314	2,071	1,827	1,827	55,178	57,493	24,817	20,006	25,304	18,389	229,201
Undisturbed catchment runoff	4,060	1,454	639	572	504	504	15,232	15,871	6,851	5,523	6,985	5,076	63,272
West Waste Dump													
Waste rock runoff	2,097	751	330	295	261	261	7,869	8,199	3,539	2,853	3,609	2,622	32,685
Undisturbed catchment runoff	3,760	1,347	592	529	467	467	14,105	14,697	6,344	5,114	6,469	4,701	58,592
North Waste Dump													
Waste rock runoff	14,500	5,194	2,282	2,041	1,801	1,801	54,401	56,683	24,468	19,724	24,948	18,130	225,973
Undisturbed catchment runoff	4,764	1,707	750	671	592	592	17,874	18,624	8,039	6,481	8,197	5,957	74,248
Mill Site	120005												
Catchment runoff	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,221
Additional Tailings Area Catchment	Contractor and												
Catchment runoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
<total runoff=""> (m³)</total>													
East waste dump	18,768	6,722	2,953	2,642	2,331	2,331	70,410	73,364	31,668	25,529	32,290	23,465	292,474
North waste dump	19,265	6,900	3,031	2,712	2,393	2,393	72,275	75,307	32,507	26,205	33,145	24,087	300,221
West waste dump	5,857	2,098	922	825	728	728	21,974	22,896	9,883	7,967	10,077	7,323	91,277
Mill site	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,221
Additional tailings area catchment	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
Total Waste Dumps and Mill Site	51,761	18,540	8,145	7,287	6,430	6,430	194,191	202,888	87,341	70,408	89,055	64,717	807,193
Grand Total (including additional tails catchment)	79,566	28,499	12,520	11,202	9,884	9,884	298,501	311,575	134,256	108,229	136,892	99,479	1,240,48

0

CONSULTING ENGINEERS

TABLE B.10 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT MINE SITE RUNOFF MONTHLY WATER BALANCE YEAR 10

		ninoff coefficients:			
dist'bd	undist'bd		dry	ave.	wet
52	28	waste rock =	58%	60%	wet 62%
9	28	undisturbed catchment =	20%	24 %	29%
56	29	mill site =	65%	70%	75%
20	5				
0	240				
	52 9 56 20	52 28 9 28 56 29 20 5	dist'bd undist'bd 52 28 waste rock = 9 28 undisturbed catchment = 56 29 mill site = 20 5 5		

2/6/95 14:53

DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
Rainfall (mm/month)	51.8	18.5	8.1	7.3	6,4	6.4	25.9	48.6	87.4	70.4	89.1	63.2	483.2
Snowfall (mm/month)	12.9	42.6	71.5	73.1	55.4	41.0	20.1	5.6	0.0	0.0	0.0	1.6	323.8
Evaporation (mm/month)	15.0	0,0	0.0	0.0	0,0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423.0
<catchment runoff=""> (m³)</catchment>													
East Waste Dump													
Waste rock runoff	16,158	5,787	2,542	2,275	2,007	2,007	60,618	63,161	27,264	21,978	27,799	20,202	251,799
Undisturbed catchment runoff	3,480	1,246	548	490	432	432	13,056	13,604	5,872	4,734	5,988	4,351	54,234
West Waste Dump													
Waste rock runoff	2,797	1,002	440	394	347	347	10,492	10,932	4,719	3,804	4,811	3,496	43,581
Undisturbed catchment runoff	3,480	1,246	548	490	432	432	13,056	13,604	5,872	4,734	5,988	4,351	54,234
North Waste Dump													
Waste rock runoff	17,401	6,232	2,738	2,450	2,162	2,162	65,281	68,020	29,361	23,669	29,938	21,756	271,168
Undisturbed catchment runoff	3,604	1,291	567	507	448	448	13,522	14,090	6,082	4,903	6,201	4,507	56,170
Mill Site													
Catchment runoff	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,221
Additional Tailings Area Catchment													
Catchment runoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
<total runoff=""> (m³)</total>													
East waste dump	19,638	7,034	3,090	2,765	2,439	2,439	73,674	76,765	33,136	26,712	33,787	24,553	306,032
North waste dump	21,005	7,524	3,305	2,957	2,609	2,609	78,803	82,109	35,443	28,572	36,139	26,262	327,338
West waste dump	6,277	2,248	988	884	780	780	23,548	24,536	10,591	8,538	10,799	7,848	97,814
Mill site	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,221
Additional tailings area catchment	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
Total Waste Dumps and Mill Site	54,791	19,625	8,621	7,714	6,806	6,806	205,556	214,731	92,453	74,529	94,268	68,504	854,406
Grand Total (including additional tails catchment)	82,595	29,584	12,996	11,628	10,260	10,260	309,867	323,418	139,368	112,350	142,105	103,267	1,287,699

TABLE B.11 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT MINE SITE RUNOFF MONTHLY WATER BALANCE YEAR 11

1

catchment areas (ha):			runoff coefficients:			
	dist'bd	undist'bd		dry	ave.	wet
East dump:	52	28	waste rock =	58%	60%	62.%
West dump:	9	28	undisturbed catchment =	20%	24%	29%
North dump:	56	29	mill site =	65%	70%	75%
Mill site:	20	5				
Additional tailings area:	0	240				

2/6/95 14:35

FURDATA INTERNALISTATURALIZES

DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
Rainfall (mm/month)	51.8	18.5	8.1	7.3	6.4	6,4	25.9	48.6	87.4	70.4	89.1	63.2	483.2
Snowfall (mm/month)	12.9	42.6	71.5	73.1	55.4	41.0	20.1	5.6	0.0	0.0	0.0	1.6	323.8
Evaporation (mm/month)	15.0	0.0	0.0	0.0	0,0	0,0	0.0	47.0	112.0	107.0	92.0	50.0	423.0
<catchment runoff=""> (m³)</catchment>								14					
East Waste Dump	10355,7833												1475045998
Waste rock nmoff	16,158	5,787	2,542	2,275	2,007	2,007	60,618	63,161	27,264	21,978	27,799	20,202	251,799
Undisturbed catchment runoff	3,480	1,246	548	490	432	432	13,056	13,604	5,872	4,734	5,988	4,351	54,234
West Waste Dump													
Waste rock runoff	2,797	1,002	440	394	347	347	10,492	10,932	4,719	3,804	4,811	3,496	43,581
Undisturbed catchment runoff	3,480	1,246	548	490	432	432	13,056	13,604	5,872	4,734	5,988	4,351	54,234
North Waste Dump													
Waste rock runoff	17,401	6,232	2,738	2,450	2,162	2,162	65,281	68,020	29,361	23,669	29,938	21,756	271,168
Undisturbed catchment runoff	3,604	1,291	567	507	448	448	13,522	14,090	6,082	4,903	6,201	4,507	56,170
Mill Site													6
Catchment runoff	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,221
Additional Tailings Area Catchment													
Catchment runoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
<total runoff=""> (m³)</total>													
East waste dump	19,638	7,034	3,090	2,765	2,439	2,439	73,674	76,765	33,136	26,712	33,787	24,553	306,032
North waste dump	21,005	7,524	3,305	2,957	2,609	2,609	78,803	82,109	35,443	28,572	36,139	26,262	327,338
West waste dump	6,277	2,248	988	884	780	780	23,548	24,536	10,591	8,538	10,799	7,848	97,814
Mill site	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,221
Additional tailings area catchment	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
Total Waste Dumps and Mill Site	54,791	19,625	8,621	7,714	6,806	6,806	205,556	214,731	92,453	74,529	94,268	68,504	854,406
Grand Total (including additional tails catchment)	82,595	29,584	12,996	11,628	10,260	10,260	309,867	323,418	139,368	112,350	142,105	103,267	1,287,69

CONSULTING ENGINEERS

TABLE B.12 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT MINE SITE RUNOFF MONTHLY WATER BALANCE YEAR 12

catchment areas (ha);			runoff coefficients:			
	dist'bd	undist'bd		dry	ave.	wet
East dump:	52	28	waste rock =	58 %	60%	62 %
West dump:	9	28	undisturbed catchment =	20%	24%	29%
North dump:	56	29	mill site =	65%	70%	75%
Mill site:	20	5				
Additional tailings area;	0	240				

2/6/95 14:55

DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUA
Rainfall (mm/month)	51.8	18.5	8.1	7.3	6,4	6.4	25.9	48,6	87.4	70.4	89.1	63.2	483.2
Snowfall (mm/month)	12.9	42.6	71.5	73.1	55.4	41.0	20.1	5.6	0.0	0,0	0.0	1.6	323.8
Evaporation (mm/month)	15.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423.0
<catchment runoff=""> (m³)</catchment>	10												
East Waste Dump													
Waste rock runoff	16,158	5,787	2,542	2,275	2,007	2,007	60,618	63,161	27,264	21,978	27,799	20,202	251,79
Undisturbed catchment runoff	3,480	1,246	548	490	432	432	13,056	13,604	5,872	4,734	5,988	4,351	54,23
West Waste Dump													
Waste rock runoff	2,797	1,002	440	394	347	347	10,492	10,932	4,719	3,804	4,811	3,496	43,58
Undisturbed catchment runoff	3,480	1,246	548	490	432	432	13,056	13,604	5,872	4,734	5,988	4,351	54,23
North Waste Dump	1												
Waste rock runoff	17,401	6,232	2,738	2,450	2,162	2,162	65,281	68,020	29,361	23,669	29,938	21,756	271,10
Undisturbed catchment runoff	3,604	1,291	567	507	448	448	13,522	14,090	6,082	4,903	6,201	4,507	56,17
Mill Site													
Catchment runoff	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,22
Additional Tailings Area Catchment													
Catchment runoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,29
<total runoff=""> (m³)</total>													
East waste dump	19,638	7,034	3,090	2,765	2,439	2,439	73,674	76,765	33,136	26,712	33,787	24,553	306,03
North waste dump	21,005	7,524	3,305	2,957	2,609	2,609	78,803	82,109	35,443	28,572	36,139	26,262	327,33
West waste dump	6,277	2,248	988	884	780	780	23,548	24,536	10,591	8,538	10,799	7,848	97,81
Mill site	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,22
Additional tailings area catchment	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,29
Total Waste Dumps and Mill Site	54,791	19,625	8,621	7,714	6,806	6,806	205,556	214,731	92,453	74,529	94,268	68,504	854,4
Grand Total (including additional tails catchment)	82,595	29,584	12,996	11,628	10,260	10,260	309,867	323,418	139,368	112,350	142,105	103,267	1,287,

TABLE B.13 <u>IMPERIAL METALS CORPORATION</u> <u>MT. POLLEY PROJECT</u> <u>MINE SITE RUNOFF</u> <u>MONTHLY WATER BALANCE</u> <u>YEAR 13</u>

catchment areas (ha):			runoff coefficients;			
	dist'bd	undist'bd		dry	ave.	wet
East dump:	52	28	waste rock =	58%	60%	62%
West dump:	9	28	undisturbed catchment =	20%	24%	29%
North dump:	56	29	mill site =	65%	70%	75%
Mill site:	20	5				
Additional tailings area:	0	240				

2/6/95 14:53

J.VORDATA1620WATERBALSTATWBAL2LS

PESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAI
Rainfall (mm/month)	51.8	18,5	8.1	7.3	6,4	6,4	25.9	48.6	87.4	70.4	89.1	63.2	483.2
Snowfall (mm/month)	12.9	42.6	71.5	73.1	55.4	41.0	20.1	5.6	0.0	0.0	0.0	1,6	323.8
Evaporation (mm/month)	15.0	0.0	0.0	0.0	0,0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423.0
<catchment runoff=""> (m³) East Waste Dump</catchment>													
Waste rock runoff	16,158	5,787	2,542	2,275	2,007	2,007	60,618	63,161	27,264	21,978	27,799	20,202	251,799
Undisturbed catchment runoff	3,480	1,246	548	490	432	432	13,056	13,604	5,872	4,734	5,988	4,351	54,234
West Waste Dump													
Waste rock runoff	2,797	1,002	440	394	347	347	10,492	10,932	4,719	3,804	4,811	3,496	43,581
Undisturbed catchment runoff	3,480	1,246	548	490	432	432	13,056	13,604	5,872	4,734	5,988	4,351	54,234
North Waste Dump													
Waste rock runoff	17,401	6,232	2,738	2,450	2,162	2,162	65,281	68,020	29,361	23,669	29,938	21,756	271,168
Undisturbed catchment runoff	3,604	1,291	567	507	448	448	13,522	14,090	6,082	4,903	6,201	4,507	56,170
Mill Site													
Catchment runoff	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,221
Additional Tailings Area Catchment													
Catchment runoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
<total runoff=""> (m³)</total>													
East waste dump	19,638	7,034	3,090	2,765	2,439	2,439	73,674	76,765	33,136	26,712	33,787	24,553	306,032
North waste dump	21,005	7,524	3,305	2,957	2,609	2,609	78,803	82,109	35,443	28,572	36,139	26,262	327,338
West waste dump	6,277	2,248	988	884	780	780	23,548	24,536	10,591	8,538	10,799	7,848	97,814
Mill site	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,221
Additional tailings area catchment	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,294
Total Waste Dumps and Mill Site	54,791	19,625	8,621	7,714	6,806	6,806	205,556	214,731	92,453	74,529	94,268	68,504	854,406
Grand Total (including additional tails catchment)	82,595	29,584	12,996	11,628	10,260	10,260	309,867	323,418	139,368	112,350	142,105	103,267	1,287,699

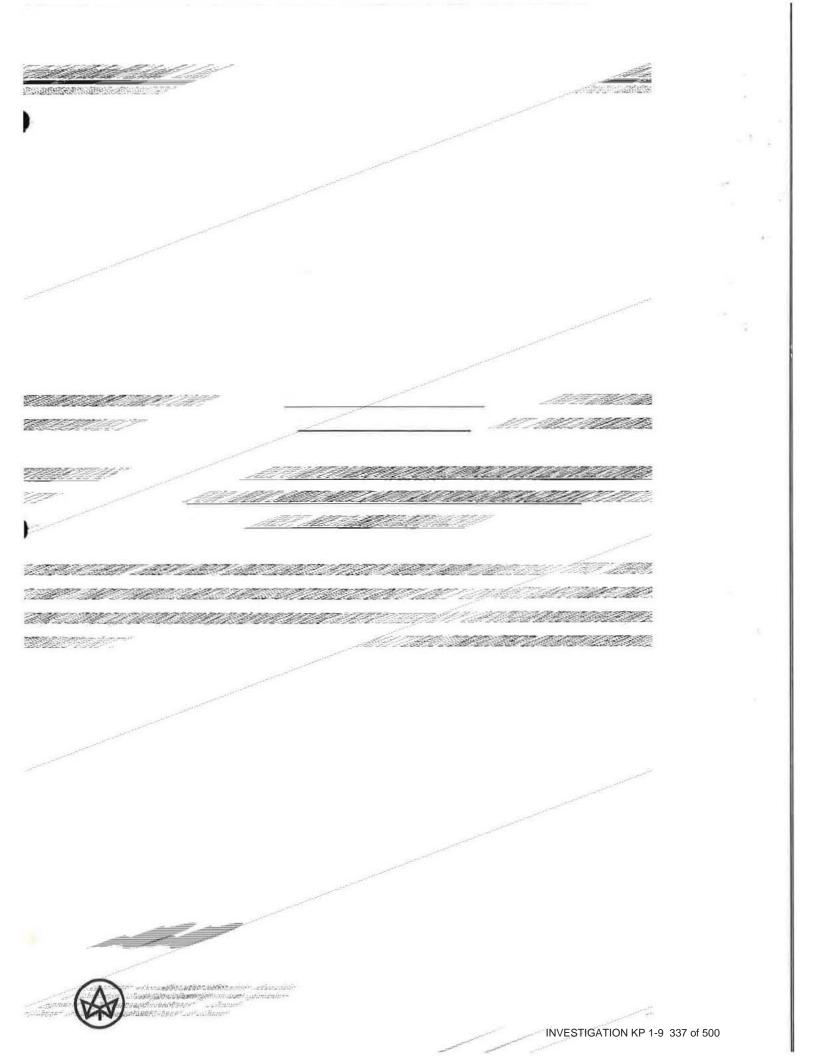
-

TABLE B.14	
IMPERIAL METALS CORPORA	TION
MT. POLLEY PROJECT	
MINE SITE RUNOFF	
MONTHLY WATER BALAN	CE
YEAR 14	

catchment are	as (ha):					runoff coeff	icients:						
	East dump: West dump:	dist'bd 52 9	undist'bd 28 28			undisturbed	waste rock = 1 catchment =	<u>dry</u> 58% 20%	ave. 60% 24%	wet 62% 29%			
	North dump;	56	29				mill site =	65%	70%	75%			
	Mill site:	20	5										
	Additional tailings area:	0	240										
2/6/95 14:59 F-YOBPDATA1/6249WATEREBAT:STATWEAT.STS													
DESCRIPTION	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNU
Rainfall (mm/month)	51.8	18,5	8,1	7.3	6.4	6,4	25.9	48.6	87.4	70.4	89.1	63.2	483.
Snowfall (mm/month)	12.9	42.6	71.5	73.1	55.4	41.0	20.1	5.6	0.0	0.0	0.0	1.6	323.
Byaporation (mm/month)	15.0	0,0	0.0	0.0	0.0	0.0	0.0	47.0	112.0	107.0	92.0	50.0	423.
<catchment runoff=""> (m³) East Waste Dump</catchment>													
Waste rock runoff	16,158	5,787	2,542	2,275	2,007	2,007	60,618	63,161	27,264	21,978	27,799	20,202	251,7
Undisturbed catchment runoff	3,480	1,246	548	490	432	432	13,056	13,604	5,872	4,734	5,988	4,351	54,23
West Waste Dump	- 547525000												
Waste rock runoff	2,797	1,002	440	394	347	347	10,492	10,932	4,719	3,804	4,811	3,496	43,58
Undisturbed catchment runoff	3,480	1,246	548	490	432	432	13,056	13,604	5,872	4,734	5,988	4,351	54,23
North Waste Dump													
Waste rock runoff	17,401	6,232	2,738	2,450	2,162	2,162	65,281	68,020	29,361	23,669	29,938	21,756	271,1
Undisturbed catchment runoff	3,604	1,291	567	507	448	448	13,522	14,090	6,082	4,903	6,201	4,507	56,17
Mill Site													1.0
Catchment runoff	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,2
Additional Tailings Area Catchment													
Catchment runoff	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,2
<total runoff=""> (m³)</total>													
East waste dump	19,638	7,034	3,090	2,765	2,439	2,439	73,674	76,765	33,136	26,712	33,787	24,553	306,0
North waste dump	21,005	7,524	3,305	2,957	2,609	2,609	78,803	82,109	35,443	28,572	36,139	26,262	327,3
West waste dump	6,277	2,248	988	884	780	780	23,548	24,536	10,591	8,538	10,799	7,848	97.8
Mill site	7,872	2,819	1,239	1,108	978	978	29,532	31,321	13,282	10,707	13,543	9,842	123,2
Additional tailings area catchment	27,804	9,959	4,375	3,914	3,454	3,454	104,311	108,687	46,916	37,820	47,837	34,763	433,2
Total Waste Dumps and Mill Site	54,791	19,625	8,621	7,714	6,806	6,806	205,556	214,731	92,453	74,529	94,268	68,504	854,4
Grand Total (including additional tails catchme		29,584	12,996	11,628	10,260	10,260	309,867	323,418	139,368	112,350	142,105	103,267	1,287,0

1

-


IMPERIAL METALS CORP. MT. POLLEY PROJECT

REPORT ON 1995 GEOTECHNICAL INVESTIGATIONS FOR MILL SITE AND TAILINGS STORAGE FACILITY (REF. NO. 1623/1)

MARCH 14, 1995

Suite 1400 750 West Pender Street Vancouver, British Columbia Canada V6C 2T8 Telephone (604) 685-0543 Telefax (604) 685-0147 CIS: 72360,477

Knight Piésold Ltd. CONSULTING ENGINEERS

Knight Piésold Ltd. CONSULTING ENGINEERS

IMPERIAL METALS CORPORATION MT. POLLEY PROJECT

REPORT ON

1995 GEOTECHNICAL INVESTIGATIONS FOR MILL SITE AND TAILINGS STORAGE FACILITY (REF. NO. 1623/1)

TABLE OF CONTENTS

PAGE

SECTION 1.0	INT	RODUCTI	ON	1
	1.1	PROJE	CT DESCRIPTION	1
	1.2	SCOPE	C OF WORK	1
SECTION 2.0	GEO	TECHNIC	CAL RESULTS	3
	2.1	GENER	RAL	3
	2.2	MILL S	SITE AND ACCESS ROADS	3
		2.2.1	Millsite	3
		2.2.2	Bootjack Lake Road	4
		2.2.3	Main Site Access Road	4
	2.3	TAILIN	IGS STORAGE FACILITY	4
		2.3.1	Tailings and Reclaim Pipeline Route	4
		2.3.2	Borrow Areas	5
		2.3.3	Embankment and Basin Foundations	5
	2.4	POLLE	Y LAKE DAM	6
SECTION 3.0	LAB	ORATOR	Y TESTWORK	7
	3.1	GENER	RAL	7
	3.2	MILL S	SITE AND ACCESS ROADS	8
		3.2.1	Millsite	8
		3.2.2	Bootjack Lake Road	8
		3.2.3	Main Site Access Road	8

Association des Ingénieurs-Conseils du Canada Association of Consulting

1623\1, March 14, 1995 INVESTIGATION KP 1-9 338 of 500

Knight Piésold Ltd. CONSULTING ENGINEERS

	3.3	TAILIN	TAILINGS STORAGE FACILITY						
		3.3.1	Tailings and Reclaim Pipeline Route	9					
		3.3.2	Borrow Areas	9					
		3.3.3	Embankment and Basin Foundations	10					
	3.4	POLLE	POLLEY LAKE DAM						
SECTION 4.0	GEO	LOGICAL	FACTORS AFFECTING DESIGN	13					
	4.1	GENER	RAL	13					
	4.2	MILL S	MILL SITE AND ACCESS ROADS						
		4.2.1	Millsite	13					
		4.2.2	Bootjack Lake Road	15					
		4.2.3	Main Site Access Road	15					
	4.3	TAILIN	IGS STORAGE FACILITY	15					
		4.3.1	Tailings and Reclaim Pipeline Route	15					
		4.3.2	Borrow Areas	16					
		4.3.3	Embankment and Basin Foundations	16					
	4.4	POLLE	Y LAKE DAM	16					

TABLES

Table 3.1	Summary of Laboratory Test Results - Index Tests
Table 3.2	Summary of Laboratory Test Results - Effective Strength
	Parameters, Compaction and Permeability Test Results
Table 3.3	Results of Consolidated-Undrained Triaxial Tests on
	Glacial Till Samples
Table 3.4	Results of Consolidated-Undrained Triaxial Tests on
	Silt and Fine-Grained Sand Samples

FIGURES

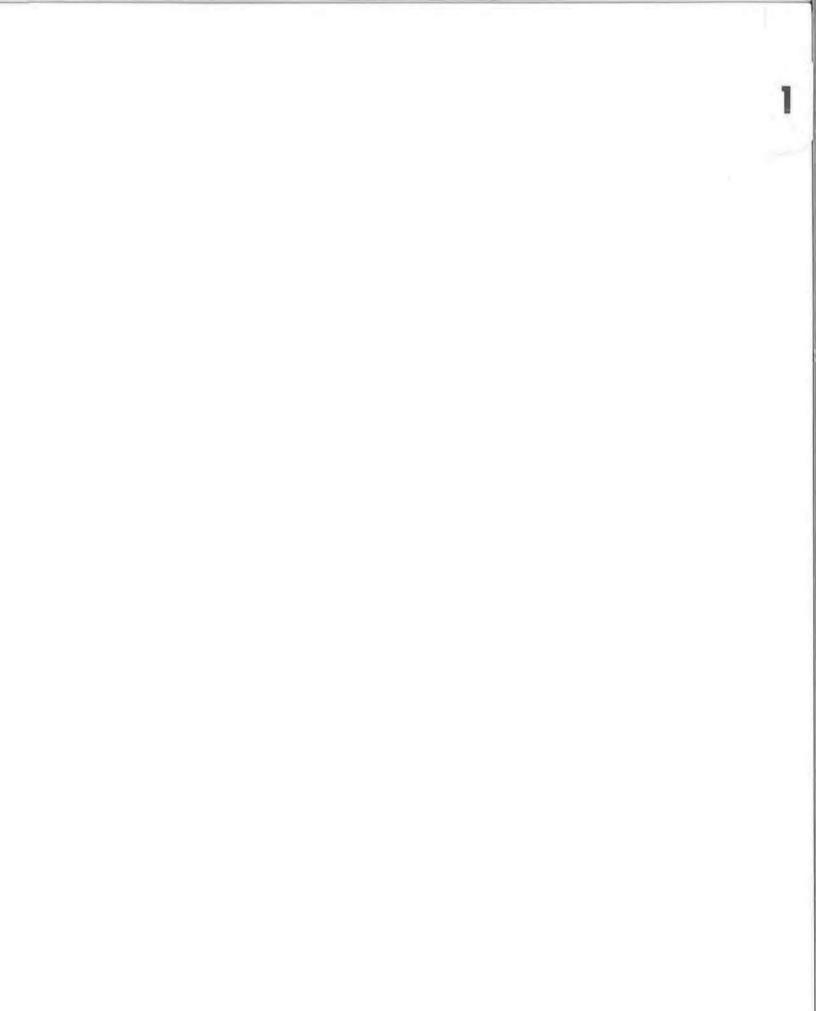
Figure 1.1	Project Location
Figure 3.1	Glacial Till - Particle Size Distributions
Figure 3.2	Glaciofluvial/Glaciolacustrine Deposits - Particle Size Distributions

- ii -

1623\1, March 14, 1995

Knight Piésold Ltd. CONSULTING ENGINEERS

Figure 3.3	Stress Path Plots from Single Stage Consolidated-Undrained
	Triaxial Tests on Glacial Till Samples
Figure 3.4	Stress Path Plots from Multistage Consolidated-Undrained
	Triaxial Tests on Silt and Fine Grained Sand Samples


DRAWINGS

- 1623.100 Overall Site Plan - Geotechnical Investigation Program
- 1623.101 Mill Site and Main Access Road - Site Investigation Plan
- Tailings Storage Facility Site Investigation Plan 1623.102
- Tailings Storage Facility Geological Cross-Sections 1623.103

APPENDICES

Appendix A	Test Pit Logs
Appendix B	Detailed Laboratory Test Results

CONSULTING ENGINEERS

SECTION 1.0 - INTRODUCTION

1.1 PROJECT DESCRIPTION

The Mt. Polley project site is located in central British Columbia approximately 56 kilometres north-west of Williams Lake, as shown on Figure 1.1. The site is situated on a topographic ridge located between Polley Lake and Bootjack Lake.

The Mt. Polley project involves open pit mining of an estimated 48.8 million tonnes of copper and gold ore contained in three adjacent ore bodies. The ore will be hauled from the open pit to the primary and secondary crushers where it will be crushed and transported to the nearby concentrator for processing. The ore will be processed by select flotation to produce a copper-gold concentrate at a production rate of approximately 13,425 tonnes per day. An additional 26.2 million tonnes of low grade ore will be stockpiled during operations for processing in the later stages of the mine life.

After processing of the ore to produce the copper/gold concentrate, the tailings will be discharged as a slurry into the tailings storage facility which has been designed to provide environmentally secure storage of the solids waste. As the solids settle out of the slurry, the solution is collected and recycled back to the mill for re-use in the milling process. No surface discharge of any process solution from the tailings facility is required or anticipated.

1.2 SCOPE OF WORK

A geotechnical site investigation program was carried out by Knight Piésold Ltd. between January 11 and 17, 1995. The program comprised excavating a total of thirty-nine (39) test pits to investigate the geotechnical characteristics and foundation conditions at each of the proposed project component sites and to evaluate the geologic factors affecting the design of these components. The following project components were investigated:

Association des Ingénieurs-Conseils du Canada

-1-

1623\1, March 14, 1995

INVESTIGATION KP 1-9 342 of 500

Knight Piésold Ltd.

- Main access road
- Tailings storage facility, including the tailings basin and embankment foundations, tailings/reclaim pipeline route, and potential borrow areas
- · Polley Lake dam site (no longer included in mine plan)

The scope of work for the investigation program included the following:

- Pioneering of access trails with a Cat D5 dozer.
- Excavation of the test pits with a Hitachi X200 backhoe.
- Detailed geotechnical logging of each test pit, including photographs.
- Bulk sampling of the various strata.
- Backfilling and reclamation work for all of the disturbed areas.

The test pit locations and the overall site plan are shown on Drawing 1623.100. Geological logs of each test pit are included in Appendix A, and detailed laboratory test work results on select bulk test pit samples are included in Appendix B.

This report addresses the outstanding geotechnical issues from previous work carried out at the Mt. Polley project site. The results of the previous geotechnical program are presented in the following documents:

- 1989 tailings area test pits (also included in Appendix A)
- 1990 mill site test pits (also included in Appendix A)
- Knight Piésold Ltd. "Report on Geotechnical Investigations and Design of Open Pit, Waste Dumps and Tailings Storage Facility (Ref. No. 1621/1)", dated February 19, 1990.

Test pit logs from the 1989 and 1990 geotechnical investigation programs have been included in Appendix A. In addition, applicable laboratory test work results from the 1989 tailings storage facility investigation program have also been included.

CONSULTING ENGINEERS

SECTION 2.0 - GEOTECHNICAL RESULTS

2.1 GENERAL

A total of thirty-nine (39) test pits were excavated during the geotechnical site investigation program to evaluate the type and distribution of surficial materials and the near surface foundation conditions at the mill site, along access roads and pipeline routes, at potential borrow areas, within the tailings basin and at the Polley Lake dam site.

2.2 MILL SITE AND ACCESS ROADS

2.2.1 Mill Site

Eight test pits (TP95-1 to 8) were excavated in select locations at the proposed mill site to provide additional information from the February, 1990 test pit program (TPMS90-1 to 4). Dense, brown glacial till comprising silty sand with some gravel and clay was encountered overlying lapilli tuff bedrock throughout the mill site area. The bedrock was typically heavily fractured for approximately 0.5 to 1.0 meters depth before becoming more competent, which precluded excavation with the backhoe.

TP95-1, located at the fine ore stockpile site, encountered 5.5 metres of glacial till overlying bedrock. Similar ground conditions were encountered to the north and south in test pits TPMS90-1 to 3.

Test pits TP95-2,3,4,7 and 8 were 'ocated in the vicinity of the concentrator site and encountered a variable thickness (1.2 to 3.6 metres) of glacial till overlying bedrock. Bedrock was typically encountered at shallow depths except in test pit TP95-7 where bedrock was not encountered.

TP95-5, located at the crusher site, revealed a thin, 0.5 meter thick layer of glacial till overlying bedrock. Test pit TPMS90-4, located to the north, encountered a thick, 6.1 + metre layer of till at a higher elevation.

Association Association of Consulting des Ingénieurs-Engineers Conseils of Canada du Canada

1623\1, March 14, 1995 INVESTIGATION KP 1-9 345 of 500

4

Knight Piésold Ltd. CONSULTING ENGINEERS

TP95-6 was located at the coarse ore stockpile site and encountered 5.0+ metres of glacial till. Although bedrock was not exposed during excavation, angular rock fragments were present at the bottom of the pit which typically indicate a close proximity to bedrock.

2.2.2 Bootjack Lake Road

Five test pits (TP95-9 to 13) were excavated along the side slope of an existing access road above the west shore of Bootjack Lake. Test pits TP95-9, 10 and 11 encountered coarser-grained, sand and gravel glacial till at lower elevations, which became more silty and less gravel with increasing elevation. The till encountered in TP95-12 and 13 was similar to the material identified at the mill site. TP95-9 also encountered softer till, due to a higher in-situ moisture content, at 2.5 metres depth. TP95-12 encountered a thin, 1.2 metre thick layer of till overlying bedrock.

2.2.3 Main access road

Two test pits (TP95-14 and 15) were excavated to examine the regional ground conditions along the existing Main access road and to identify potential sand and gravel deposits. Test pit TP95-14 encountered 4.1 metres of sandy silt glacial till adjacent to Morehead Creek at kilometre 7.1. Test pit TP95-15, located on top of a narrow ridge at kilometre 4.3, did not encounter sand and gravel deposits as anticipated, rather 4.5 metres of sandy, gravelly silt glacial till to depth.

2.3 TAILINGS STORAGE FACILITY

2.3.1 Tailings and Reclaim Pipeline Route

Four test pits (TP95-16 to 19) were located north of the proposed tailings storage facility and partially along the proposed tailings and reclaim pipeline route. All four test pits encountered glacial till comprising silty sand to

gravel and sand. TP95-17 encountered the water table at 3 metres depth. TP95-19, located along the steep hill slope, encountered angular rock fragments at the bottom of the pit (6.4 metres), indicating a close proximity to bedrock, and indicates that a thinner covering of till exists at higher elevations.

2.3.2 Borrow Areas

Three test pits (TP95-29 to 31) were located on the ridge east of the tailings facility to investigate potential borrow sources for future embankment construction. All three pits encountered glacial till comprising silty sandy gravel with trace clay to depths of 5.7, 5.5 and 5.8 metres, respectively. The till in TP95-29 was drier than typically encountered in the other two pits, and the water table was not encountered in any of the pits.

2.3.3 Embankment and Basin Foundations

Eleven test pits (TP95-26 to 29, 32 to 39) were excavated within the proposed tailings storage facility. Glacial till was typically encountered in the northern portion of the facility, whereas glaciofluvial/glaciolacustrine deposits of silt, sand and clay were encountered in the south.

Test pits TP95-26, 27, 28 and 32, located in the northern portion of the tailings basin and in the Perimeter Embankment footprint, encountered very stiff to hard, low permeability glacial till to depths of over 6.2 metres. TP95-28, excavated in a swamp, encountered dry till below 1.9 metres of soft, saturated organics and silt/clay layers. Only localized, very low flow seeps were encountered in TP95-27, and a perched water table was observed in the lacustrine deposits overlying the till in TP95-28.

Test pits TP95-33 to 39 were excavated in the southern portion of the tailings basin and in the Main Embankment footprint. TP95-33, 34 and 35 encountered a 3 to 4 metre thick layer of low permeability, sandy silt glacial till overlying layered silt and very fine-grained sand glaciofluvial/

Association Association of Consulting des Ingénieurs-Engíneers Conseils of Canada du Canada

1623\1. March 14, 1995 INVESTIGATION KP 1-9 347 of 500

Knight Piésold Ltd.

glaciolacustrine deposits. Localized, very low flow seeps were visible at the contact between these deposits. TP95-33 also encountered 0.9 metres of soft organics and silt/clay deposits at surface due to the close proximity to a A similar glacial till cap overlying very stiff to hard, low pond. permeability silt deposits interbedded with fine-grained sand was identified in test pits TP95-36 and 38. A 0.6 metre thick layer of clean, saturated, coarse-grained sand was encountered between the glacial till and the interbedded silts and sands in TP95-36. TP95-39, located in close proximity to TP95-36 and 38, encountered a 2.2 meter thick cap of low permeability glacial till overlying a more permeable silt and fine-grained sand deposit to 7.5 + meters depth. The water table was encountered at the contact of these two deposits, and the silt and sand displayed very limited cohesion due to a high moisture content. TP95-37, located up slope from TP95-39, encountered 1.5 meters of glacial till overlying bedrock. Geological sections through the tailings basin and along the Main Embankment alignment are shown on Drawing No. 1623.103.

2.4 POLLEY LAKE DAM

Six test pits (TP95-20 to 25) were excavated along the south shore of Polley Lake to investigate the foundation conditions for a potential dam site. Typical materials encountered in these test pits were soft, saturated organics overlying lacustrine deposits of fine-grained sand, silt and clays. Fresh water shells were typically found in the silt layers. TP95-20 and 25, located at the east and west ends of the lake, encountered hard, low permeability silty, clayey glacial till at 2.5 and 5 metre depths, respectively. A geological section along the proposed Polley Lake Dam alignment is shown on Drawing No. 1623.103.

Association Association of Consulting des Ingénieurs-Engineers Conseils of Canada du Canada - 6 -

1623\1, March 14, 1995 INVESTIGATION KP 1-9 348 of 500

CONSULTING ENGINEERS

SECTION 3.0 - LABORATORY TEST WORK

3.1 GENERAL

Overburden materials comprising glacial till and glaciofluvial/glaciolacustrine deposits were sampled at the mill site, along access roads, along the tailings and reclaim pipeline route, in the tailings basin and borrow areas, and at the Polley Lake dam site. Index testing was performed to characterize these materials, followed by specialized testing to evaluate the various materials for suitability in specific end uses. All test work was carried out by Golder Associates' Testing Laboratory using ASTM standard procedures for routine tests and procedures specified by Knight Piésold Ltd.

A total of twelve (12) representative samples were selected from the various project areas and were submitted for the following Index test work:

- Natural Moisture Content
- Atterberg Limits
- Specific Gravity
- Grain Size Distribution

Of these samples, eight (8) were selected for additional effective strength, compaction and permeability test work as follows:

- C-U Triaxial Tests
- Modified Proctor Tests
- Falling Head Permeameter Tests

This section describes the test work performed and summarizes the results obtained. Index test results are summarized in Table 3.1, and effective strength parameters, compaction and permeability test results are summarized in Table 3.2. Detailed test results are included in Appendix B.

CONSULTING ENGINEERS

3.2 MILL SITE AND ACCESS ROADS

3.2.1 Mill Site

Two representative samples (TP95-1 and 7) of glacial till were selected from the mill site test pits for Index test work. The tills varied between a silty sand with some gravel and clay to a coarser silty, gravelly sand with trace clay. The moisture content ranged from 10.4 to 10.9 percent, and the specific gravity test on the fine fraction was 2.78.

Laboratory compaction tests performed on a sample of glacial till from TP95-7 yielded a Modified Proctor maximum dry density of 2192 kg/m³ at an optimum moisture content of 8.9 percent. The Modified Proctor optimum moisture content is 2.5 percent below the natural moisture content of the till.

3.2.2 Bootjack Lake Road

One sample of glacial till (TP95-10) was selected from the Bootjack Lake access road test pit for Index test work. The till comprised sand and gravel with some silt and trace clay, and was representative of the coarser-grained tills encountered along the road alignment. A natural moisture content of 12.6 percent was measured, which is slightly greater than measured in the finer-grained tills encountered at higher elevations at the mill site.

3.2.3 Main access road

Due to the similarity of materials identified during the test pit program, no samples from the Main access road were selected for Index test work.

CONSULTING ENGINEERS

3.3 TAILINGS STORAGE FACILITY

3.3.1 Tailings and Reclaim Pipeline Route

One representative sample (TP95-18) of glacial till was selected from the tailings and reclaim pipeline route test pits for Index test work. The till comprised sand and gravel with some silt and trace clay, and was similar to the coarser-grained tills encountered at similar elevations along the Bootjack Lake road alignment. However, the natural moisture content of 13.8 percent was slightly greater.

Laboratory compaction tests performed on this sample yielded a Modified Proctor maximum dry density of 2130 kg/m³ at an optimum moisture content of 10.1 percent. The optimum moisture content is approximately 3.7 percent below the natural moisture content of the till. The maximum dry density was the lowest of all the till samples tested from the various project areas.

3.3.2 Borrow Areas

One sample of glacial till (TP95-31) was selected from the potential borrow area on the ridge east of the tailings facility for Index test work. The till comprised silty, sandy gravel with trace clay, with a moisture content of 11.0 percent.

Laboratory compaction tests performed on this sample yielded a Modified Proctor maximum dry density of 2200 kg/m³ at an optimum moisture content of 7.6 percent. The optimum moisture content is approximately 3.4 percent below the natural moisture content of the till. The overall compaction characteristics are very similar to the tills encountered in the Perimeter Embankment foundation (TP95-27) and at the mill site (TP95-7).

Knight Piésold Ltd.

3.3.3 Embankment and Basin Foundations

(i) Glacial Till Samples

Two representative samples of glacial till (TP95-27 and 37) were selected from test pits located in the Perimeter Embankment foundation footprint and within the tailings basin for Index test work. The tills comprised sand and silt with some gravel and clay, with moisture contents ranging from 11.1 to 18.8 percent. The higher moisture content in TP95-37 may be attributed to the close proximity to fractured bedrock where seeps were identified. The moisture content of the till in TP95-27 is typical of the fine-grained tills encountered at the mill site and the potential borrow area. Specific gravity tests on the fine fraction of TP95-27 yielded 2.73.

Laboratory compaction tests performed on the till sample from TP95-27 yielded a Modified Proctor maximum dry density of 2200 kg/m³ at an optimum moisture content of 8.0 percent. The optimum moisture content is approximately 3.1 percent below the natural moisture content of the till. The overall compaction characteristics are very similar to the till encountered in the potential borrow area (TP95-31).

Laboratory derived effective strength parameters were determined on glacial till samples from TP95-27 and 37 using consolidatedundrained (C-U) triaxial test work. The samples were compacted to a minimum 95 percent Modified Proctor maximum dry density at the natural moisture content, and confining pressures of 250 and 750 kPa for TP95-27 and 500 and 1000 kPa for TP95-37 were applied in stages until failure developed. The triaxial test was done on both samples and the results were combined to obtain a more representative result of the shear strength properties of the glacial till. The tests resulted in the following shear strength parameters:

Association Association of Consulting des Ingénieurs-Engineers Conseils of Canada du Canada

1623\1, March 14, 1995 INVESTIGATION KP 1-9 353 of 500

CONSULTING ENGINEERS

- $\emptyset' = 35^{\circ}$
- c' = 0 kPa

The effective strength parameters were determined from the maximum deviator stresses and principal stress ratios at failure, and are shown as p' vs. q plots on Figure 3.3.

A detailed summary of the consolidated-undrained triaxial test results is shown in Table 3.3.

Falling head permeameter test work was performed on sample TP95-27 and yielded a permeability of 4 x 10^{-8} cm/sec. The permeability was similar to the measured permeabilities on glacial till samples from test pits TP95-31 (k=6 x 10^{-8} cm/sec) and TPB-13, 14 and 16 (k=2 x 10^{-8} cm/sec).

(ii) Glaciofluvial/Glaciolacustrine Samples

Three representative samples of glaciofluvial/glaciolacustrine materials (TP95-35, 38 and 39) were selected from test pits located within the southern tailings basin for Index test work. The materials varied from interbedded sandy silt to very stiff silt with some clay to saturated silt and fine-grained sand. Moisture contents ranged from 16.5 percent for the interbedded sandy silt to 28.5 percent for the dense silt and the saturated silt and sand. Specific gravity ranged between 2.76 and 2.79.

Laboratory derived effective strength parameters were determined on the silt and fine-grained sand sample from TP95-39 using consolidated-undrained (C-U) triaxial test work. The sample was compacted to a minimum 95 percent Modified Proctor maximum dry density at the natural moisture content, and confining pressures of 300, 600 and 1000 kPa were applied in stages until failure

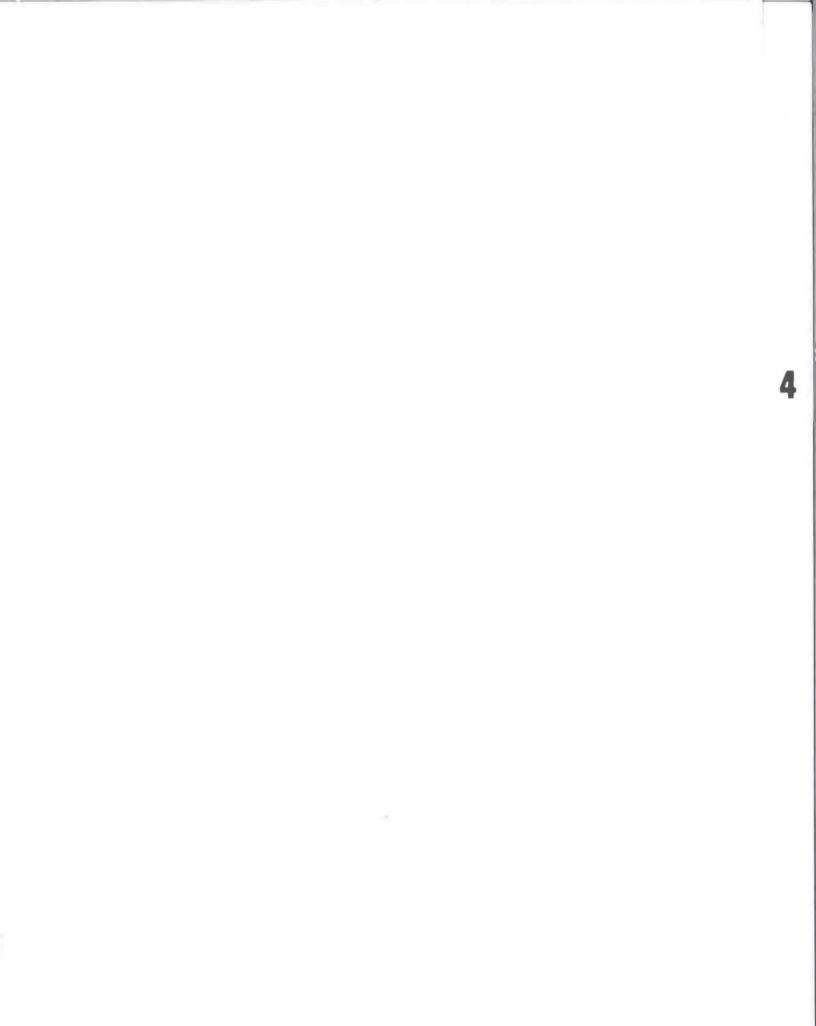
CONSULTING ENGINEERS

developed. The tests resulted in the following shear strength parameters:

• c' = 0 kPa

The effective strength parameters are determined from the maximum deviator stresses and principal stress ratios at failure, and are shown as p' vs. q on Figure 3.4.

A detailed summary of the consolidated-undrained triaxial test results is shown in Table 3.4.


Falling head permeameter test work was performed on samples TP95-35, 38 and 39 and yielded permeabilities of 7 x 10^{-7} , 3 x 10^{-7} and 2 x 10^{-6} cm/sec, respectively.

3.4 POLLEY LAKE DAM

Two samples (TP95-20 and 25) were selected from test pits located at the south end of Polley Lake for Index test work. The dense glacial till sample from TP95-20 comprised silty, clayey sand with a trace to some gravel and a moisture content of 14.5 percent. This till sample has a higher clay content than typically encountered tills, and the higher moisture content is attributed to the close proximity to Polley Lake. TP95-25 encountered lacustrine layers comprising sand and silt with some clay and gravel, with a natural moisture content of 17.1 percent.

1623\1. March 14, 1995 INVESTIGATION KP 1-9 355 of 500

Knight Piésold Ltd.

SECTION 4.0 - GEOLOGICAL FACTORS AFFECTING DESIGN

4.1 GENERAL

The results of the investigation program were used to evaluate the geotechnical factors which may affect the design of the various project components. A summary of results, conclusions and recommendations is provided below with respect to each project component.

4.2 MILL SITE AND ACCESS ROADS

4.2.1 Mill Site

Glacial till was encountered in all eight test pits (TP95-1 to 8) at the proposed mill site location. The glacial till ranges in thickness from 0.5 to 5.8 + metres and overlies lapilli tuff bedrock. The top 1 metre of bedrock is typically very fractured and weathered near surface, however, it becomes fresh and increasingly competent with depth.

An allowable bearing capacity pressure (q_a) of 250 kPa has been estimated for the basal till, based on an assumed Standard Penetration Test (SPT) value of $(N_1)_{60} = 25$. The SPT value was estimated from excavation conditions in the dense to hard glacial till. Therefore, the glacial till will provide a suitable dense foundation material for footings supporting general buildings and less settlement sensitive components. However, heavy structures with dynamic loads should be founded on competent bedrock. The allowable bearing pressure for competent rock (RQD>25 or as approved by the Engineer) is 1500 kPa. For both cases, the allowable bearing pressure will result in less than 25 mm (1 inch) of settlement in the foundation, assuming the groundwater table is located below the base of the footings.

The foundation must be stripped and grubbed and all organic material removed prior to footing excavation. The exposed till surface must be

Association Association of Consulting des Ingénieurs-Engineers Consells of Canada du Canada

Knight Piésold Ltd.

inspected to ensure the material is competent and will support the design loads. Any soft soils or saturated areas must be excavated to expose either competent till or bedrock.

Foundations for heavy and/or vibratory structures such as at the crusher and concentrator must be excavated to competent bedrock to support the loads. The investigation program revealed a thin, 0.5 metre thick layer of glacial till covering most of the proposed crusher site location, and a thicker, up to 3.6 metres thick, layer of till over the majority of the concentrator site. This till cover and the upper fractured bedrock must be removed to expose competent bedrock. Nearby drill holes indicate that competent bedrock is present below the upper fractured rock. Any anchor systems that are required for the mills or crusher can be designed to suit the projected dynamic loadings.

Foundations for the crusher and concentrator must include provisions to accommodate seasonal freeze/thaw while minimizing potential differential settlement. Based on meteorological data, the depth of freeze is estimated to be 1.25 metres (4 feet). Consequently, the foundations for all structures must be covered with a 1.25 metre thick layer of free-draining, non-frost susceptible (NFS) material such as clean gravel or coarse sand, as required, to enhance drainage and prevent frost heave from occurring. The NFS material required for frost protection will provide drainage around foundation footings thereby depressing the water table and greatly reducing the potential for the development of ice lenses which cause frost heaving. It is recommended that 100 mm diameter corrugated polyethylene tubing (CPT) be included to further enhance foundation drainage.

The crusher and concentrator sites must be well drained during construction and operations to prevent standing water from ponding in the vicinity of the foundations. The NFS drainage material and CPT pipework will provide post-construction drainage at the sites. Surface runoff from building roofs and access roads, etc. must also be diverted or directed well away from the foundations to minimize seepage and infiltration into the foundation soils.

Association Association of Consulting des Ingénieurs-Engineers Conseils of Canada du Canada

1623\1. March 14, 1995 INVESTIGATION KP 1-9 358 of 500 Foundation conditions at the proposed coarse and fine ore stockpile locations encountered 5.0+ and 5.5 metres of till overlying bedrock, respectively. This till will provide competent foundation support for the stockpiles as the amount of allowable settlement will be much higher than for the crusher and concentrator.

4.2.2 Bootjack Lake Road

Glacial till was encountered in all five test pits (TP95-9 to 13) along the proposed Bootjack Lake access road alignment. The glacial till ranges in thickness from 1.2 to 6.3 + metres and overlies bedrock. Due to the high water encountered in TP95-9 and 11, the softer material encountered at 2.5 metres depth in TP95-9, and the shallow depth to bedrock in TP95-12, it is recommended that the road excavation does not exceed 1 metre, otherwise difficulties may be encountered during construction. The surficial, coarse-grained till will be suitable for both excavation and use as fill for widening the existing road.

4.2.3 Main Access Road

Glacial till was encountered in both test pits (TP95-14 and 15) along the existing Main access road. This material will be suitable for both excavation and use as fill for widening the existing road. The entire road alignment should be inspected to identify any problem areas such as exposed bedrock outcrops, seeps, etc. prior to construction.

4.3 TAILINGS STORAGE FACILITY

4.3.1 Tailings and Reclaim Pipeline Route

Glacial till was encountered in all four test pits (TP95-16 to 19) near and along the proposed tailings and reclaim pipeline route. The till will be suitable for use as fill in access roads and will provide a competent

foundation for the pipelines. Excavations at lower elevations should not exceed 3 metres depth due to the high water table near Bootjack Creek.

4.3.2 Borrow Areas

Laboratory test work on the glacial till sample from test pit TP95-31 confirmed that the till encountered along the ridge east of the tailings storage facility will be suitable for use as embankment fill. Delineation of the borrow area extents and calculation of the available quantities of material is required.

4.3.3 Embankment and Basin Foundations

A 5 metre minimum thick cover of dense, low permeability glacial till blankets the majority of the tailings basin and the Perimeter Embankment footprint as encountered in test pits TP95-26 to 28, 32 and in existing test pits. However, in the southern portion of the basin, the till becomes thinner (3 to 4 metres thick) and is non-existent over a portion of the Main Embankment footprint. A low permeability glacial till liner will be required in the tailings basin where the in-situ glacial till is less than approximately 3 metres thick. The till liner will act as a seepage barrier to prevent the migration of water out of the tailings facility and into the foundation. In addition, this liner will be thick enough to provide frost protection for the glacial till. The till liner will tie into the low permeability glacial till core of the Main Embankment, thereby providing a continuous seepage barrier for the facility.

4.4 POLLEY LAKE DAM

The foundation conditions at the south end of Polley Lake comprise saturated, soft organics and lacustrine deposits overlying low permeability, very stiff glacial till as encountered in test pits TP95-20 to 25. At the south-east and south-west ends of the lake, the soft organics and lacustrine deposits vary in thickness between 2.5 and 5 metres, respectively. In between these pits, the deposits increased to more than 6.5

Knight Piésold Ltd.

CONSULTING ENGINEERS

metres thick. During the excavation of the test pits, significant seepage was observed from the organics and the sandy layers of the lacustrine deposits, due to the close proximity to Polley Lake.

1623\1, March 14, 1995 INVESTIGATION KP 1-9 361 of 500 TABLES

TABLE 3.1

IMPERIAL METALS CORPORATION MT. POLLEY PROJECT

SUMMARY OF LABORATORY TESTS INDEX TEST RESULTS

JUORDATA 1623 LAB TEST. XLS

Knight Piésold Ltd. CONSULTING ENGINEERS

Test Pit		Specific	Natural	1	Atterber	g Limit	s		Grain Size	Distribution		
Sample No.	Location	Gravity	Moisture Content (%)	LL	(S PL	%) PI	LI	+#4 % Gravel	#4 - #200 % Sand	#200 - 0.002mm % Silt	-0.002mm %Clay	Soil Description
TP95-1	Mill Site		10.4	21	13	8	-0.3	21	46	27	6	Silty, gravelly SAND, trace clay
TP95-7	Mill Site	2.78	10.9	24	14	11	-0.2	16	39	35	10	Silty SAND, some gravel and clay
TP95-10	Bootjack Lake Road	-	12.6	25	17	9	-0.4	38	36	19	7	GRAVEL and SAND, some silt, trace clay
TP95-18	Tailings/Reclaim Pipeline Route		13.8	27	13	14	0.0	38	36	19	7	GRAVEL and SAND, some silt, trace clay
TP95-20	Polley Lake		14.5	26	13	13	0.1	10	39	25	26	Silty, clayey SAND, trace to some gravel
TP95-25	Polley Lake		17.1	24	12	13	0.4	15	37	33	15	SAND and SILT, some gravel and clay
TP95-27	Perimeter Embankment Foundation	2.73	11.1	22	14	9	-0.3	19	37	33	11	SAND and SILT, some gravel and clay
TP95-31	East Ridge Borrow Area		11.0	22	14	8	-0.4	41	27	25	7	Silty, sandy GRAVEL, trace clay
TP95-35	South Basin	2.78	16.5	21	14	7	0.4	2	22	65	11	Sandy SILT, some clay, trace gravel
TP95-37	South Basin	-	18.8	27	16	11	0.2	14	40	35	11	SAND and SILT, some gravel and clay
TP95-38	Main Embankment Foundation	2.79	28.4	33	19	14	0.7	3	6	73	18	SILT, some clay, trace sand and gravel
TP95-39	Main Embankment Foundation	2.76	28.5	-	1.	-	•	0	40	46	14	SILT and fine SAND, some clay
TPB-1	Main Embankment Foundation		13.7	29	19	10	-0.5	3	14	67	16	SILT, some clay and sand, trace gravel
PB-13.14.16	Embankment & Pond Foundations	2.76	25.1	30	16	14	0.6	1	17	61	21	Clayey SILT, some sand, trace gravel

1. Samples TPB-1 and TPB-13,14,16 were selected for laboratory testwork in 1989 and have been reported for comparison.

Feb 27 '95 10:28 am

TABLE 3.2

IMPERIAL METALS CORPORATION MT. POLLEY PROJECT

SUMMARY OF LABORATORY TESTS EFFECTIVE STRENGTH PARAMETERS, COMPACTION AND PERMEABILITY TEST RESULTS

J:\JOB\DATA\1623\LAB_TEST.XLS

Knight Piésold Ltd.

CONSULTING ENGINEERS

Mar 13 '95 2:07 pm

		EFFECTIVE STRENGTH PARAMETERS		0	COMPACTIO	N	PERMEABILITY	
Test Pit				Natural	Optimum	Maximum	Permeameter	Soil
Sample	Location	Friction Angle,	Cohesion,	Moisture	Moisture	Dry	Falling	Description
No.		Ø'	c'	Content	Content	Density	Head Test	
		(degrees)	(kPa)	(%)	(%)	(kg/m ³)	(cm/sec)	
TP95-7	Mill Site	-	+	10.9	8.4	2192		Silty SAND, some gravel and clay
TP95-18	Tailings/Reclaim Pipeline Route	•		13.8	10.1	2130	-	GRAVEL and SAND, some silt, trace clay
TP95-27	Perimeter Embankment Foundation	35	0	11.1	8.0	2200	4 x 10 ⁻⁸	SAND and SILT, some gravel and clay
TP95-31	East Ridge Borrow Area			11.0	7.6	2200	6 x 10 ⁻⁸	Silty, sandy GRAVEL, trace clay
TP95-35	South Basin	-	-	-		-	7 x 10 ⁻⁷	Sandy SILT, some clay, trace gravel
TP95-37	South Basin	35	0		-			SAND and SILT, some gravel and clay
TP95-38	Main Embankment Foundation		-	-			3 x 10 ⁻⁷	SILT, some clay, trace sand and gravel
TP95-39	Main Embankment Foundation	33	0		•		2 x 10 ⁻⁶	SILT and fine SAND, some clay
1114-13.14.16	Embankment & Pond Foundations		(4)	25.1	13,3	1935	2 x 10 ⁸	Clayey SILT, some sand, trace gravel

Notes:

L. Triaxial tests results from samples TP95-27 and 37 were combined to determine average strength pearameters for the glacial till material.

2. Compaction tests performed as per ASTM D1557 Modified Proctor tests.

3. Permeability tests carried out on samples compacted with standard proctor energy and at natural moisture content.

4. Sample TPB-13.14.16 was selected for laboratory testwork in 1989 and has been reported for comparison.

Knight Piésold Ltd. CONSULTING ENGINEERS

TABLE 3.3

IMPERIAL METALS CORPORATION MT. POLLEY PROJECT TAILINGS STORAGE FACILITY

RESULTS OF CONSOLIDATED-UNDRAINED TRIAXIAL TESTS ON GLACIAL TILL SAMPLES

Triaxial Testing Stages			Samp	le No.	
and Soil Parameters	Units	TP95-27	TP95-37	TP95-27	TP95-37
		(Test 1)	(Test 2)	(Test 3)	(Test 4)
Initial Parameters					
Sample diameter	(cm)	3.77	3.72	3.75	3.72
Sample length	(cm)	14.68	15.35	15.21	15.35
Moisture content, w	(%)	7.9	9.3	7.6	9.1
Dry density, γ_{dry}	(kg/m^3)	2168	2072	2079	2063
Bulk density, γ_{bulk}	(kg/m^3)	2339	2265	2237	2251
Void ratio, e		0.259	0.342	0.313	0.348
B-value		0.965	0.985	0.954	0.997
Consolidation Stage			11		1
Cell pressure	(kPa)	772	979	1220	1374
Back Pressure	(kPa)	484	481	476	412
Final effective consolidation pressure, σ_{3c} '	(kPa)	287	498	745	962
Final moisture content, w	(%)	9.7	9.8	9.8	9.9
Final dry density, γ_{dry}	(kg/m^3)	2207	2183	2161	2180
Final bulk density, γ_{bulk}	(kg/m^3)	2421	2397	2373	2396
Final void ratio, e		0.237	0.274	0.264	0.275
Coefficient of consolidation, c _v	(cm^2/s)	2.7×10^{-2}	7.4×10^{-4}	2.3×10^{-2}	1.1×10^{-3}
Shearing Stage					
Effective consolidation pressure, σ_{3c} '	(kPa)	287	498	745	962
Principal stress ratio, P.S.R. $(\sigma_1'/\sigma_3')_{max}$		4.25	3.74	3.60	3.38
Strain at maximum P.S.R.	(%)	1.85	2.09	11.67	7,42
σ_1 ' at maximum P.S.R.	(kPa)	823	1202	1012	2216
σ_3 ' at maximum P.S.R.	(kPa)	194	321	282	657
ΔU at maximum P.S.R.	(kPa)	94	177	463	305
A _f at maximum P.S.R.	A	0.15	0.20	0.63	0.20
Maximum deviator stress, $(\sigma_d)_{max}$	(kPa)	1416	1268	812	1624
Strain at $(\sigma_d)_{max}$	(%)	17.66	21.14	21.04	20.02
σ_1 at $(\sigma_d)_{max}$	(kPa)	1946	1843	1135	2354
σ_3 at $(\sigma_d)_{max}$	(kPa)	531	575	323	730
ΔU at $(\sigma_d)_{max}$	(kPa)	-243	-77	422	232
$A_f \text{ at } (\sigma_d)_{max}$		-0.17	-0.06	0.52	0.14

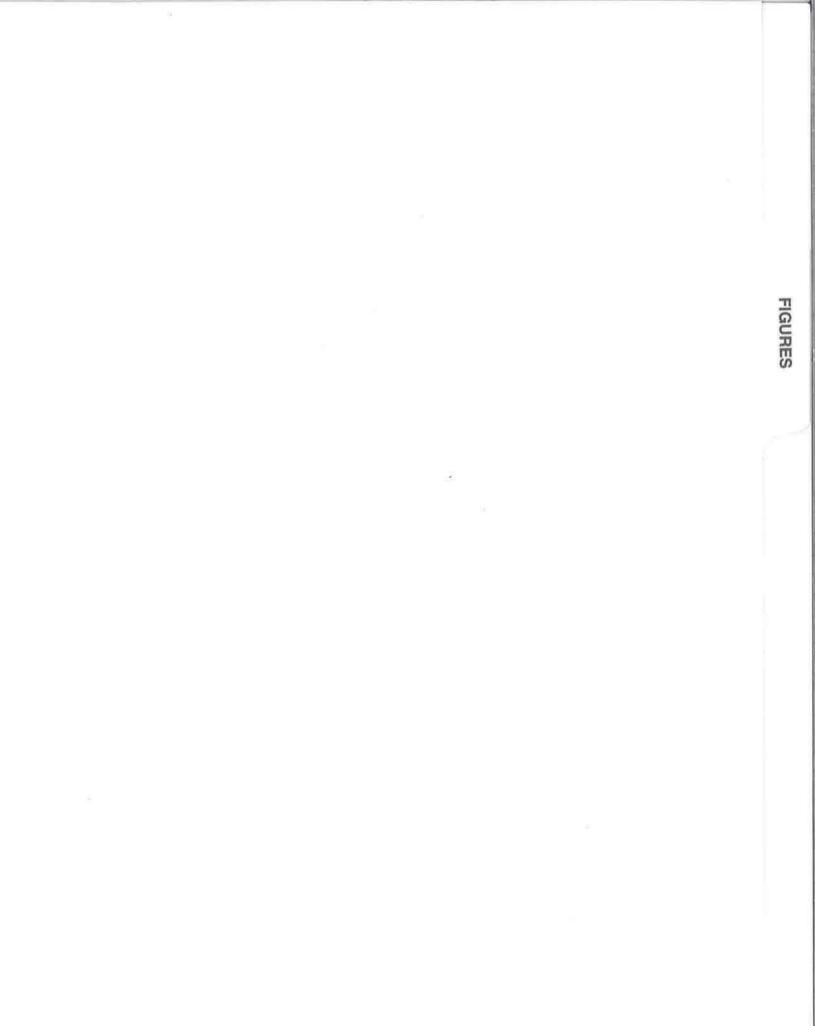
Association des Ingénieurs-Conseils du Canada

INVESTIGATION KP 1-9 365 of 500

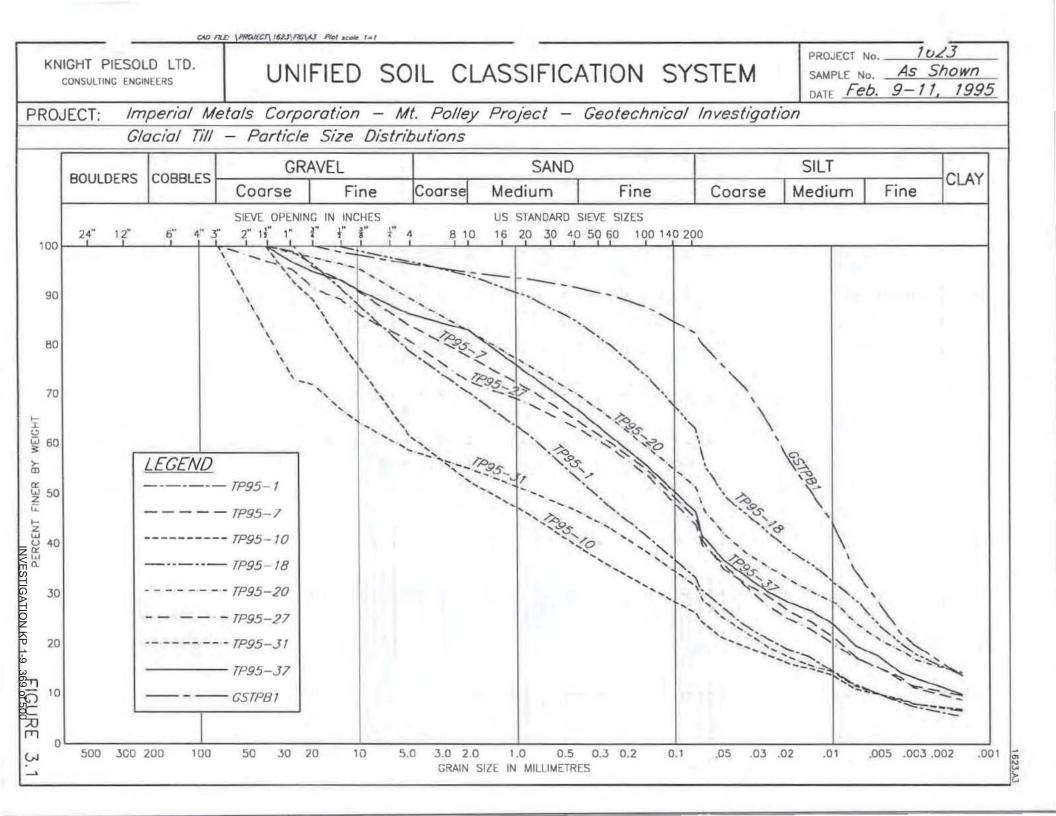
Knight Piésold Ltd. CONSULTING ENGINEERS

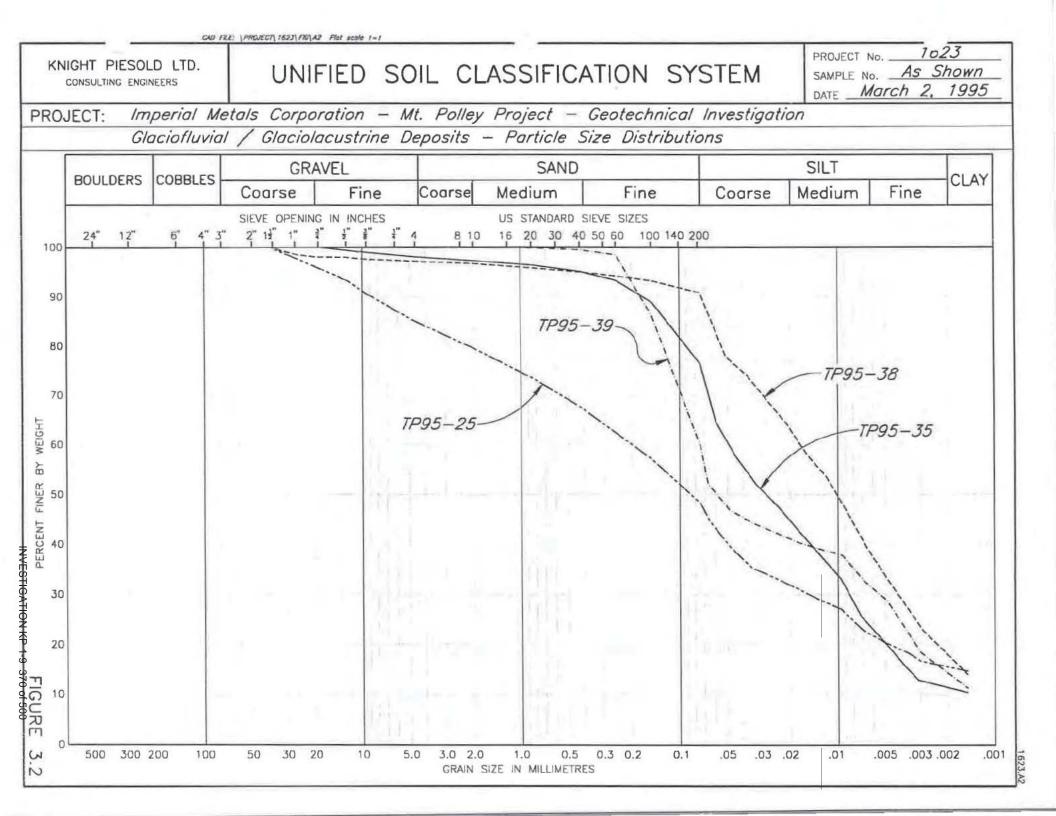
TABLE 3.4

IMPERIAL METALS CORPORATION MT. POLLEY PROJECT TAILINGS STORAGE FACILITY

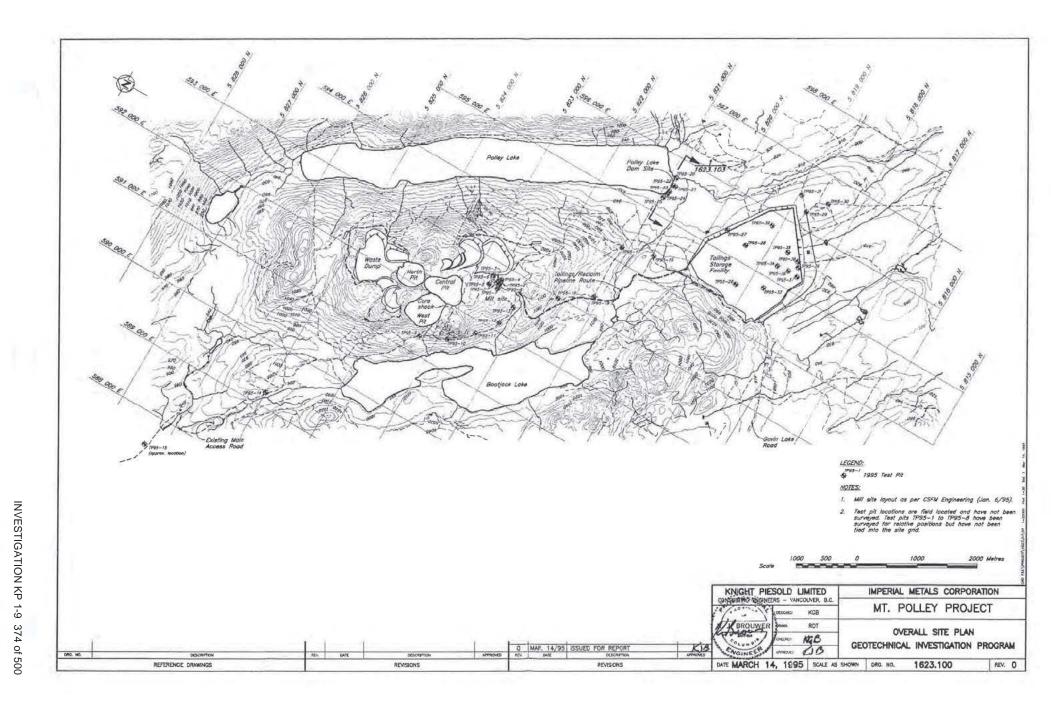

RESULTS OF CONSOLIDATED-UNDRAINED TRIAXIAL TESTS ON SILT AND FINE-GRAINED SAND SAMPLES

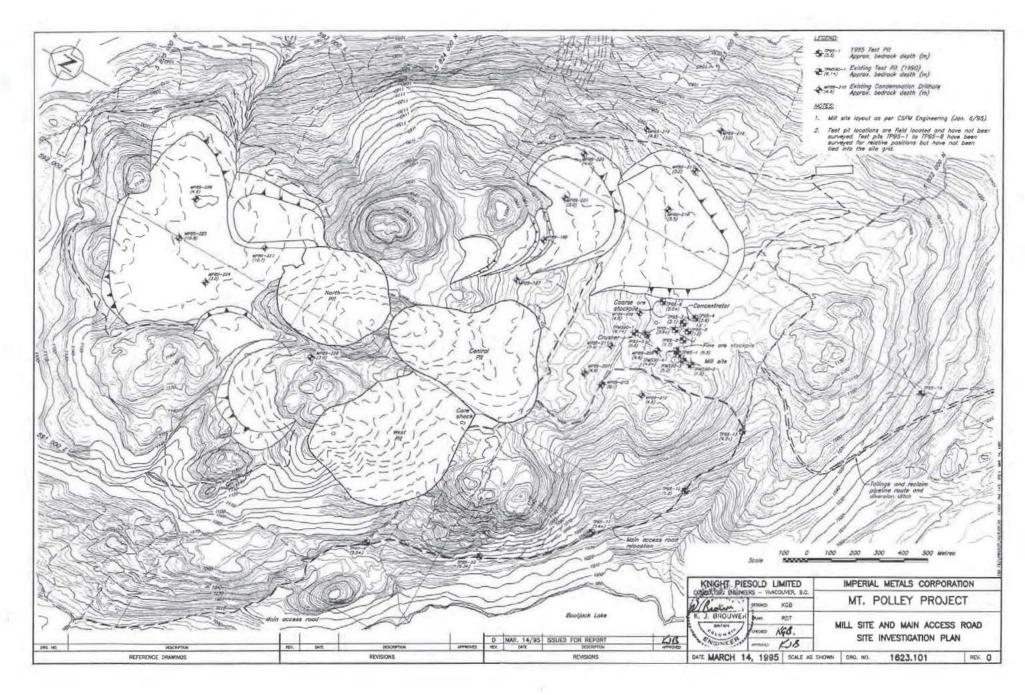

Triaxial Testing Stages and Soil Parameters	Units		Sample No. TP95-39	
		(Test 1)	(Test 2)	(Test 3)
Initial Parameters				
Sample diameter	(cm)	3.75	3.72	3.69
Sample length	(cm)	14.81	14.94	14.86
Moisture content, w	(%)	16.3	16.6	16.7
Dry density, γ_{dry}	(kg/m^3)	1693	1639	1558
Bulk density, γ_{bulk}	(kg/m^3)	1969	1911	1818
Void ratio, e		0.630	0.684	0.772
B-value		0.955	0.953	0.963
Consolidation Stage				
Cell pressure	(kPa)	779	1077	1306
Back Pressure	(kPa)	483	482	415
Final effective consolidation pressure, σ_{3c} '	(kPa)	296	595	891
Final moisture content, w	(%)	19.2	18.6	19.9
Final dry density, γ_{dry}	(kg/m^3)	1803	1807	1756
Final bulk density, γ_{bulk}	(kg/m^3)	2149	2143	2105
Final void ratio, e	X1 0.75 40	0.531	0.528	0.571
Coefficient of consolidation, c _v	(cm^2/s)	2.2×10^{-2}	5.9x10 ⁻²	3.8×10^{-2}
Shearing Stage				
Effective consolidation pressure, σ_{3c} '	(kPa)	296	595	891
Principal stress ratio, P.S.R. $(\sigma_1'/\sigma_3')_{max}$		4.06	3.60	3.43
Strain at maximum P.S.R.	(%)	9.62	7.72	11.95
σ_1 ' at maximum P.S.R.	(kPa)	293	502	858
σ_3 ' at maximum P.S.R.	(kPa)	72	140	250
ΔU at maximum P.S.R.	(kPa)	224	455	641
A _f at maximum P.S.R.	1	1.01	1.25	1.06
Maximum deviator stress, $(\sigma_d)_{max}$	(kPa)	228	364	615
Strain at $(\sigma_d')_{max}$	(%)	6.63	12.10	3.96
σ_1 at $(\sigma_d)_{max}$	(kPa)	303	507	1008
σ_3 ' at $(\sigma_d')_{max}$	(kPa)	75	143	393
ΔU at $(\sigma_d')_{max}$	(kPa)	221	452	498
$A_f at (\sigma_d')_{max}$	23e X	0.97	1.24	0.81

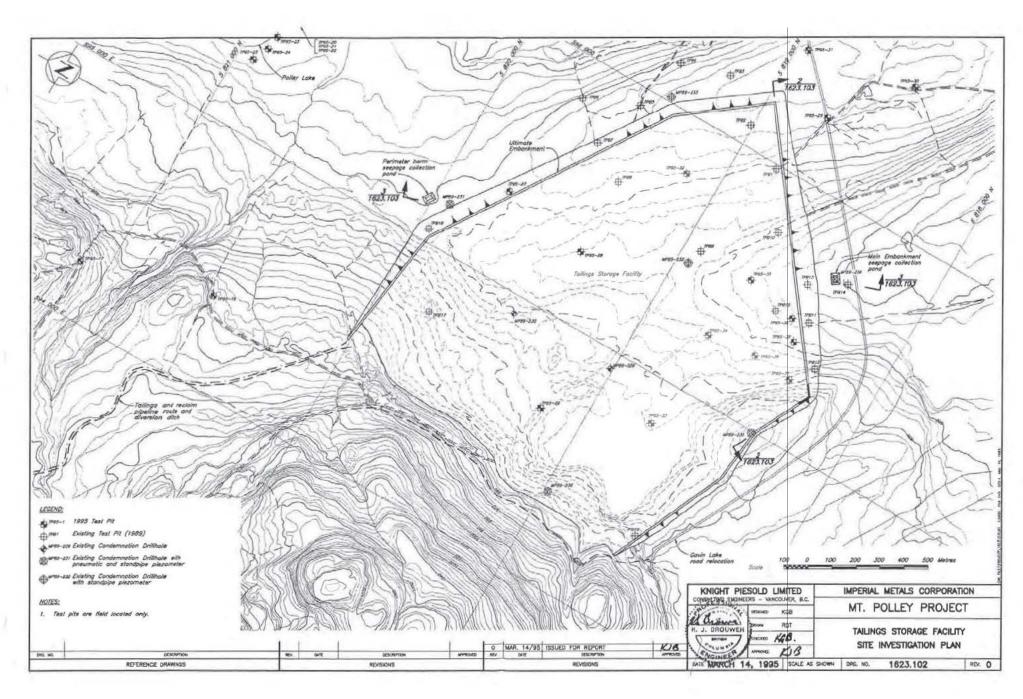


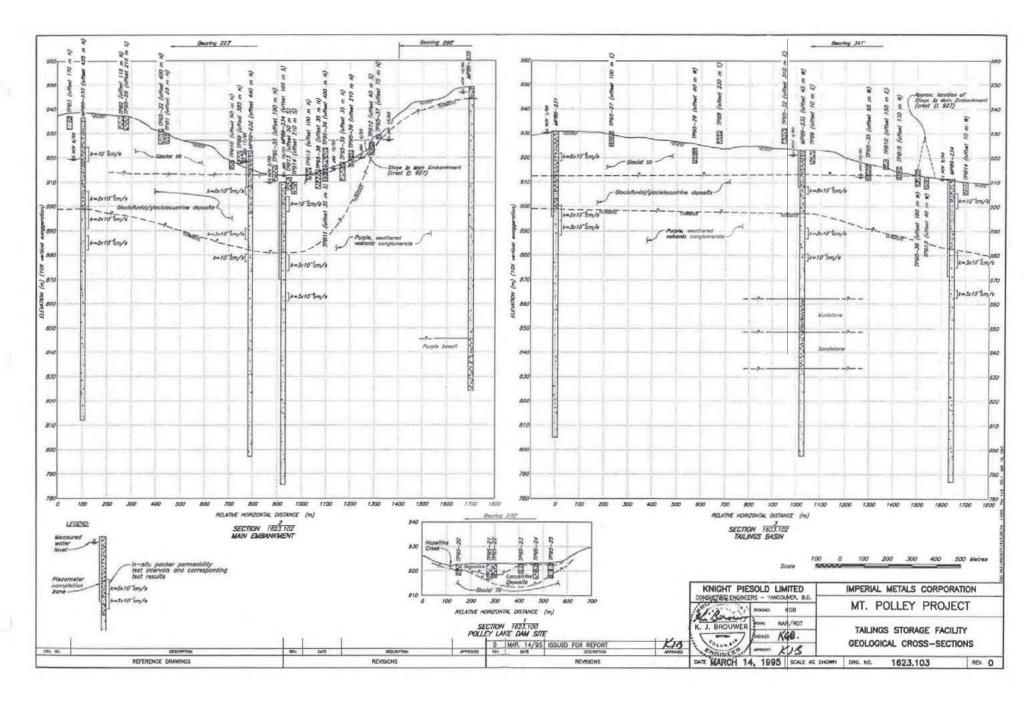

Association des Ingénieurs-Conseils du Canada

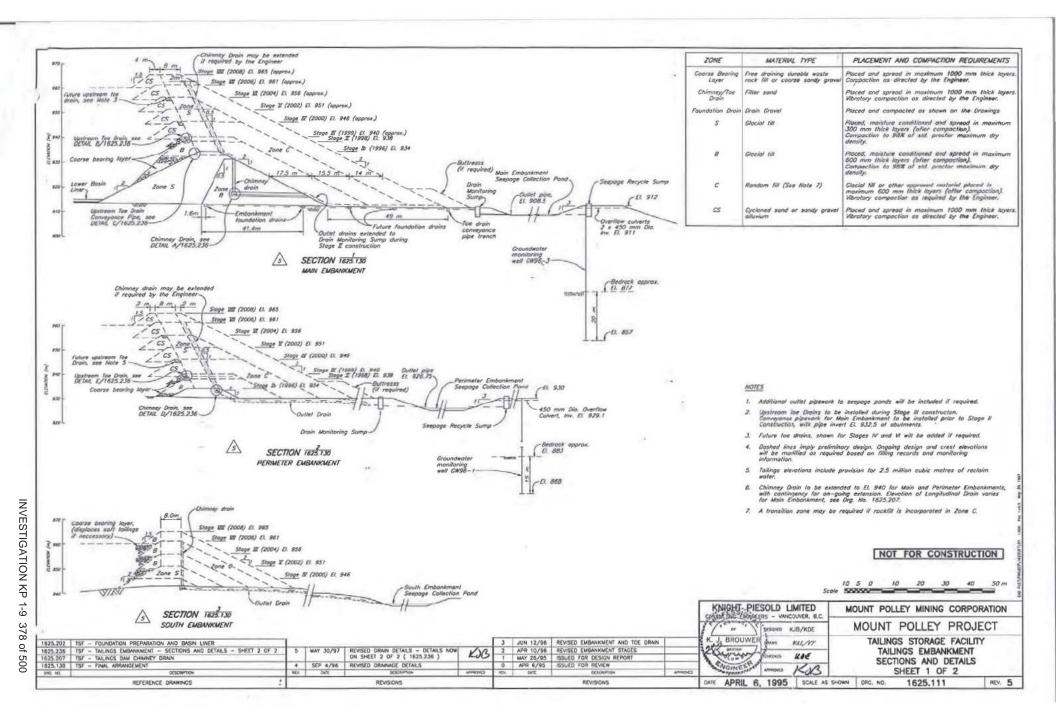
INVESTIGATION KP 1-9 366 of 500






CAD FILE: \ PHOJECT 1623 FIG A4 Plot scole 1=1 IMPERIAL METALS CORPORATION MT. POLLEY PROJECT Mar. 2, 1995 KNIGHT PIESOLD LTD. CONSULTING ENGINEERS STRESS PATH PLOTS FROM SINGLE STAGE CONSOLIDATED-UNDRAINED TRIAXIAL TESTS ON GLACIAL TILL SAMPLES 1000 Friction Angle: ""=30° 900 Ø'=sin-1(tan 4)=35° 800 Cohesion: $\left(\frac{\sigma_i^2+\sigma_3^2}{2}\right)(kPo)$ a'=0 kPa 700 $c' = \frac{a'}{\cos \mathscr{D}'} = 0 \ kPa$ 600 TP95-37 TP95-27 500 (test 2) TP95-27 (test 1) (test 3) 400 300 **NVESTIGATION KP** TP95-37 200 (test 4) 100 0 1000 FIGURE 500 2000 0 1500 $P'\left(\frac{\sigma_1'+\sigma_3'}{2}\right)(kPo)$ 3.3 1623_A4





Knight Piésold Ltd. CONSULTING ENGINEERS

*

APPENDIX A

TEST PIT LOGS

1)

.(_1

Association des Ingénieurs-Conseils du Canada

INVESTIGATION KP 1-9 380 of 500

KNIGHT AND F			TEST PIT	LOG	TEST PIT NO. TP95-2 SHEET 1 of 1
	TEST PIT_		22,560 N 592,730 E	PROJECT No GROUND ELEVA	1623
DATE Jan NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (Metres)	GRAPHIC LOG		AND CLASSIFICA	
Hitachi 200 hoe Water table encountered at 1.2 m No samples taken.	2	¥ ± +0,+, EX, EX, EX, EX, EX, EX, EX, EX, EX, EX	Oarle brown /black, saturat Orange brown / brown, dense sandy SILT with Organics sometimus encour Sandy SILT Glau Bedrock encountered at fragments, typically I water table.	, moist to very m the some gravel stored to Im def cial Till 1.2m depth. 1	and clay. Mr.
			Note: This trench was long:	A tran typically 1 in layer of t	had Im ill ovorlying above.

PROJECT Mt. Belley PROJECT No. 1623 LOCATION OF TEST PIT Approx \$ 822 \$60 Å, \$32,765 E GROUND ELEVATION ~ 1110 m DATE Tan 11/35 Content-rator MOTES Groundwater level, and the source of	KNIGHT AND P CONSULTING E			TEST PIT	LOG	TEST PIT NO. TP95-3 SHEET 1 of 1
Groundwater level, difficulty in digg- ing, equipment used, etc.(metres)LOGDESCRIPTION AND CLASSIFICATION OF MATERIALHitachi 200 hoe+ 0 + 1 + + + 00 digging conditions+ 0 + 1 + + + 00 	LOCATION OF	TEST PIT A	prox 5,87		GROUND ELEV	1623 MATION ~ 1110 m
Moderate Moderate digging conditions No samples taken. Water table at 2.1 m Water ponded in pit to 2m digting conditions I = 0 I =	Groundwater level, difficulty in digg- ing , equipment		1 V T 2 C 4 C 2 C 2 C 2 C 7 C 7 C 11			ATION
	Moderate digging conditions No samples taken. Water table encountered. at 2.1 m Water ponded in pit to 2m	z	+++ 0++++ 0++ 0++ 0++ 0++ 0++ 0++++ 0++++ 0+++++ 0+++++ 0++++++	gravel and clay. S Similar to material Sandy Silt G Bedrock encountored at 10 to 20 cm dia. typica and becomes more Backhoc rips throug could continue, in	lightly moist to encountered in T lacial Till 2.1 m. Argula lly. Very broke competent with in Im of bede idicating the	moist. P95-1 - fragments in at surface, - depth. - ock , and

DATE Jan 11/2	ST PIT <u>Approx</u> 95 DEPTH GRAPH Netres)	DESCRIPTION AND CLASSIFICATION OF MATERIAL Crange-brown (new surface) to brown, dense fine-
Groundwater level, difficulty in digg- ing, equipment used, etc. Hitachi 200 hoe Modesate	netres) Loc 0 ::+ + :+	DESCRIPTION AND CLASSIFICATION OF MATERIAL Crange-brown (new surface) to brown, dense fine-
Moderate		. Orange-brown (near surface) to brown, dense fine.
Sample TP95-4 taken 2 to 36m Water table encountered at 3.6m. Water ponded to approx 2 to 2.5m depth after 18 hrs	$ \begin{array}{c} 1 \\ 0 \\ + \\ + \\ 2 \\ + \\ + \\ 2 \\ + \\ + \\ - \\ + \\ + \\ - \\ + \\ + \\ - \\ + \\ + \\ + \\ - \\ + \\ + \\ + \\ - \\ + \\ + \\ - \\ + \\ + \\ - \\ + \\ + \\ - \\ + \\ + \\ - \\ + \\ + \\ - \\ + \\ - \\ + \\ + \\ - \\ + \\ - \\ + \\ - \\ + \\ - \\ + \\ - \\ + \\ - \\ - \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	grained sendy SILT with some gravel and clay (similar to TP35-1). slightly moist. Cohesive in-situ, reperiation at depth where chures of material is ripped from pit. Fine to medurate oranued gravel. <u>Sandy SILT Glavial Till</u> Bedrock en coontered at 3.6m depth. Argular fragments encountered.

TEST PIT No. KNIGHT AND PIESOLD LTD. TEST PIT LOG TP95-5 CONSULTING ENGINEERS SHEET I of I PROJECT _____ M+ Polley PROJECT No .__ 1623 LOCATION OF TEST PIT AMON 5,822, 720 N , 592, 600 E GROUND ELEVATION ~1120 m Crusher DATE _____ Jan 12/95 LOGGED BY _____ KAB NOTES DEPTH GRAPHIC LOG Groundwater level. (metres) difficulty in digg-DESCRIPTION AND CLASSIFICATION ing, equipment OF MATERIAL used, atc. Oxidized silly SAND with some gravel, trace clay. Hitachi 200 hoe. Coarser grained than tills in TP95-1,3 and 4. Lots of roots throughout. 11=11 Sitty Sand Glacial Till 1 Bedrack encountered at 0.5m. Lapilli Tott (volcares). Oridraed (iron stailed) or exposed outcrop. NO seeps encountered. E.O. P. Fractured. No samples 2 talien. Note: Test fit is 10 n long, and varies in sophing if to 1.4 m. INVESTIGATION KP 1-9 384 of 500

KNIGHT AND P CONSULTING E			TEST PIT	LOG	TEST PIT NO. TP95-6 SHEET 1 of 1
PROJECT LOCATION OF DATEJAN 13	TEST PIT		22,720 N; 592,740 E Course Ore Stockpile.	PROJECT No GROUND ELEVA	1623 ATION ~1117 ~
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (metres)	GRAPHIC LOG	DESCRIPTION	AND CLASSIFIC	
Hitachi 200 hoe.	0	+ + + + + + + + + + + + + + + + + + +	Brown, dense, fine-grain fine-grained gravel,	ed sandy SILT trace to some	with some clay.
Moderate digging conditions.	2 -	+)++++++++++++++++++++++++++++++++++++	Slightly moist. Becomes very drose (as cacience rips co	iries of will	(nory courses,
Sample 7795-6 from 0 to 4m	3	+ + + + + + + + + + + + + + + + + + +	and still, Frobbioly Sandy Sill	day with co a kosal till t Glacial Till	"ayer).
Digging becomes ruore difficult.	4 -	+ + + + + + + + + + + + + + + + + + + +	Till becomes oridized	ct 4 m.	
No scops encountered.	5	Δ. Δ. Ε. D. P. Ε. D. P.	Oridized coarse-grain rock fragments enroun fragments or visible	icd Sand and Hered. No long outcrop encour	argular periode tered.
	6 -				
				INVESTIGATION KP 1-9	385 of 500

PROJECT	At Onlin.			SHEET 1 0
	3	TX 5.827, 510 N; 552, 730 E.	PROJECT No GROUND ELEVA	
DATE Jan		Concentrator	LOGGED BY	CALCELER STREET, STREE
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH GR		N AND CLASSIFICA	
Hitachi 200 hoe.	0 <u>w</u>	w w Organits		
Moderate dijging conditrans,	1 + + + + + + + + + + + + + + + + + + +	+ :: sized. Typically, .	ed in surrounden fill encountered of	ilat to g test pit d and h an ac to c to rudo fill is
Seep enrountered at 4.4m. Sample TR35-7 (4.4 to 5.8m) Diffrau 17 digging conditions	4 + 0 + 0 + 0 + 0	± in travers lest		

KNIGHT AND P CONSULTING E			TEST PIT	LOG	TEST PIT NO. TP95-8 SHEET 1 of 1
PROJECT	Mt. Polley			PROJECT No	
	TEST PIT A	000x 5,82	2,560 N; 592,690 E.	_ GROUND ELEV	ATION ~1110m
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	depth (metces)	GRAPHIC LOG		I AND CLASSIFIC	ATION
Hitzuchi 200 hoe. Moderate digging conditions,	0	¥ + + + + + + + + + + + + + + + + + + +	Organitis, olack + brow Dense, brown, fine-gr fire-grained gravel Excavated. similar No hard basal fill	ained sandy 5127 and clay. Loos till as majority of	ie sacc
Water quickly ponding at bottom of hole. No samples taken.	¥? 2 3	+ + + + + + + + + + + + + + + + + + +	Bedrock encountered a Argular fragments up through approx 1.1m extremely diffrault t	to 30 cm dia. B with diffrcultu	ackhoe tears 1. Secomes

KNIGHT AND P			TEST PIT	LOG	TEST PIT NO. TP95-9
PROJECT	Mt. Polle	Approx 5,82	3,280 N; 591,300 E st side Bootjack Lake	PROJECT No GROUND ELEV LOGGED BY	ATION ~ 1052~
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH (metres)	GRAPHIC LOG		AND CLASSIFIC MATERIAL	ATION
Hitachi 200 hoe. Moderate digging conditions Sample TP35-9A (0.2 to 2.5m) Sample TP35-5B (2.3 to 5.0m) Seep @ 4m.	2 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grey, slight to moderat (sticky and cohesive) clay there to sea coboles. Stravel is Moderate resistance w Very plastre. Backho excavating material material !	Medium sized praded. Coarses J Silt Glacial 7 Hely densely ver Sconing SILT is g mely fire to charse her indented w e creates su	y moist - sation with conc frace grained. With finger ctron when
				INVESTIGATION KP 1-9	9 388 of 500

KNIGHT AND PIES	Service Se	TEST PIT	LOG	TEST PIT NO. TP95-10
CONSULTING ENG	INTERS	a an-menoset in 12 (12 19	T	SHEET 1 of 1
PROJECT	Mt. Polley		PROJECT No	1623
		22,850 N: 531 480 E	GROUND ELEV	ATION ~1048m
DATE Jan 12/	95	East side Bootjack Lake)	LOGGED BY	KGB.
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH GRAPHIC netros) GRAPHIC LOG	220270232557 (2015) 0 201702	AND CLASSIFIC	ATION
Hitachi 200 hoe.	0 ¥ ¥ ¥	Organizs.		
Moderate diygmg conditions.	1 + 0 + + + + + + + + + + + + + + + + +	Oxidized, duse sandy: clay. Slightly moist. encountered at mil [Sandy SIH G	Some materia Isite. Loose a	z grawel and zl as once excavated
Sample 7935-10	- 4 + 0° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Brown, dense, moist, trace cobbles and a once excavated. M Denser material at b Courser than till end Silly Gravelly	solderate to coa	rse gravel. Pos-9.
to coarse radis) No seeps errountered.	5 +D +D E.D.P.	Rock fragments encounter base of pit poss	ed (up to 20 y	n dia.) at
	7			

TEST PIT No. KNIGHT AND PIESOLD LTD. TEST PIT LOG TP95-11 CONSULTING ENGINEERS SHEET / of / PROJECT ______Mt. Polley 1623 PROJECT No.__ LOCATION OF TEST PIT AMON 5,822,500 N : 591,800 E GROUND ELEVATION ~ 1040 m (East side of Bootiack Lake) LOGGED BY ______ KGB. Jan 12/95 DATE DEPTH NOTES GRAPHIC LOG Groundwater level, (metres) DESCRIPTION AND CLASSIFICATION difficulty in digging, equipment OF MATERIAL used, etc. +000 Hitachi 200 hoe. Brown, dense, slightly moist (near surface) to very :0 0 Moist (to 2.8m depth), gravely SAND with some : 0. Moderate silt. Non- plastic. Poorly sorted, moderately 0.+0 1 digging conditions graded. Slightly oridized near surface. 0 000 Gravelly Send Glacial Till Sample TP95-11 2 0,+ nO : 0. D Seep exantered @ 2.8m. Saturated sandy GRAVEZ with some cobbles, 3 00 0 0 trace to some silt. Modurately dense. Argular n. cobbles and gravel. Very control material. Diffrault . > 0° . Noticable water in material when excavated. digging due to 4 coarse material 00:00 Sandy Gravel Glavial Till 5 :00 0. E.O.P. 6 INVESTIGATION KP 1-9 390 of 500

KNIGHT AND A			TEST PIT	LOG TEST PIT No. TP95-12 SHEET 1 of 1
PROJECT LOCATION OF DATE	TEST PIT	p <u>prx 5</u> 822 (Eas	e 250N; 592 140E t side of Bootjack Lake)	PROJECT No. 1623 GROUND ELEVATION ~ 1050 m LOGGED BY
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH (metres)	GRAPHIC LOG	17.9793 8	AND CLASSIFICATION MATERIAL
Hitach i 200 hoe. Sample TP95-12 Moderate digging to 2m.		$\frac{\psi}{2} + \frac{\psi}{2} + \frac{\psi}$	Moderately dense, fine some fine-grained gr Poorly sorted, modera Sandy Silt Sedrock encountered	zed, moist to very moist, -grained sandy SILT with avel and clays trace organics tely graded. Slightly phostre. <u>Glacial Till</u> at 13m depth. Tractured, 51205. Slightly wet at

TEST PIT No. KNIGHT AND PIESOLD LTD. TEST PIT LOG TP95-13 CONSULTING ENGINEERS SHEET | of | M+ Pollay PROJECT No. 1623 PROJECT _____ LOCATION OF TEST PIT APARTY 5 822 170 N; 582 470 E GROUND ELEVATION ~ 1076 m (East side of Bootjack Lake) DATE Jan 13/95 LOGGED BY _____KAS. NOTES DEPTH GRAPHIC LOG Groundwater level, (metres) DESCRIPTION AND CLASSIFICATION difficulty in digging, equipment OF MATERIAL used, etc. D Hitachi 200 hoe +0. + 。 Brown, dense, moist, sitty SAND with some gravel, trace to some clay. Gravel is typically medium sized. Well graded, poorly sorted. Slightly plastic. Coarser than material encountered at millsite. Good construction material. 1 0 Moderate + digging conditions Ô silly sond Glacial Till 2 + Sample TP95-13 D (0+0 3.5m) + 3 -ill becomes denser and more difficult to excavate. Diffreult ---0 Grey-brown, hard, slightly moist saridy SILT digging conditions ·0with some gravel and clay. Rounded gravel; 010variable sizes. Extremely cohesive (rips in E.D.P. chunks from pit). Looks like a basal till. No seeps. 5 Sandy Silt Basal Till 6 INVESTIGATION KP 1-9 392 of 500

KNIGHT AND P CONSULTING E			TEST PIT I	LOG	TEST PIT NO. TP95-14
PROJECT	Mt. Polley			PROJECT NO GROUND ELEV LOGGED BY AND CLASSIFIC MATERIAL	ATION <u>~ 975m</u> KG/B.
Moderate digging conditions Sample TP95-14. No seeps. Difficult digging with depth.	2	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	Oxidized - brown near sur coloured with depth), sandy SILT and CLAY trace cobbles. Grave Material cecomes dere Hard, slightly monst, some gravel and clay poorly sorted. Plast Good construction M <u>Sandy Silt</u>	dense, slightl with some gi I and cobbles for seiow Im: sandy SILT Moderate te z when wet.	y moist, ravel and are rounded.

KNIGHT AND P			TEST	PIT	LOG	TEST PIT NO. TP95-15 SHEET 1 OF 1
PROJECT LOCATION OF DATE	TEST PIT	max 58	26 300 N: 587 5 5 km along Main A		_ PROJECT No GROUND ELEVA LOGGED BY	1623 TION ~ 830 m
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH (metres)	GRAPHIC LOG	DES		AND CLASSIFICA MATERIAL	TION
Moderate Olygony canditorns. Sample TP95-15 No seeps.		$\begin{array}{c} + & 0 \\ + & + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$	Brown, dens SILT with . Poorly sorte and gravel, when excava Majority of Good constru (Similar till	e, slight trace to id, well Dense ted in Material wetten me as TPg	Hy moist, sandy some clays trace graded. Rounde basal-till like hard chunks, is loose once aterial. 5-14, only coarse elly silt Glacial	gravelly e cobbles. d cobbles a cobbles a lithough excavated. er.)
	-				INVESTIGATION KP 1-9	204 of 500

PROJECT	Mt. Polley			PROJECT No	1623
LOCATION OF	TEST PIT A		580N: 594 370 E ess Road)	GROUND ELEVA	TION ~ 98
DATE Jan			ess road j	LOGGED BY	ngij .
NOTES DEPTH GRAPH Groundwater level, difficulty in digg- ing, equipment used, etc.					
Hitachi 200 hoe.		+;++	Organics		
Easy to moderate ligging conditions.		0° + 0° + 1° + 1° + 1° + 1° + 1° + 1° +	Brown, dense, slightly trace to some grave rounded cobble or be poorly sorted. Plast In-situ material is	el and clay. I solder. Modera tc. No oxidation	occasional tely arad
Sample TP95-16 (0 to Sm)	2.	+++++++++++++++++++++++++++++++++++++++		Glacial Till	
Seep at S.Om. Very difficult digging conditions,	4	++++++++++++++++++++++++++++++++++++++	Grey, hard, slightly me ad clay, trace cobbles. ground in extremely moist. Note: Some local coa sand exist and	Material is rig colusive chunks	ped from . Slightle ravel an

KNIGHT AND P			TEST PIT	LOG	TP95
PROJECT	Mt. Polley			PROJECT No.	1623
LOCATION OF	TEST PIT	000x 5820	580N: 594 370 E	GROUND ELEN	
DATE	13/95	- (TSF Ad	iess Road)	LOGGED BY	KGB.
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (Metres)	GRAPHIC LOG			
Hitachi 200 hoe.	0	+ <u>+</u> + . <u>*</u> <u>*</u>	Organies		
Easy to moderate digging conditions.	1-	Co + + + + + + + + + + + + + + + + + + +	Brown, dense, slightle trace to some grad rounded cobble or b poorly sorted. Plas In-situ material is	pel and clay. poulder. Moder trc. No oxida	y SILT with Occasional rately grade tion eviden
Sample TP95-16 (0 to Sm)	1	+ 00		F Glacial Till	
	3 -				
Sep at s.Dm.	5 5	+ 00+	Grey, hard, slightly m	orst sondy SILT	with some
Very difficult digging conditions.	6 -	-+++++++++++++++++++++++++++++++++++++	ad clay, traie cobbles ground in extremely moist. Note: Some local ca	cohesive chun asse areas of	gravel and
	7.	<i>E</i> , 0, P.	sand exist and	d water seeps	Hirolyh.
]			INVESTIGATION KP 1-	

KNIGHT AND F			TEST PIT	LOG	TEST PIT NO. TP95-17 SHEET 1 of 1
PROJECT			21 110 N; 534 230 E F Access Road).	_ PROJECT No. GROUND ELEN	ATION ~ 980 m
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (Metres)	GRAPHIC LOG	DESCRIPTION AND CLASSIFICATION OF MATERIAL		
Hitachi 200 hoe. Moderate digging conditions. Sample TPOS-17 Water level rises to 3m depth after 15 hrs. Water table encountored at 4.3 m.		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Brown, moderately dens with some fine cobble moderately graded. No gravel and cobbles. Gravel and Material is saturate	Sand Glacial T	711]
1.7				INVESTIGATION KP 1	-9 397 of 500

KNIGHT AND P			TEST PIT	LOG	TEST PIT NO. TP95-18 SHEET 1 of 1
PROJECT LOCATION OF DATEJan		Approx 582	tailings /reclaim pipeline		EVATION ~ 992m
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH	GRAPHIC	DESCRIPTIO		
Hitachi 200 hoe.	0	LE LE LE	Organics		
Modurate digging conditions.	1	· · + + + + + + + + + + + + + + + + + +	Brown, dense, slight gravel and trace Plastic. Poorly sort top 20cm is oxic	ly moist sandy s clay. Occasiona ed, moderately	ILT with some I rounded cobble. graded. Approx.
Sample TP35-18		++; ; ++; ; 0 + +; ; + + +	Provide State Stat	+ Glacial Till	ain der is fresh.
Diffrolt digging conditions. No sceps incourtered.	3 -	+ 0+ 0+ 0+ 0 + 0+ 0+ 0 E. 0.	Gray-brown, hard, s gravel and clay, a cohisive (rips out sorted, well grade round to sub-rounde	of pit in chun of pit in chun id. Gravel and a	. Very dense and les). Poorhy
	-				
	-				
	-			INVESTIGATION KE	2 1-9, 398 of 500

KNIGHT AND P	COLDERFORM CEDENCE AND COLDERFORMED COLD		TEST PIT	LOG	TEST PIT NO. TP95-19
				E.	SHEET / of /
PROJECT	Mt. Pollay	1 /		PROJECT No	
		11	821 600 N; 592 980 E	GROUND ELEVA	
DATE Jan	14/95	- CAlory	tailings / reclaim pipe line route,	LOGGED BY	K413.
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	(metros)	RAPHIC LOG	and a second	AND CLASSIFICA	NOITA
Hitachi 200 hoc.	<u>_</u> * 0 <u>*</u>	L W W	Organics.		
*seepare from 0.2 to 0.8m anky.	1+	+ + + + + + + + + + + + + + + + + + + +		lized near surfa by sorted, sub- Uisible seepage and silt Till	ie. Plastrz, angular to
Moderate digging conditions Sample TP95-13 (0.8 to 6.0m)	2	++++++++++++++++++++++++++++++++++++++	(Note: This may be a from road con Brown, dense, slightly SAND with some gra Plastiz. Poorly sorted, Becomes moister with Sendy SILT with sor	noist, silty fi wels trave cobbi Moderately gra depth. Materi me gravel and	he grained les (with depth) ided. ial becomes clay taxa
Difficult	4 5 6 0	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	coopies. His graves is	dy Silt Glacial -	rangolar. Till
digging conditions.	7	¶ € 111 E.D.P.	Note: Argular rock fragments Fine-grained, mafre with (Possible bedrack cont	6 white (7/mm)	

PROJECT	Mt. Polley		PROJECT No. 1623
	2	5 B20 BOON; 565 670 E	GROUND ELEVATION ~ 922
DATE Jan 14	/95 (South-cust corner of Pollay Lake.	LOGGED BY KGB.
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH GRAF (Metres) LO	DESCRIPTION	N AND CLASSIFICATION
Hitachi 200 hoe * Perchud water- table above dense till. Very easy drache (200 hoe	х х х х х х х х х х х х х х	side walls contin	105. Completely schurated. Wously slough into pit. soft. Water continuously
digginy (0-2.5m) More diffizult digging conditions. Sample TP95-20	3 + + + + + + + + + + + + + + + + + + +	+ some gravel and clay Graded. Very cohesion ++ encountered in local	slightly moist -> moist, sandy sillt Plastic. Poorly sorted, modura e. Looks like basal +111 pits, only more in situ moist - Basal Till
	5 E.O	P. C Approximate depth. D measure due to pit collapsing and filling	iffriult to constantly with water.

CONSULTING E			ai -	1	SHEET I
PROJECT	Mt Polley	town 50	20 840N; 595 540E	PROJECT No GROUND ELEV	
DATE JAN			south of Polley Lake)	LOGGED BY	11 10 10 10 10 10 10 10 10 10 10 10 10 1
NOTES Groundwater level, difficulty in digg- ing , equipment	DEPTH (metres)	GRAPHIC LOG	DESCRIPTI		
used, etc.	\bigtriangledown				
Hitachi 200 hoe.	÷ 0.	¥ A			
	-	Y X			
Visible seeps	1	<u>*</u> ~			
from peat from	1 -	* *			
0 to Im depth.	1	N N N N	Black / brown, scotu	rated, very saft of	EGANICS.
Pit is saturated.	-	t. +: + N	0	: Minimal strengt	
Very soft dicging	2	++1,+++	Z Layer of gray, a grained SAND. colours. Easily in		211 20
throughout.	~ -	¥	arger of gray, 2	laturated, very soft,	silty fin
Q	1	<u>w</u>	colours. Easily	dented with flow	s brown
in i	1	W W	J	and and and	
No samples taken.	3	4			
ina erti	-	14			
	1	<u>\w</u>			
	4 -	112 112			
	1	2 12			
	1	+ + +	Tan and area satu	rated, very soft :	SILT and
	5]	O OA	ORGANICS. Varued	silt layers. Tan	layers in
	•	++ ++	gellow grass and	small (up to low	are ois
]	@ + 1 + +	long) white fresh	water shells. We	Il sorted
	61	+ + 0	poorly graded. V	ery plastic and cohe	sive. strang
		8++	1 51	LT and ORGANKS	
	1	-?			
		E.D.P.			
	7-				
]				

KNIGHT AND F	1554 States and 155		TEST	PIT	LOG	TEST PIT NO TP95-22 SHEET 1 of 1
PROJECT LOCATION OF DATE Jan	TEST PIT	Approx 5B	20 830 N; 505 e th end of Polley		PROJECT No GROUND ELEV LOGGED BY	1623 ATION ~ 522~
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (metres)	GRAPHIC LOG	DE		N AND CLASSIFIC	ATION
Hitachi 200 hoe	<u> </u>	K K				
Visible seeps from peat layer. Pit is saturated	1 -	K K K K	Black/brown walls contr odour, N	nuously hunmal	ited, very soft of collapse into pit strength.	2GANKS, Side 4. Very strang
Very easy digging throughout test pit.	2 -	te té le				
No samples taken.	3 -					
	4 -	ي بر بر بر بر بر بر بر بر بر بر بر بر بر	-			
	5 -	$ \begin{array}{c} & & & \\ & & \\ & + & \\ & + & \\ & & $		jers , 50 .1.	, very soft silt as me material as d ORGANICS	
			Note: Deotks and	e oppraxim	ate only due to pi	+ walls
			continuous	ly "collap	ate only due to pi sing and pit filling	

		7x 5820	0 890 N; 595 420 E	PROJECT No	
DATE Jan	14/95 "	(south u	vest corner of Polley Lake)	LOGGED BY	KGB.
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH GI (metres)	RAPHIC LOG		AND CLASSIFICAT	TION
Hitachi 200 hoe.	3 0 y	<u>v</u> <u>v</u>	Black/brown, saturated, ve	ry soff ORGANICS	
Soft digging conditions. Pit is saturated,		++++++++++++++++++++++++++++++++++++++	Grey, saturated, very sorted, poorly graded strong odour. Very c	soft CLAY and SI . Varued. Very 1 ohesive.	LT. Well Olastrz.
No samples taken.	2 + + + + + + + + + + + + + + + + + + +	+ -++ -+-+++	Layers of darkgray/bl fine-grained SAND and coarse grained and c [LACUSTRINE	d SILT. Some so of quartz compos	very soft ind is sitten. Che
	· · ·	E. D. P.	Note: Depths are approxim continuously collaps water,	size only due to p ing and the pit	oit walls filling with

KNIGHT AND F			TEST PIT	LOG	TEST PIT No TP95-24
PROJECT LOCATION OF DATEJAD	and a subscription of the subscription of the	T	820 800 N; 595 360 E the west corner of Polley Lake)	PROJECT No GROUND ELEV	ATION -922 m
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH (metres)	GRAPHIC LOG	DESCRIPTION	AND CLASSIFIC	
Hachi 200 hoe. Yery solf digging conditions. Pit walls are Nore competant than in earlier test pits (TPOS-20 to 23) No samples taken.	7 0 1 2 3 4 5 5 7	$ \begin{array}{c} \Pi_{i} = \left\{ \begin{array}{c} + & + & + \\ + & + & + \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Black brown, saturated, Lacustrine sequences of Dark gray, very soft, s some organizes. Varue Dark gray, very soft, SAND. Both are plastic due Strong odour. [LACUSTRINE] Tan/grey, suturated, Uarved layers contain shells and yellow g graded. Very plastic [SILT and c	the following: aturated CLAY, ed. Well sorted saturated silf to high silt/ LAYERS Ung white fra grass. Well so z and cohesive	and SILT with d poorly grade y fine grained clay content. clay content. and DEGAWICS. sh-water- orted, poorly

PROJECT LOCATION OF DATEJAA	TEST PIT Approx	5 BZO 830 N; 595 Z50 E access road to folley Lake)	- PROJECT No. <u>1623</u> GROUND ELEVATION <u>~ 622</u> LOGGED BY <u>1643</u> .
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH (metres) GRAPHIC LOG	DESCRIPTION	AND CLASSIFICATION
Hitachi 200 hoe		Black/brown, sectorated,	very soit ORGANICS.
Very soft digging conditions. Sample TP55-25 (0.4 to 5m)		depth to sandy CLAS . gravel. Very plastic.	
Difficult digging conditions at 5 to 5.8m	$\begin{array}{c} 4 \\ - + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ - \\ + \\ - \\ + \\ - \\ + \\ - \\ -$	to basal till encourse	ly moist, sandy SILT with y, trace cobbles. Very ped from pit. Poorly sorfed (when wet), Looks similar tered locally, only brown - Basal Till

KNIGHT AND P CONSULTING E	States and the states of the states of the		TEST PIT	LOG	TEST PIT NO. TP95-26 SHEET 1 of 1
PROJECT LOCATION OF DATE Jan 13	TEST PIT_		9 180 N; 594 645 E lings Basin)	PROJECT No. GROUND ELEN LOGGED BY	ATION - 938m
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (metres)	GRAPHIC LOG		N AND CLASSIFIC	CATION
Hitachi 200 hoe. Moderzite diciging conditions No seeps encountered. Sample 7935.26		= + + + + + + + + + + + + + + + + + + +	ORGANICS Brown, dense, slightly some fine gravel a Very plastiz. Poorgy WHL depth, materia increases in gravel like a typical basa Very cohesive, hard ripped out of pit moist then usually [Saidy Sil	nd clay, trace sorted, well gr becomes grey co content. Looks v content. Looks v cl till. chunks of material encountered. H Glacial Till Glacial Till Sm becomes ve content (behaves Material remains	cobbles. aded. doured and org nuch crial is is more is more like plastic due the same

KNIGHT AND P			TEST PIT	LOG	TEST PIT NO. TP95-27 SHEET 1 of 1
LOCATION OF	TEST PIT A		3 = 40 N; 595 350E th conbonlement alignment)	. PROJECT No GROUND ELEVA LOGGED BY	ATION ~530 ~
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (metres)	GRAPHIC LOG		AND CLASSIFICA	NOITA
Hitachi 200 hoe * Local seeps at 2.7m and 4m only. The remainder of the pit is dry. Sample TP35-27		1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0	Brawn (gray at depth), SILT with some gra Poorly sorted, well g in dense chunks fra ase sub-rounded. C depth to "some a matorial is oxidiz Sandy Sil	wel and clay, . graded. Very c om pit). Grave obble content i obbles." Top i	trace cabbles. ohesive (rips I and cobbles ncreases with D.Sm of
Moderate to difficult digging conditions.	5	0 000 +1+1+1 00 +1+1+1 +1+1+1 00 +1+1+1 E.O.P.		ΙΝΙΛΕςτίωατιων	KP 1-9 407 of 500

KNIGHT AND PI	영상 방송 전 전 문화 문화 문화		TEST PIT	LOG	TEST PIT No. TP95-28
HROJECT Mt. Pollay LOCATION OF TEST PIT Approx			19 360 N : 595 285 E ailings Basin)	PROJECT No GROUND ELEVA	ATION ~ 923,4m
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (metres)	GRAPHIC LOG		AND CLASSIFICA	ATION
Hitachi 200 hoe	30	¥ ¥ ¥ ¥	Brown, soft, saturated		0 01041 - 1017
Ponded water at surface. Easy digging conditions (0 to 1.5 m)	1		/ Grey-green, soft, very and silty SAND. We Clay and silt are very Sand layer is visibly i	plastic due to h	ligh mulstore.
	2	+++ 0° ++++ 0° +	Brown-gray, hard, slig some gravel and	intly moist, sa	ndy SILT with
Moderate to difficult diciging conditions (1.5 to 6.2m),	3 -	1 + 1 = 1 = 1	Very cohesive, dense ci when wet. Poorly so	when of mate	rial. Plastic
Sample 7795-28 - (1.3.+0 6.2m).	5	11+0001+10000	Material becomes moist matrix materials beco remoulded (like plastic water table nearby.	ne elicity and one). Bedrock	d are cash.
	6	- - - •			
	:			INVESTIGATION	KP 1-9 408 of 500

NIGHT AND PIESOL		TEST PIT LOG	TEST PIT NO. TP95-29 SHEET 1 of 1
DATE MH. PO	PIT Apar :	818 745 N: 596 270E GROUND	No. <u>1623</u> ELEVATION <u>~ 936 m</u> BY <u></u>
NOTES DEP Groundwater level, lifficulty in digg- ng, equipment used, etc.	106	DESCRIPTION AND CLAS	
Hitachi 200 hoe. Day soil to Im dupth? Nodeate ligging conditions No sceps. Ka npk TP95-29	$\begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\$	Brown, dense (firm to hard), de Sandy SILT with some grave cobbles. Material is driver the eniroratored. Poorly sorted we when wet, otherwise at plass catural moisture content. Be with depth, and excavates in a Good construction material. [Sandy SIH Glacial Till	T, trace clay and han usually Il graded. Plastre the limit with romes very hard dense, collesive chunks.

KNIGHT AND PIES		TEST PIT	LOG	TEST PIT NO. TP95-30 SHEET 1 of 1
HROJECT M LOCATION OF TES DATE Jon 15/9		B18 495 NJ 596 560 E Hal East Ridge Borrow Area)	PROJECT No GROUND ELEV LOGGED BY	1623 ATION ~ 038m
Conversion tourst	etres) GRAPHIC LOG	7.5	I AND CLASSIFIC F MATERIAL	
Hitachi 200 hoe. No seeps encountered. Moderate digging ronditions Sample TP95-30	$\begin{array}{c} 0 \\ & \forall \\ & \forall \\ & + \\ &$	Brown, dense (firm Savdy SILT with se cobbles. Poorly sort cohesive, gray coloured and is ripped out of pr Cobbles are sob-rour Good construction me Sandy SIH G	to hard), slightly ome gravel, tra ed, well gradu hard with dep t in chunks. G ded to round. aterial (similar	ue clayand d. Becomes more th as Modertal ravel and

KNIGHT AND F			TEST PIT	LOG	TEST PIT NO. TPG5-31 SHEET 1 of 1
PROJECT	Mt. Poller			PROJECT No.	1623
)	955 N; 596 470 E	GROUND ELEVAT	AND
DATE Jan			al East Ridge Borrow Area)	LOGGED BY	14B.
NOTES Groundwater level, difficulty in digg- ing, equipment	DEPTH (metres)	GRAPHIC LOG		AND CLASSIFICAT	TION
used, etc.		Sa he			
Hitachi 200 hac No sceps encountered.	0 - 1 -	± + + + + + + + + + + + + +	ORGANICS.		
Moderate digging conditions Sample 7795-31	2 -		Brown, dense (firm to SILT with some gra colobles. Occasional sosted well product	wel, trave day boulder at depth	and V , Bork
	3 -	· · · · · · · · · · · · · · · · · · ·	sorted, well graded encountered in TPS: Moisture content as Good construction Sandy silt G	5-29 and 30 (so TPS5-30). Motorial.	cl as
	5 -	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			
				INVESTIGATION KI	P 1-9 411 of 500

KNIGHT AND PI	Contraction of the second s	TEST PIT	LOG	TEST PIT NO. TPG5-32
PROJECT	Mt. Polley TEST PIT Appox 5	819 140 N; 585 780 E +Tailings Basin)	PROJECT No GROUND ELEV LOGGED BY	ATION ~ 932m
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH GRAPHIC (metres)	DESCRIPTION	I AND CLASSIFIC F MATERIAL	ATION
Hitachi 200 hoe Modurate to clifficult digging. ND seeps encountered Sample TP35-32 -	$ \begin{array}{c} & & & & \\ &$	Brown, dense (very s with some gravel a Becomes grey in colo to hard with dept No oxidized zone n cobbles are sub-rown basal -like with de	itiff), slightly mois nd clay, trace our and increases h. Poorly sorted, ear surface. G d to round. Be	cobbles. in density , well graded. Travel and comes very
			INVESTIGATION	N KP 1-9 412 of 500

KNIGHT AND F			TEST PIT I	_OG	TEST PIT NO. TPB5-33 SHEET (of 1
PROJECT	Mt. Polley			PROJECT No.	· · _ · _ · _ · _ · _ · _ ·
LOCATION OF	5	Aport 58	18 750 N; 584 820 E	GROUND ELEVA	
DATE Jan			1 Tailings Bash)	LOGGED BY	KGB.
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH (motres)	GRAPHIC LOG		AND CLASSIFICA MATERIAL	TION
Hitachi 200 hoe	30-	¥_¥ ¥	Black, soft, sciturated ORGANIK	s. Swamp, Willows	+ swamp spruce.
Ponded water of surface (perched water table).	1-	++++++++++++++++++++++++++++++++++++++	Gray-black, oxidized, stif some organics (grass and sorted, poorly graded. SILT and		clay with istic. well y
Smoolth, easy digging (Oto O.Sm.) wate	2 -	0 ++ + + + + + + + + + + + + + + + + +	Brown, dense (u. stiff), some gravel and clay sorted, well graded.	, trave cobbles.	Poorly
digging (0.3to 4Jm)	3	0 1 0 + + + + + + + + + + + + + + + + +	overlying silt + clay. Sandy Silt o	slightly plastre.	
	4 -	++-0			
	-	++++			
Smooth, easy digging (4.1 to 7.7m)	5.		Grey, stiff to very stiff, SAND. Very thin lam can be carefully peele	insted layers (a	< Imm) which
Sample TP95-33 (4.1407.7m)	- 6-	+ ++++ + + + + + + + + + +	Well sorted, poorly gr Low permenbility. Com	raded. No varies	evident.
	-	+++++++++++++++++++++++++++++++++++++++	SILTan	d SAND	
	7 -	+ +++++++++++++++++++++++++++++++++++++			
	8	E.O.P.		INVESTIGATION K	(P 1-9 413 of 500

KNIGHT AND P CONSULTING E			TEST PIT	LOG	TEST PIT NO. TP95-34 SHEET 1 of 1
PROJECT LOCATION OF DATEJAA	TEST PIT		<u>1730 N; 595 250 E</u> th Basin)	_ PROJECT No GROUND ELEVA	1623 ITION <u>~ 824 m.</u>
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH (metres)	GRAPHIC LOG		AND CLASSIFICA	TION
Hitachi 200 hoe Moderate digging conditions. Sample TPSS-34A (0.2 to 4.1m) * Only local, low How seeps visible at contact.	2	* + + + + + + + + + + + + + + + + + + +	Black, soft OEGANKS. Brown, dense (hard), some gravel and clan is oxidized. Rounde is just below plastic graded. Similar math Low permeability. [Sandy Si	y, trace cobbles. d gravel and cob limit. Poorly se	Top 30cm obles. Material orted, well
Smooth, easy digging (4.1 to 6.4m) Sample TPOS-348 (4.1 to 6.4m)	¥ 4 5 6	+ + - 0 + + + + + + + + + + + + + + + + + + +	Dark grey / black, still SILT and fine-grain graded. Does not ha At plastre limit. (Drier than TP95-33 SILT	ud SAND. Well we layering like Cohesive. Low pern	sorted, pourly TP95-33 did. Neability.
	-			INVESTIGATION F	(P 1-9 414 of 500

KNIGHT AND P	CONTRACTOR OF CONTRACT		TEST PIT	LOG	TEST PIT NO. TP95-35
CONSULTING	ENGINEERS				SHEET / of /
PROJECT	Mt. Polley			PROJECT No	1623
LOCATION OF	TEST PIT _	Agorax 58	318 690 N; 595 535 E.	GROUND ELEV	ATION ~ SI7m
DATE Jan	18/95	_ (5	South Basin).	LOGGED BY	KGB
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (metres)	GRAPHIC LOG		AND CLASSIFIC MATERIAL	ATION
Hitachi 200 hoe	0	+01.1.0	ORGANICS, black / brange.		
Moderate digging conditions. (0.2+0 4.0m).	1	-+++++++++++++++++++++++++++++++++++++	Brown, dense (u. stiff- SILT with some grave Poorly sorted, well gr Rounded gravel + robb	a ded. Slightly oles. Dense, ver	ale cobbles. plastic (at P.L.) is cohesive
	2 -	0++++	chunks of material e ripped out of pit.	Becomes grey-	the depth when colour with
0		0++++	depth. Very low perm		
* Seep at contact. Very localized and low flow rate.	3 -	++-+0 +++++++++++++++++++++++++++++++++	Sandy silt	Glacial Till	
	¥ 4	+0-0			
Smooth, casy digging (4.0+0 66n)	5	++ + \ 	Dark grey, slightly , SAND. Sand is visib silt. Well sorted, pac	le as white a	tz. flecks in
50mple 7895-35 (4.0 to 6.6 m)	-	++++ +++++++++++++++++++++++++++++++++	limit. Cohesive chunk cohesive overall. Low as encountered in TP	s when excavas s permecibility. 55-34 pit.	ted, and
U - 1	7-	+++++++ E.D.P.	[SITT an	d Sand.	
	-			INVESTIGATION	KP 1-9 415 of 500

KNIGHT AND P CONSULTING E			TEST PIT	LOG	TEST PIT NO. TP95-36 SHEET 1 OF 1
PROJECT	Mt. Polley			PROJECT No.	1623
LOCATION OF	TEST PIT_	Approx 58	18 520 N; 595 275 E	GROUND ELEVA	TION ~ 924 m
DATE Jan 1	6/95	_ (3	bouth Basin)	LOGGED BY	KGB.
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (metres)	GRAPHIC LOG		AND CLASSIFICA MATERIAL	TION
Hitachi 200 hoe.	0 -	+ ··· · · · · · · · · · · · · · · · · ·	ORGANICS,		
Moderate dicging. Sides slough into pit.	1-	+ + + + + + + + + + + + + + + + + + +	Brown to gray, very st with trave to some gravel or cobbles, moderately graded.	gravel and clay in this material.	. No coarse Poorly sorted
Sample TP35-364. (0.2 to 3.2m)	2	+ + + + + + + + + + + + + + + + + + +	Rounded gravel. Co also.	hestue. Coarser 4 nd Glacial Till	then most +ills,
Modurate flow from sand layer. Smooth digging		++++++++++++++++++++++++++++++++++++++	Black, medium to coarse (to none) of silt. A graded. Saturated.	lot cohesive. Wel Aprox 60 cm this	1 sorted pourly
(3.2 -0 6.3 m)		· + + · · · · + · + .			1
Sample TP95-36 B = (3.8 40 6.3 m)	5	+++++++++++++++++++++++++++++++++++++++	Creamy brown, very stiff and CLAY. No coars sorted, poorly graded	se material. Lau d. Very cohesive Tand CLAY	pored. Well . Low permeability
	6 - - 7 -	- + - + - + E.D.P.	Brown, soft, moist the grained SAND. Well Slightly cohesive (pro content). Sides of Difficult to tell when instability of test p SILT a	sorted, poorly g bably doe to hig pit continuously a re this large ex	h moisture h moisture have - in ,

KNIGHT AND F	La la construction de la		TEST PIT	LOG	TEST PIT NO. TP95-37 SHEET (of 1
PROJECT LOCATION OF DATE	TEST PIT_	11 .	8 345 N; 595 260 E Taillings Basin).	GROUND ELEV	1623 ATION - 938m
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (Metres)	GRAPHIC LOG		AND CLASSIFIC	ATION
Hitachi 200 kee Moderate digging (0 to 1.5m) Scople TP95-37 Seep below till/ bedrock contact. Diffrzult digging Dele.		$\frac{1}{2} \frac{1}{2} \frac{1}$	ORGANICS. Brown, very stiff moist and clay. Poorly sor Contains more moisture close proximily to sur Sandy Si Bedrock encountered at purple volcanic conglow are typically 30 cm si	ted, well grade than usual i fare and becton It Glocial Till Ism depth. Ver herate (friable)	d. Plaste. (probably due to ck). y fractured,). Fragments

KNIGHT AND P			TEST PIT L	OG	TEST PIT NO. TP95-38
CONSULTING I		1			SHEET of)
FROJECT				PROJECT No.	1623
LOCATION OF	TEST PIT_	Approx 58	818 460 NJ 585 495E	GROUND ELEVA	TION ~915m
DATE Jan	16/35	_		LOGGED BY	KGB.
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH (metres)	GRAPHIC LOG		AND CLASSIFICA MATERIAL	TION
Hitachi 200 hoe.	0	M M M	ORGANICS.		
Modurate dicging (0 to 4.7m)	1 -	+++0 +++-+ +++-+	Brown to gray, hurd, sligh some gravel and cla Rounded gravel. Very	y. Poorly sorte duse, cohesive	d, well graded chunks ripped
No seepage encountered.	2 -		out of pit. Plastic. Churches Calony craches near surface and be depth. Low permeability	in Fill?), Occa coming "trace co 1.	stanal cobble
	3 -		Dark gray, stiff to very clay, trace to some s plastic. Lodis like abo	sand, trace gr	avel. Very
Modurate, yet	5	+++++++++++++++++++++++++++++++++++++++	(Probable transition who with underlying layor	nd peels apart i re till has been s)	on layers). In mixed
smooth digging 4.5 to 6.7m) Scmple TP95-38	6 -	++-++++++++++++++++++++++++++++++++++++	Creany brown to grey, ve SILT with some clay. Well sorted, poorly gri SILT. Till-like feel for	aded. Obvious	and dense. layers in gray
	- 	+ -+ -+++ E.O.P.	Similar to silt / clay e Low permeability. SILT and		TPSS-36.
				INVESTIGATION F	(P 1-9 418 of 500

KNIGHT AND F			TEST PIT	LOG	TEST PIT NO. TP95-39 SHEET 1 of 1
PROJECT	Mt. Polla	1		PROJECT No	
		1	18 405 N; 595 405 E	GROUND ELEV	
DATE Jan		1.	suth tailings basin)	LOGGED BY	the second se
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (metres)	GRAPHIC LOG	DESCRIPTION	AND CLASSIFIC	ATION
Hitachi 200 hoe.	0	¥ ¥ ¥	Black, schurated, soft ORG.	ANICS,	
Moderate digging (0 to 2.5m)	1-	+++++++++++++++++++++++++++++++++++++++	Brown to grey, hard, sli SILT with some grav well graded. More r cohesive chunks of I Typical till.	el and clay. f	Poorly sorted,
Weter table at act.	¥ :	0++.0			
Easy digging (2.540 7.5m)	3 -		Brown, soft, saturated No colvesion (pit wall	s continuously a	eve - in). Very
Sides of pit continuously slowgn.	4		dense with depth.	and silt	omes more
	5 -				
	6 -				
Sumple TP95-39 (cot bottom of pit).	- 7	E.D.P.	Note: Bottom of pit is sloughing of si measurements in	estimated only de walls mad apossible.	as continuous le accurate
	B				KP 1-9 419 of 500

÷

KNIGHT AND PI CONSULTING EI		3*	TEST PIT	LOG	TEST PIT NO. TPMS90-/ SHEET / of /
PROJECT	MT PO	LLEY		PROJECT No	1621
LOCATION OF	TEST PIT _	PRIMAR	S822 755 N	GROUND ELEV	
JATE TO A		-	592600 E	LOGGED BY	KJR
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	Cm)	GRAPHIC LOG		N AND CLASSIFIC OF MATERIAL	ATION
CAT 225 BACKHOE	1	· + · + · · ·			
moderately hard digging	2 -	+ • +	trace e and bo	SILT, Some gr lay, trace e ulders, very w	sobles sell graded,
	3 -	· + · · · · +	glacial	dense, brow till. htly more cobb t 1 meter.	
	4 -	+ ° * + + °			
<u></u>	5 -	• + • •			•
	6 _	сон Еон			
	7 -				
	-			INVESTIGATION KP 1-9	

TEST PIT No. KNIGHT AND PIESOLD LTD. TEST PIT LOG TPM540-2 18 CONSULTING ENGINEERS SHEET / of / MT POLLEY PROJECT No. 1621 PROJECT LOCATION OF TEST PIT NEAR BALL MILLS GROUND ELEVATION 5822 490 N DATE FEB 21, 1990 LOGGED BY ______ E NOTES DEPTH GRAPHIC Groundwater level, LOG DESCRIPTION AND CLASSIFICATION difficulty in digg-(m) ing , equipment OF MATERIAL used, etc. CAT 225 SANDY SILT, Some grovel, BACKHOE trace cobbles, trace clay, very well graded, medium dense, brown, glacial till. Sm 4 4 2 V A BEDROCK, highly fractured, iron staining, groundwater inflow. 7 4 pprox. V SOGPM 3 inflow. 5 0 0 4 4.3 m EOH 5

PROJECT	TEST PIT		SAG MILL 5822 515 N 592 600 E	_ PROJECT No _ GROUND ELEVA LOGGED BY	
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH	GRAPHIC LOG	DESCRIPTION	AND CLASSIFICA MATERIAL	
CAT 225 BACKHOE	1	× × × × × × × × × × × × × × × × × × ×	SANDY SILT, 5	ome grovel, tr	ace to
moderate	2	· · · · · · · · · · · · · · · · · · ·	green grey	wet, medium . glacial til	l.
gigging.	3	+ •	SANOY SILT Clay, Mois Very Well	, some gravel t, medium d graded, brow	, trace ense, wn,
	4	+ · · · · · · · · · · · · · · · · · · ·	glacial ti		
<u></u>	5	+			5
roken rock on be excavated with backhoe	6 .	EOH	BEDROCK, groundwate	highly fracture r inflow	.ed,
		-			

PROJECT Mr Polley JOCATION OF TEST PIT <u>Near Peagle crusher</u> DATE <u>Fed 21,1490</u> SB21 530 M SB21 530 M SB21 530 M SB21 530 M SB21 530 M SGED BY <u>KJB</u> GROUND ELEVATION LOGGED BY <u>KJB</u> OBSERIPTION AND CLASSIFICATION OF MATERIAL CAT 225 BACKHOE -hard digging 2 - + + + + + + + + + + + + + + + + + +	KNIGHT AND P CONSULTING E		3 ²¹	TEST PI	r Loo	3	TEST PIT NO. TPMS90-4 SHEET 1 of 1
NOTES Groundwater level, difficulty in dig- ing, equipment used, etc. CAT 225 CAT 225	LOCATION OF	TEST PIT		5822 570 M	GRC	DUND ELEV	/621 ATION
BACKHOE - hard digging 2 - + + + + + + + + + + + + + + + + + +	NOTES Groundwater level, difficulty in digg- ing , equipment	DEPTH			TION AND	CLASSIFIC	
no ground- water encountered 5 - EON to very dense, very well graded, brown, glacial fill to graded, brown, glacial fill	BACKHOE - hard	1 -	• + · • · + · • · + ·				
encountered. 5 - EOH	0.5	-	+ • + • + • +	to ve graded	l, brow	ise, ver in, glac	y well ial fill
	water		еон Еон				785
		•					

.

KNIGHT AND P			TEST PIT	LOG	TEST PIT NO. TPB 12 SHEET / of	
DATE Aug 2	TEST PIT	LEY AREA B,	main embantment west abutment	GROUND ELEVA	PROJECT No GROUND ELEVATION LOGGED BY	
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	оертн (m)	GRAPHIC LOG	TION			
CAT 225	/ / / / /	× + · · · · · · · · · · · · · · · · · ·	reddish b	nd forest lift rown. , some grave boulders, wet brown, glas		
	2		SAND, trac trace gro cross bed.	e silt, fine, wel, pale red ding, moist	uniform, dich brown,	
GSTPB12	4	ЕоН@ 4.9 m	SANO, mediu uniform, b	m to fine, el	con,	
				INVESTIGATION KP 1-9 42	4 of 500	

KNIGHT AND PI CONSULTING E		TE	ST PIT	LOG	TEST PIT NO. TPB13 SHEET) of
PROJECT	MOUNT POL	LEY		PROJECT No.	
DATE Aug Z	TEST PIT <u>Are</u> 8,1989	a B, main en	mbank men enter line	GROUND ELEVAT	
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH GRAF LO		80071C190999091_AM420	ON AND CLASSIFICAT OF MATERIAL	ION
	¥ + - +	+ -		anies, dork reda black	dish brown
CAT 225		+++++++++++++++++++++++++++++++++++++++	CLAYET SI gieen · bi	ilt, fissured, mois own, firm, moist	.t, pale
		+ + +	SILT, tra. derse, tr	ce to some sa ace gravel, trai why fissured u fissures, mois	nd, Fire, ce elay,
6STPC15	3 - +	· + +	pale bro sund in permeto remores	why fissored a fissored, more lifting appears t	with fine t. 1000 n be
	4 - +	+	Þ.		
	5 - EOH - 4.9	+ @ m	Ponded w	ater on surfs	λς
	-				
	-			INVESTIGATION KP 1-9 425	of 500

PIESOLD LTD.		TEST PIT L	_OG	TEST PIT No. TPB14 SHEET 1 of
		downstream of main embankment	GROUND ELEVAT	ION
DEPTH (m)	GRAPHIC LOG	Charles and a second seco		ION
- - - - - - - - - - - - - -	+-++++	to the new code	black	
2-	+ + + + + + + + + + + + + + + + + + +	SILT, Some denoe. fissu moist	sand to Sa ,ed, fine son.	ndy, fine I laminationy
4 -	· + · + · + · + · +	÷		
5-		pondel mote	r on surfa	c /
	ENGINEERS 100 NF Par TEST PIT A 23 1937 DEPTH (m) 1- 3- 4- 4-	ENGINEERS $2 \cup NT Polley$ TEST PIT APEA P $2 \stackrel{?}{3} 19 \stackrel{?}{3} 19$ DEPTH GRAPHIC LOG (m) $\frac{1}{2} \frac{19 \stackrel{?}{3} 19}{19 \stackrel{?}{3} 19}$ $\frac{1}{2} \frac{19 \stackrel{?}{3} 19}{19 \stackrel{?}{3} 19}$ $\frac{1}{2} \frac{19 \stackrel{?}{3} 19}{100}$ $\frac{1}{2} 19 $	ENGINEERS ILST PIT L POUNT PallEY TEST PIT AREA B. Journstream of Main 23 1937 DEPTH GRAPHIC LOG DESCRIPTION (m) OF $\frac{22 y}{1937}$ DESCRIPTION (m) OF $\frac{22 y}{1937}$ DESCRIPTION Cm) OF $\frac{22 y}{1937}$ $\frac{23 1937}{1937}$ $\frac{23 y}{1937}$ $\frac{23 1937}{1937}$ $\frac{23 1937}{1937}{1937}$ $\frac{23 1937}{1937}{1937}$ $\frac{23 1937}{1937}$	ENGINEERS TEST PIT LOG PROJECT NO GROUND ELEVAT TEST PIT <u>APEA B. Jownstream</u> TEST PIT <u>APEA B. Jownstream</u> PROJECT NO GROUND ELEVAT LOG DESCRIPTION AND CLASSIFICAT OF MATERIAL LOGG LOGG LOGG LOGG LOGG LOGG

KNIGHT AND P CONSULTING E	ALL CONTRACTOR AND CONTRACTOR OF A	TEST PIT LOG
	YOUNT POLLEY	PROJECT No. 1621
DATE Aug 2		LOGGED BY KJB
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH GRAPHIC LOG	DESCRIPTION AND CLASSIFICATION OF MATERIAL
CAT 225	+ . + . + . + + + + + + + + + +	SILTY SANG, some grouel frace clay, frace cobbles and
STAB 15	2 - + + + + + + + + + + + + + + + + + +	boulding to 55 cm, you we gented dense, orown, low permerbility, classal fill
	4 - · · · · · · · · · · · · · · · · · ·	
	5- EOHQ 4.9m	
	-	INVESTIGATION KP 1-9 427 of 500

KNIGHT AND PI CONSULTING EN	and the second sec	TEST PIT LOG
PROJECT DCATION OF DATE2	TEST PIT AREA 8 1989	BROJECT No. 1621 BROUND ELEVATION LOGGED BY
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH GRAPHI LOG	DESCRIPTION AND CLASSIFICATION OF MATERIAL
CAT 225		GRAVELLY SAND, Some cobbles, trace boulders, poorly sorted, reddish brown, colluvium and road fill
5STPB16	+ · + · + · + · · + · · +	SILTY SAND, SOME groves, trace cooples frace city very wei gradied, dense, low pormeoping, glacial till
	4 - + + + + + + + + + + + + + + + + + +	
· · ·		INVESTIGATION KP 1-9 428 of 500

KNIGHT AND P CONSULTING E			TEST PIT	LOG	TEST PIT NO. TPB17 SHEET 1 of
PROJECT	TEST PIT		north condrol ba	PROJECT No GROUND ELE LOGGED BY	VATION
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	Cm)	GRAPHIC LOG		ON AND CLASSIFI OF MATERIAL	ICATION
C AT 225	1 -	· + · · + · · + · · · · · · · · · · · ·	SILTY SA	NQ, some gr	ases trace
GSTPBIT	67 13 1	+ + + + + + + + + + + + + + + + + + + +	trace cla dense, ór glacial t.	y, very well	gradod meability,
	4 - 5 -	+ . 0+ . + 0 2 5			
÷ .				INVESTIGATION KP 1-9	9 429 of 500

KNIGHT AND F			TEST PIT LOG	TEST PIT No. TPB18 SHEET / of
PROJECT	IOUNT PO	LLEY	PROJECT No.	1621
and a second proposition of a loss of the second			B. low point of north GROUND ELE	
DATE Au	13 1989	,	LOGGED BY_	KIB
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (m)	GRAPHIC LOG	DESCRIPTION AND CLASSIFI OF MATERIAL	CATION
CAT 225	-	× × · · · · · ×	PEAT, organics and for reddish brown to blac	est lifter, k
	1	+ + + +	SILTY SAND, Some grow coste: and bouilers orown. Very well grod and promise a state	- l. dense
USTPB18	3 -	+ . + + +		
	5	+ · · · · · · · · · · · · · · · · · · ·		
		EUH@ 4.9m	NB Pondel with a an and	n an
			INVESTIGATION KP 1-9	430 of 500

KNIGHT AND F	NEED CONTRACTOR OF THE OWNER OWNE		TEST PIT	LOG	TEST PIT NO. <i>TPB1</i> SHEET / of
PROJECT			1 1 1 1	PROJECT No.	1621
DATE Aug		<u> 1 REA 6</u> ,	east abutiment near rac	LOGGED BY	
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	ДЕРТН (м)	GRAPHIC LOG		AND CLASSIFICA F MATERIAL	TION
CAT 225	1	2 (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	grods 1. Fiss glacina +	trace grose tr 	wa, well nd privers
	5 -			INVESTIGATION KP 1-9 431	of 500

T

KNIGHT AND F	2 MILLOUPE A 2010 MARCH A 2010 A 2014 A 2		TEST	PIT	LOG	TEST PIT NO. TPB2 SHEET / of		
PROJECT MOUNT POLLEY LOCATION OF TEST PIT APEA C.			PROJECT No. 1621			7621		
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	NOTES DEPTH GRAPHIC Groundwater level, difficulty in digg- ing , equipment (M)			DESCRIPTION AND CLASSIFICATION OF MATERIAL				
	1 -	· ···+. ···+	SILTY S.	A116, +r	ace to some	aro 11		
? <u>:::r E .</u>)		+ • • • • • • • • • • • • • • • • • • •	to bocr	n, grei Jere	n - brown, ss 2: 13-s perce	ad boulders		
	3 -	· + · · · · · · · · · · · · · · · · · ·						
	4	+ + + EOH@			ana (anana (a) mang damatan ka an ka	Warmen (1), and a particular states (1) and a		
	-	4.9 m.						
	-				INVESTIGATION KP 1-9 432	2 of 500		

ť

KNIGHT AND PI CONSULTING E			TEST P	IT LOG	TEST PIT NO. TPB 3 SHEET / of
PROJECT MO		15 12	restineast situe		No. 1621
DATE Aug 2		<u>-</u>	10 710 70 31 712 45		ELEVATION BYKJB
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH (m)	GRAPHIC LOG	DESCRI	PTION AND CLAS	
÷	-	+ +	Topsois.	Torest Harris	lass in drive comme
CAT 225	/	+ • + • + • +	nrd to Very we	i dans to 45 storaded der	usi frace esbers iem, erouar, ise, siac a i
	2 -				
5 ² / ₁ / ₁ / ₂	3 -		Sec.	moderately so	clean, melium rted. brown form clear Sanc
	4 -				
	5 -	ESH@			
	6	5.5 m			
				INVESTIGATION K	P 1-9 433 of 500

l

KNIGHT AND PI CONSULTING EI	VARIATION CONTRACTOR AND A		TEST	PIT	LOG	TEST PIT NO TPB 4 SHEET / of
PROJECT	TEST PIT A		needle exat and	i c	PROJECT N GROUND EL LOGGED BY	No
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH G	RAPHIC LOG	DESC		AND CLASSI F MATERIAL	FICATION
CAT 225 3STFE4		··· ··· ··· · · · · · · · · · · · · ·			1.24	ourlder brouse
		0 + 0 + 0 5.2 m			INVESTIGATION KP 1	

KNIGHT AND F			TEST PIT	LOG	TEST PIT N TPBS SHEET 1 of
PROJECT	TEST PIT_	Area C,	north rost ridge	PROJECT No GROUND ELEVA LOGGED BY	1621 TION
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH	GRAPHIC LOG		N AND CLASSIFICA DF MATERIAL	TION
CAT 225		·+ · · · · · · · · · · · · · · · · · ·	SILTY SAND	, some grouel,	trace
3 - <u>FE</u> 5)		· · · · · · · · · · · · · · · · · · ·	cobber ara traca ara j ne ara la a	1 Ess Jerzy is	e stad n. stare on
	3 3 4	+ · · + · · + · · + · · + · · · + · · · + · · · + ·			
		1.0			
				INVESTIGATION KP 1-9 435	of 500

KNIGHT AND PI	NGINEERS	1. 1. 1.	TEST PIT		TPB6 SHEET / of
DATE Ave 2	TEST PIT		ortheast redge	PROJECT No GROUND ELEVATION LOGGED BY	DN
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH (m)	GRAPHIC LOG		AND CLASSIFICATION	N
CAT 225	/ -	· · · · · · · · · · · · · · · · · · ·		race granset Eru Sol permos Xel ^{e R}	
	2 -	· · · · · · · · · · · · · · · · · · ·	EARL TANK	n star s é a Contacto de la contacto	I I.
	3 -	· * *	-		
SETPB6	4 -	· · · · · · · · · · · · · · · · · · ·	and a last a	ERVELLY SAND OF	r = m. Lt button
	S -	· 0 · 0. ·		<i>د</i> *	
	6 -	30 H @ 5 2 M			
1					
	-			INVESTIGATION KP 1-9 436 of 5	00

PROJECT	TEST PIT_		centerline of NE down G	ROJECT No	
DATE Aug		_	L	OGGED BY	KJB
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	Cm)	GRAPHIC LOG	DESCRIPTION AN	ND CLASSIFICA	TION
CAT 225	, I I, I	+	Topsoik, elaye	z, brown	
		· ·+ · · · · · · · · · ·	SANO, some sil cobbles, very e are le l'acces	t Come grad dense, ver- al till	iel, tro y weil
	3 -				
	4 -	EOH Q 3.4m			
	-				
J	-				

		1				
KNIGHT AND I CONSULTING			TEST	PIT	LOG	TEST PIT No. TPB8 SHEET / of
ROJECT	MAUNT P	1	(*		PROJECT No	
			northeast ridue	at timb	CONTRACTORISTICS ST. AND ST.	
DATE Aur 2	3.14.8.4				LOGGED BY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NOTES	DEPTH	GRAPHIC				
Groundwater level, difficulty in digg-		LOG	DES	RIPTION	AND CLASSIFICAT	ION
ing, equipment	(m)				MATERIAL	
used, etc.						
	-	* * .	Der	ANIZE	and forest litt	er.
	-	+ .	1	(*************************************		
CAT225	-	· · + .	<u> </u>			
	1-	+ +				
	-	+ 0.				
	1	·: +.				
		+	51-77	SENC :	sona arrival trai	6 236623
SSTPC3)	2-		sieta	61 7.13	ome provel from responses e outility, denses	1 2 Ja 1
->-FEE	1	· · · ·	Tow ,	cervis a	oility, Jenze,	glacial till
	-	+	sligh	tly we	- - - 	
	3 -	·• +				
		+. '.'				
	-	·0. +				
	-	+ .0				
	4-	·+				
	-	+				
	-					
	-					
	5 -	EOHR				
]]	4.9 m				
	-					
	1					
	-					
	-					
	-					
	-					
	-				INVESTIGATION KP 1-9 438 o	f 500

ľ

KNIGHT AND PI			TEST PIT	LOG	TEST PIT N TPB 9 SHEET 1 of
PROJECT	OUNT POL	LEY		PROJECT No	
LOCATION OF	TEST PIT	AREA B. S	with east basin	GROUND ELEV	
DATE Ana 2	7 1979	_		LOGGED BY	KJC
NOTES Groundwater level, difficulty in digg- ing , equipment used , etc .	DEPTH (м)	GRAPHIC LOG		N AND CLASSIFIC. DF MATERIAL	ATION
	-	+ . :			
CAT 225	-	· • +			
	1 -	+ +			
	-	+ 0 .	SILTY SANC	, come gravel ech-brown, ver	, 710 6 6
	-	+	cobbles, gre	carbrowsky ver	y well
		°+ . p	310 he 1, 100	permestility	, Divir
and the second second			colosporar	; glacid fill	
25TPG?)		· o +		, ,	
	1	+			
	3 -	· · · ·			
]	· +.			
	-	+			
	4-	+			
	-	. +			
	-	· + · · ·			
		· · · ·			
	5-	°,+. °.	and the state of the	• • • • • • • • • • • • • • • • • • •	
	-	EOH@ S.2m			
	-	3.2.01			
	6 -				
	-				
	-				
	-				
	-				
				INVESTIGATION KP 1-9 43	9 of 500

KNIGHT AND P CONSULTING E	COLONG CONTRACTOR CONTRACTOR	TEST	PIT	LOG	TEST PIT NO. TPB10 SHEET 1 of
PROJECT	MOUNT POLLE	· 7		PROJECT No	1621
LOCATION OF	TEST PIT APEA	B. main embantin	nent center	GROUND ELEVAT	
DATE Aus	27, 1989		line.	LOGGED BY	KUB
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH GRAPH LOG (m)		CRIPTION OF	AND CLASSIFICAT	TION
GSTPBIO	2 - + · · + · · + · · + · · · + · · · + ·	+. + .0 +. 0 +.	SAND, S les and -brown, ara le l,	some grovel, to boulders to dense to ve fissured, gla	race 45 cm, m. Jense, cial fill
	4 - 3.7			INVESTIGATION KP 1-9 440 c	of 500

			-		
KNIGHT AND PIL		TEST	PIT	LOG	TEST PIT NO TPB 11 SHEET 1 OF
ROJECT	TOUNT POL	LEY		PROJECT No	1621
LOCATION OF T	TEST PIT APE	A B. main embo	ntment	GROUND ELEVA	TION
DATE Aug 2	7, 1989	cen	ler line	LOGGED BY	KUB
NOTES Groundwater level, difficulty in digg- ing, equipment used, etc.	DEPTH GRA L((m)	G		I AND CLASSIFICA F MATERIAL	ATION
CAT 225	*	¥ 0 + 0		and forect	1. Her,
		+ S	ilty SA, obbles, g iry well laciol fil	ND, some grove reen-brown, fir groved, low pe	l, trac e. m to dense, ermeability,
	2-+ + 3-+			me sand, pale issured, well meability	brown, surfed,
GSTPB 11)	4	. S	orted, c	edium to fine, leon, moist, pol i la jers.	, moderotely e brown,
	5				
	6 -				
3					
				INVESTIGATION KP 1-9 441	of 500

-

Knight Piésold Ltd. CONSULTING ENGINEERS

APPENDIX B

1

DETAILED LABORATORY TEST WORK RESULTS

1

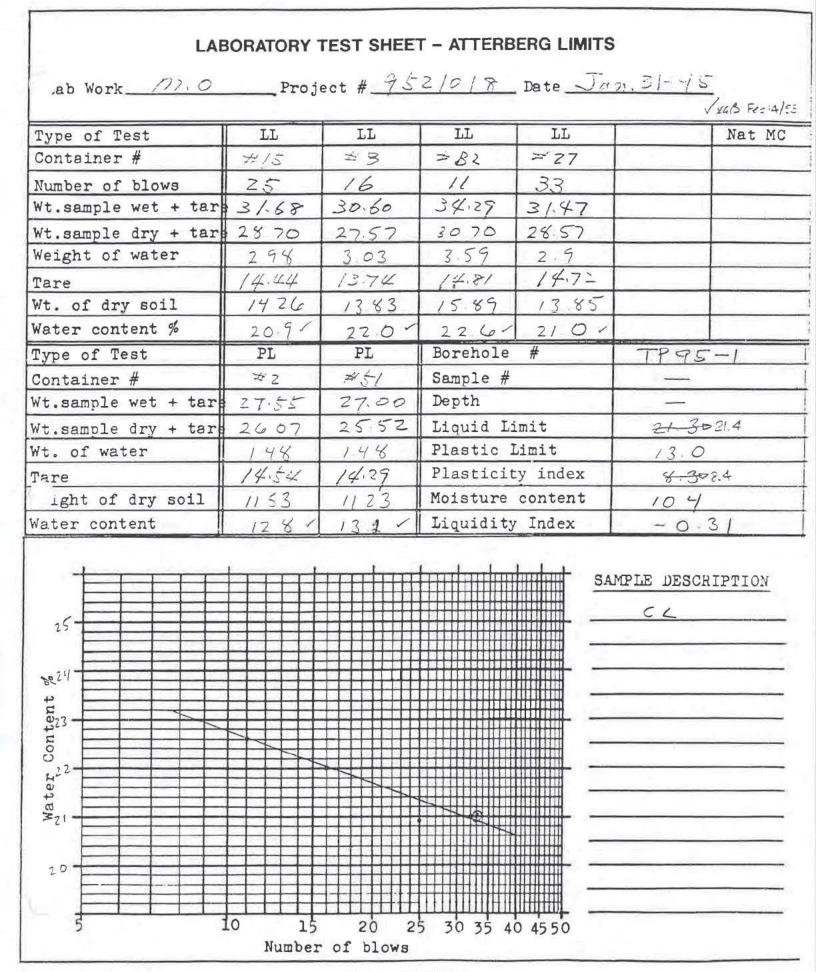
Association des Ingénieurs-Conseils du Canada

INVESTIGATION KP 1-9 443 of 500

GOLDER ASSOCIATES Ltd.

CONSULTING ENGINEERS

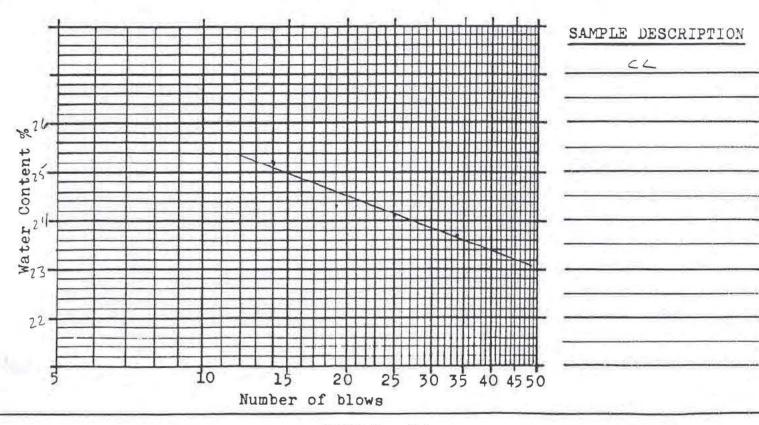
Project No. <u>9521018</u>


Date : 1/26/95

BOREHOLE NUMBER	TP95-1	TP95-7	TP95-10	TP95-18	TP.95-20	TP95-25
SAMPLE NUMBER		12				
DEPTH OF SAMPLE (m)						
CONTAINER NUMBER			1. C			
MASS WET SOIL + TARE	8547.7	9217.5	6633.9	3836.5	8948.7	7546.4
MASS DRY SOIL + TARE	7876.2	8452.1	6049.8	3537.7	7961.0	6650.8
MASS OF WATER	671.5	765.4	584.1	298.8	987.7	895.6
MASS OF CONTAINER	1426.5	1414.0	1427.8	1378.4	1130.6	1414.3
MASS OF DRY SOIL	6449.7	7038.1	4622.0	2159.3	6830.4	5236.5
WATER CONTENT W (%)	10.4	10.9	12.6	13.8	14.5	17.1

Laboratory Determination of Water Content of Soil and Rock

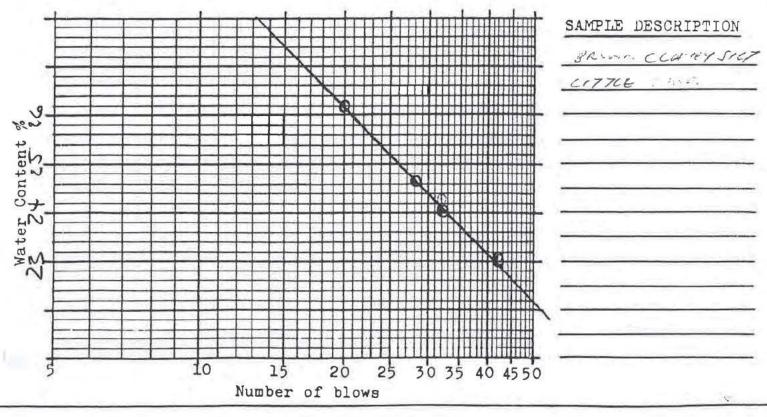
BOREHOLE NUMBER	TP95-27	TP95-31	TP95-35	TP95-37	TP95-38	TP95-39
SAMPLE NUMBER			1.157	12 T		
DEPTH OF SAMPLE (m)	1			1.1	-	
CONTAINER NUMBER						2
MASS WET SOIL + TARE	5937.6	8386.3	7978.9	7623.2	8130.7	7168.1
MASS DRY SOIL + TARE	5481.6	7669.7	7036.9	6654.4	6637.4	5794.5
MASS OF WATER	456.0	716.6	942.0	968.8	1493.3	1373.6
MASS OF CONTAINER	1380.1	1177.8	1344.6	1494.2	1383.6	974.9
MASS OF DRY SOIL	4101.5	6491.9	5692.3	5160.2	5253.8	4819.6
WATER CONTENT W (%)	11.1	11.0	16.5	18.8	28.4	28.5


BOREHOLE NUMBER		10	1000
SAMPLE NUMBER			
DEPTH OF SAMPLE (m)			
CONTAINER NUMBER			
MASS WET SOIL + TARE	1.0	1	
MASS DRY SOIL + TARE			
MASS OF WATER			
MASS OF CONTAINER			
MASS OF DRY SOIL			
WATER CONTENT W (%)	S. end		

Golder Associates

ab Work M.O Project # 7521018 Date Vall 21-95

Type of Test	LL	LL	LL	LL		Nat MC
Container #	₩5	#18	#26	5.4		1
Number of blows	14	19	25	34		
Wt.sample wet + tar	31.76	31.83	31.38	34.23		
Wt.sample dry + tar	28 26	28.42	28.09	30 41		
Weight of water	35	341	3.29	382		
Tare	14.35	14.40	14.42	14.32		
Wt. of dry soil	1391	1402	1367	16.09		
Water content %	25.21	243-	241-	23.7-		(
Type of Test	PL	PL	Borehole #		TP95-17	
Container #	=14	#12	Sample #			
iWt.sample wet + tar	28.53	25.50	Depth			
Wt.sample dry + tar	26.75	24 19	Liquid Li	lmit	241 -	
Wt. of water	178	131	Plastic Limit		13.5	- 1
Tare	13.23	14.72	Plasticity index		10.6	~
ght of dry soil	1352	947	Moisture	content	10 9	
Water content	13 2 1	138-	Liquidity	Index	-0.2	5-

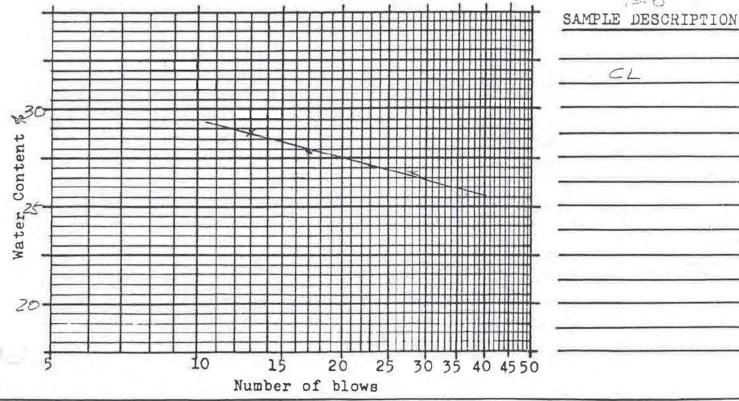


Golder Associates

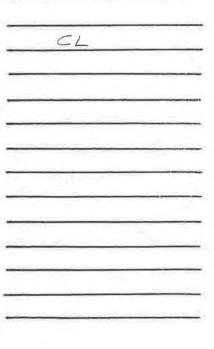
INVESTIGATION KP 1-9 446 of 500

ab Work_____ Project # 952-1018 Date FE3 3 195 1846 Feb 4/95

Type of Test	LL	LL	LL	LL		Nat MC
Container #	49	9	B22	62		
Number of blows	42	32	28	20		
Wt.sample wet + tar	37.30	36.36	35.87	4276		
Wt.sample dry + tar	31.04	29.92	29.47	3460		
Weight of water	6.26	6.44	6.40	8.16		
!Tare	3.90	3.38	3.56	3.50		
Wt. of dry soil	27.14	26.54	25.91	31.10	*,	
Water content %	23.1	24.3	24.7	26.2		12.6
'Type of Test	PL	PL	Borehole	#	TP 95-10	
Container #	C4	87	Sample #			
Wt.sample wet + tar	11.47	13.14	Depth			
Wt.sample dry + tar	10.38	11:80	Liquid Li	.mit	25-2=25.3 1	
Wt. of water	1.09	1.3+	Plastic Limit		16.5	~
Tare	3.60	3.85	Plasticity index		8.7-	8.8 -
ght of dry soil	6.78	7.95	Moisture	content	12.6	
Water content	6.1	16.9 -	Liquidity	Index	-0.45	► -0.44 ✓

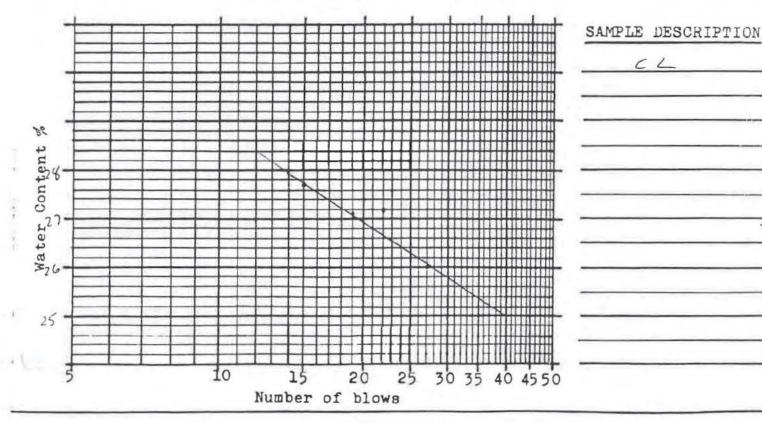


Golder Associates


ab Work_11.0

Project # 9521018 Date Jan 30-94 Julo Fible/55

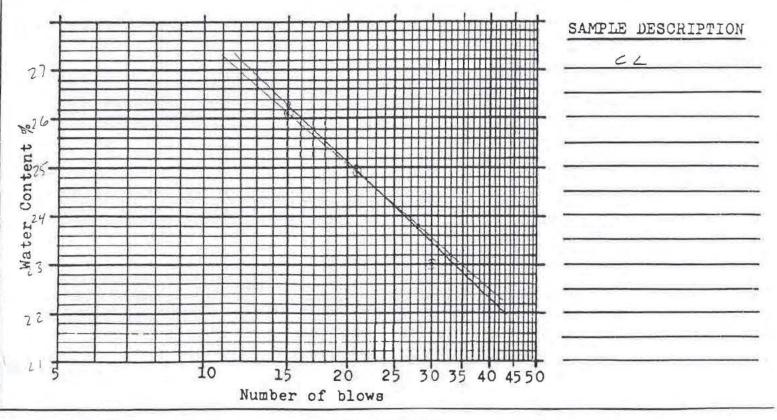
Type of Test	LL	LL	LL	LL		Nat MC
Container #	#24	#/	#16	*=/		
Number of blows	28.	17	23	/3		-
Wt.sample wet + tar	28.39	30.13	.34.05	29.66		
Wt.sample dry + tar	25138	26.54	29.85	26.24		
Weight of water	3.01	3.59	4.20	3.42		
Tare	13.57	13.67	14.36	14.41		
Wt. of dry soil	11.71	12.87	15.49	11.83		
Water content %	25.7 -	27.9 -	27.1 -	28.9-		
Type of Test	PL	PL	Borehole #		TP95-18	
Container #	#29	#22	Sample #			
Wt.sample wet + tar	24.11	25.75	Depth		•	
Wt.sample dry + tar	22.97	24.38 -	Liquid L:	imit	26.9	~
Wt. of water	1.14	1.37	Plastic 3	Limit	13.3	~
Tare	14.55	13.86	Plasticit	ty index	13.6	1
ight of dry soil	8.42	10.52	Moisture	content	13.8	1
Water content	13.5 1	13.0 1	Liquidity	/ Index	0.04	. /



^{12.6}

Golder Associates

				ERG LIMITS		
ab Work	Proj	ect # <u>15</u>	21018	Date <u>No</u>	4.31-41	1:1413 Feb 14/5
Type of Test	LL	LL	LL	LL		Nat MC
Container #	#11A	#10	#33	#35		
Number of blows	15	19	22	27		
Wt.sample wet + tar	28.78	30.94	30.51	31.77		
Wt.sample dry + tar	25-62	27.39	27_04	2816		
Weight of water	3.16	355	247	361		
Tare	14.22	14.31	14.27	14.26		
Wt. of dry soil	114	13 08	12.76	13 9		
Water content %	277	27/	272	260		-1.
Type of Test	PL	PL	Borehole	#	17P 95 - 10	
Container #	#70	#30	Sample #			1
Wt.sample wet + tar	36.36	23.44	Depth			
Wt.sample dry + tar	34 53	22 35	Liquid Limit		26.3 1	
Wt. of water	1.83	109	Plastic Limit		13.1	1
Tare	20.60	14.04	Plasticit	y index	13.Z	~
.ght of dry soil	13.93	8.31	Moisture	content	145	1
Water content	13 1 1	131	Liquidity	Index	0 11	/


Golder Associates

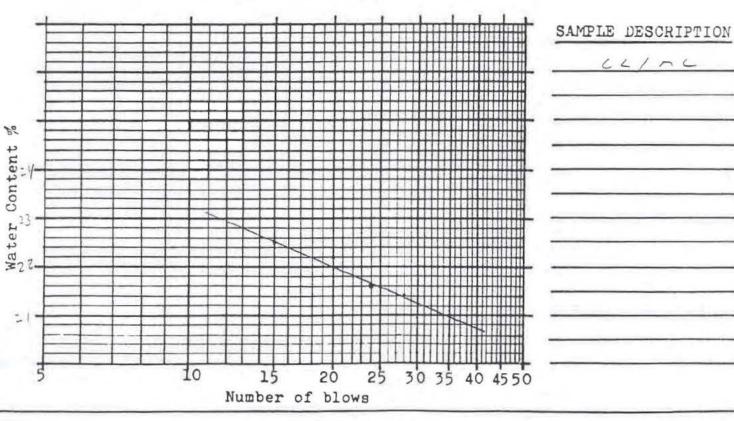
INVESTIGATION KP 1-9 449 of 500

ab Work MO Project # 952/018 Date Tay. 31-95

JULAS FEB 14/95

Type of Test	LL	LL	LL	LL		Nat MC
Container #	# 22	#21	#=16	≠:⊄		
Number of blows	30	28	Z/	15		
Wt.sample wet + tar	27.58	3/20	32.85	34.24		
Wt.sample dry + tar	26.64	27.97	28.83	29.98		
Weight of water	2 94	3 2 3	3.62	43		
Tare	13.84	14.39	14.33	13.64		
Wt. of dry soil	128	1358	14.5	16.34		
Water content %	23.0 V	23.8 -	249 "	26.1		
Type of Test	PL	PL	Borehole #		TP 95-25	
Container #	#29	72-1	Sample #			
Wt.sample wet + tar	27.08	23.30	Depth			
Wt.sample dry + tar	25.80	22.30	Liquid L:	imit	242 /	
Wt. of water	124	10	Plastic Limit		11-30	11.5
Tare	14.52	3.67	Plasticity index		12.9	P 12.7
ight of dry soil	11 28	\$ 63	Moisture	content	17 1	<
Water content	1-1-311.4	1+2	Liquidity	/ Index	0.45	5 0.44

Golder Associates

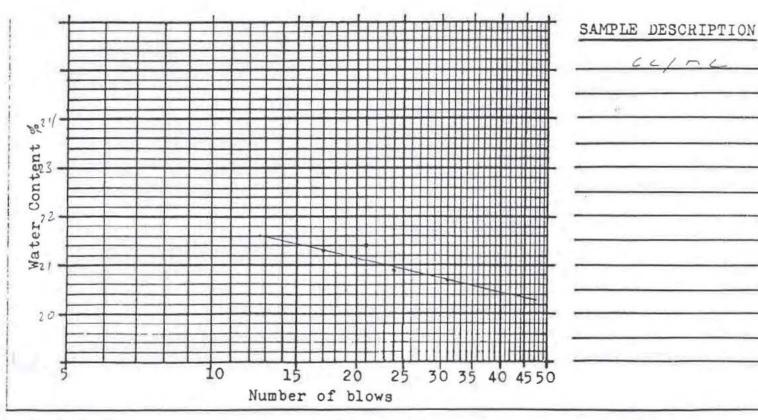

INVESTIGATION KP 1-9 450 of 500

ab Work 19 Project # 953-1018 Date 107. 26/25

Type of Test	LL	LL	LL	LL	Nat MC
.Container #	BZ	2	8	12	
Number of blows	34	z4	20	16	
Wt.sample wet + tar	51.86	57.86	57.51	58.77	
Wt.sample dry + tar	45.57	50.22	49.55	50.31	
Weight of water	6.29	7.64	7.96	3.46	
Tare	14.75	14.50	13.62	13.89	
Wt. of dry soil	30.82	35.72	35.93	36.42	
Water content %	20.41	21.41	22.21	23.21	
Type of Test	PL	PL	Borehole	#	TP 95-27
Container #	15	51	Sample #		
Wt.sample wet + tar	24.90	25.53	Depth		
Wt.sample dry + tar	23.70	24.25	Liquid Li	mit	21.20 1
Wt. of water	1.20	1.28	Plastic I	imit	12-87= 12.3 V
Tare	14.41	14.26	Plasticit	y index	8.32 -
ght of dry soil	9.29	9.99	Moisture content		11. }
Water content	12.92	12.31	Liquidity	Index	-0.21-0.22
v Mater Content %					11.1-12.87 8:33 MPLE DESCRIPTION TICL - LIKE SOLL J SMARCE - MINUS #40 SIEVE BROWN CAYEN SICT. TRACES ATTICE SAME CL
	10 15	20 2	5 30 35 40		
		of blows	, ,, ,, ,, 40	4))0	

Golder Associates

Type of Test	LL	LL	LL	LL		Nat MC
Container #	#102	#30	= 42	= 74		
Number of blows	15	20	24	28		
Wt.sample wet + tar	30.63	32.90	40.59	40.41		
Wt.sample dry + tar	2758	29 54	37.00	36.93		
Weight of water	3.05	3.36	359	348		
Tare	14.05	14.40	20.37	20.69		
Wt. of dry soil	13 53	15.14	1663	16.24		
Water content %	22.5-	222-	216	21.4-		
Type of Test	PL	PL	Borehole	#	TP95-31	
Container #	282	=51	Sample #			
Wt.sample wet + tars	34.07	37.00	Depth		*****	
Wt.sample dry + tar	32.45	35 04	Liquid L:	imit	216	1
Wt. of water	162	1960	Plastic Limit		140	1
Tare	20.92	20.83	Plasticity index		76	~
.ght of dry soil	11 53	14.21	Moisture	content	110	/
Water content	141 -	138-	Liquidity	Index	- 0.4	0 -



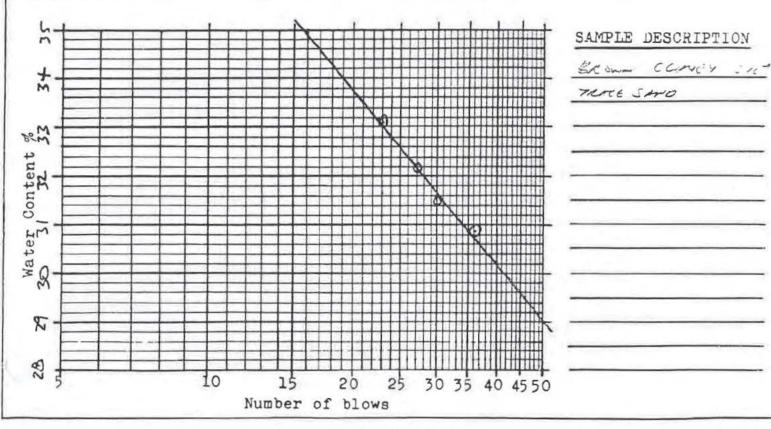
Golder Associates

INVESTIGATION KP 1-9 452 of 500

ab Work 17.0 Project # 952 1018 Date Jeros. 31-95

Type of Test	LL	LL	LL	LL		Nat MC
Container #	#3/	±14	=112A	11 11		
Number of blows	17	24	2/	31		
Wt.sample wet + tar	31.74	31.10	32.26	32.24	12. 71	
Wt.sample dry + tar	2473	2824	2906	29.21		
Weight of water	3 01	286	3.2	303		
Tare	14:59	14.55	14.11	14.59		
Wt. of dry soil	1414	1369	14 95	1462		
Water content %	213 -	20.9-	21.4	20.7-		
Type of Test	PL	PL	Borehole	#	TP95-35	
Container #	#1?	#9	Sample #			
Wt.sample wet + tar	25.83	33.80	Depth			
Wt.sample dry + tar	2435	2261	Liquid Li	mit	20.0	7 /
Wt. of water	148	119	Plastic Limit		14 1	×
Tare	13.71	14.08	Plasticity index		68	~
ight of dry soil	10 44	853	Moisture	content	16 5	1
Water content	142 -	1401	Liquidity	Index	0 3	5 /

Golder Associates

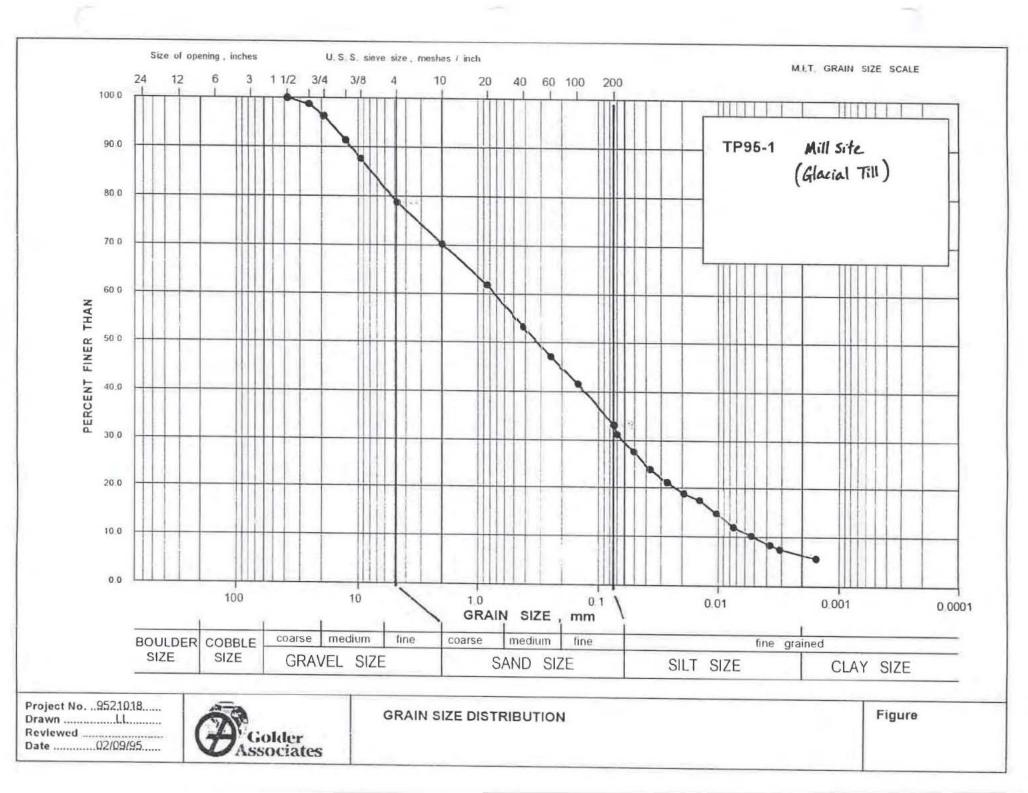

Lab Work	Proje	ect # <u>952</u>	-1018	Date <u>16</u>	23/95	
Type of Test	LL	LL	LL	LL		Nat MC
Container #	36	-4	91	.د د	4	
Number of blows	13	25	24	6	39	6.000
Vt.sample wet + tar	22.69	1/8.83	31.27	20.33	35.20	
Nt.sample dry + tar	18.75	15/70	25.39	16.57	30,88	
Weight of water	3.94	343	5.88	3.76	1 4.22	
lare	4-5.5	347	3.76	3,50	14.57	
Vt. of dry soil	14.20	12.13	21.63	13.07	631	
Vater content %	21.8	23.3	27.2	28.8	26.5	18.8%
Type of Test	PL	PL	Borehole	#	TP 95-	37
Container #	A 8	BIJ	Sample #	a de la companya de l		
t.sample wet + tar	17.80	17.14	Depth			
t.sample dry + tar	a starter to the star	15.26	Liquid Limit		27.0 %	
It. of water	1.99	1.88	Plastic Limit		16.3%	
' 'e	3.59	3.67	Plasticity index		10,7 %	
leight of dry soil	12.22	11.59	Moisture content		18.8%	
ater content	16.3	16.2	Liquidity	Index	0.23	
it %					CC	IPTION
25 26 27 26						
Water 26 27						

Golder Associates

má - INVESTIGATION KP 1-9 454 of 500 . **

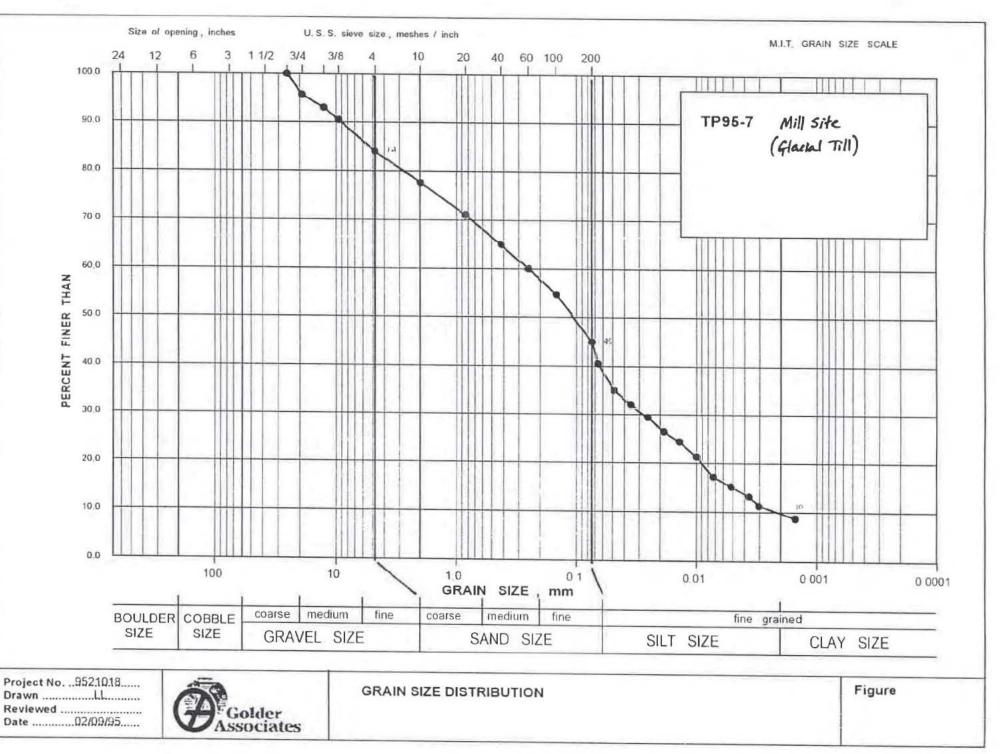
ab Work_____ Project # 952/018 Date 195 195 166 Ford 165

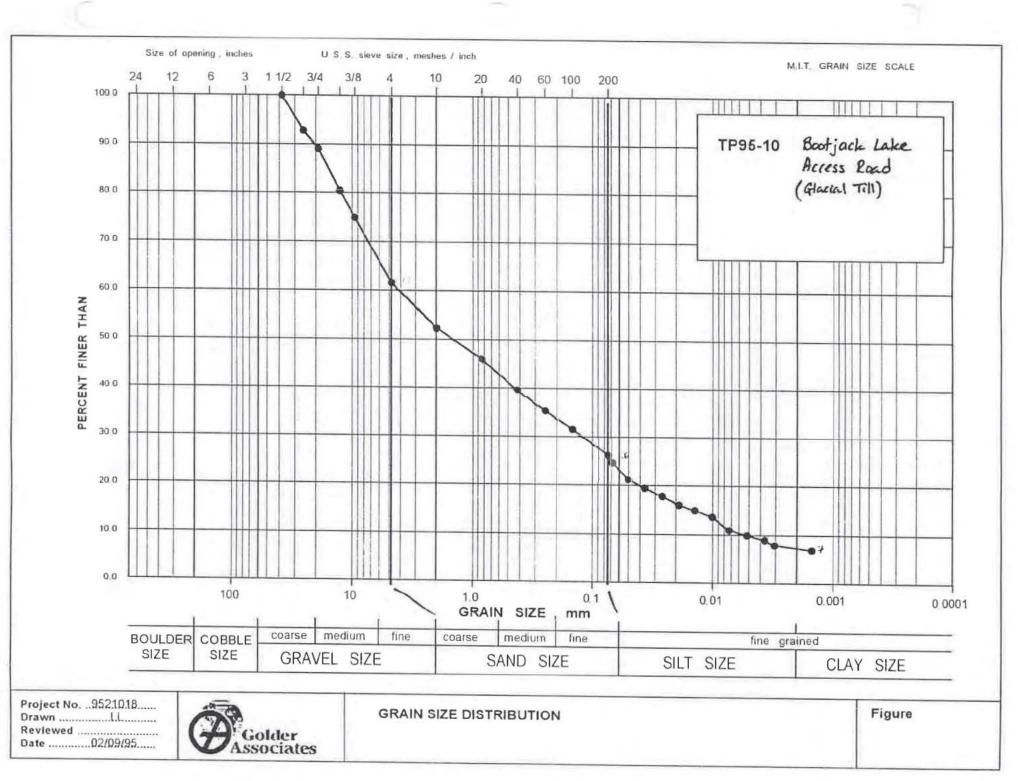
LL LL Type of Test LL LL Nat MC 65 69 Container # 61 73 26 30 23 27 Number of blows Wt.sample wet + tars 49.50 50.11 51-16 61.30 43.70 42.74 43.08 51.05 Wt.sample dry + tars 7.03 7.46 10.25 Weight of water 6.76 20.53 20.75 20.05 20.84 Tare 21.90 23.17 31.00 Wt. of dry soil 22.33 32.2 33.1 28.4 30.9-31.5 Water content % TP 95-32 PL Borehole Type of Test PL # 25 6 Sample # Container # Wt.sample wet + tark 25.14 30.91 Depth 32.6 23.97 29.81 | Liquid Limit Wt.sample dry + tare 18.7 / 1.17 Plastic Limit 1.10 Wt. of water 13.9 17.77 23.84 Plasticity index Tare 5.97 28.4 6.20 Moisture content ight of dry soil 0.70 / Water content 8.9 18.4 Liquidity Index

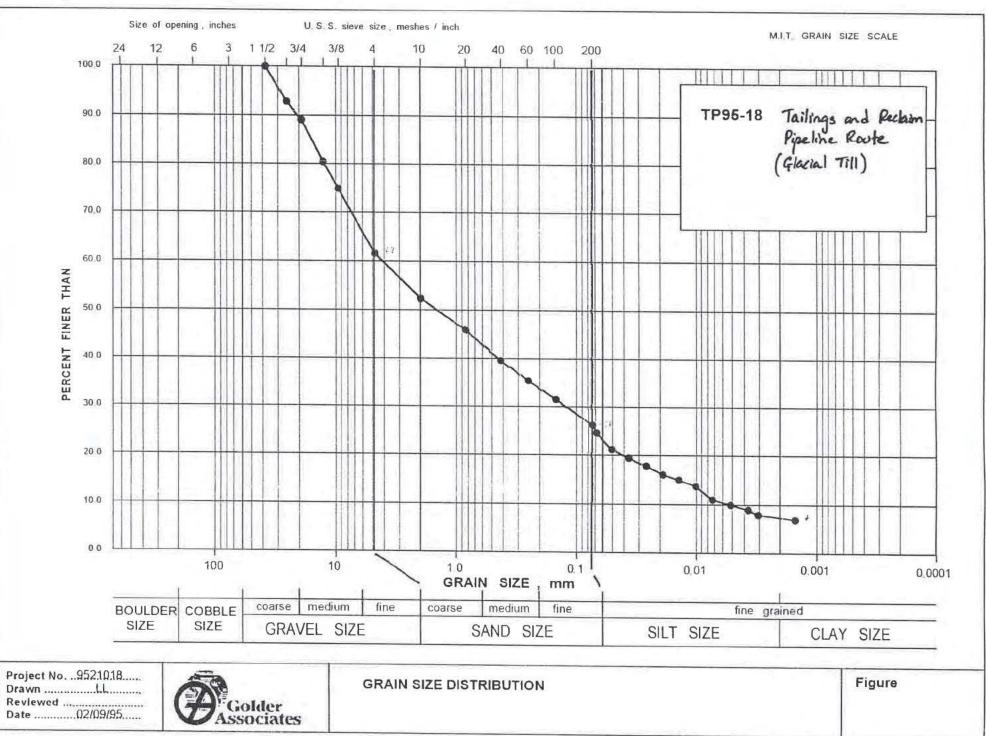


Golder Associates

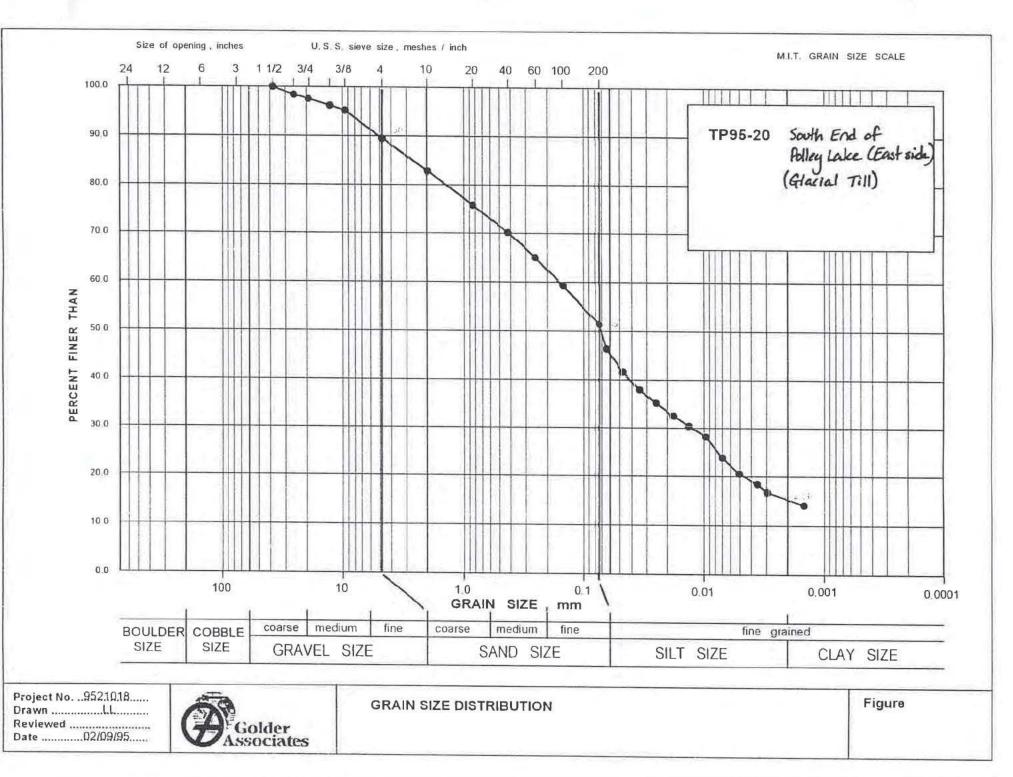
INVESTIGATION KP 1-9 455 of 500


Lab Work	Proje	ect # <u>952</u>	-1018	Date For	14/95	(_{r2} 7)) -
Type of Test	LL	LL	LL	LL		Nat MC
Container #	BZ	12	12A	14		
Number of blows	32	27	21	15		
Wt.sample wet + tar	Name of Concession, or other diversion of the Owner, where the Party of the Owner, where the Party of the Owner, where the Ow	49.52	48.06	51.84		
Wt.sample dry + tar	40.93	43.09	41.78	44.47		
Weight of water	5.60	6.43	6.28	7-37		
Tare	14.79	13,89	14.73	14.19		
Wt. of dry soil	26.14	29-20	27-05	30.28		
Water content %	21.4 .	22.0 -	23-2-1	24-31		11.1
Type of Test	PL	PL	Borehole	#	7p 95-	27
Container #	30	102	Sample #			
Wt.sample wet + tar	25.60	24.04	Depth			
Wt,sample dry + tar	24.24	22.30	Liguid Li	4		
Wt. of water	1-36	1.24	Plastic 1	Limit	13.91	
[rme	14.39	13.95	Plasticity index		8.5	
Light of dry soil	9-85	8-85	Moisture content		.	
Nater content	13.8	14.0	Liquidity Index		-0.33	
Zater Content %					MPLE DESCH	

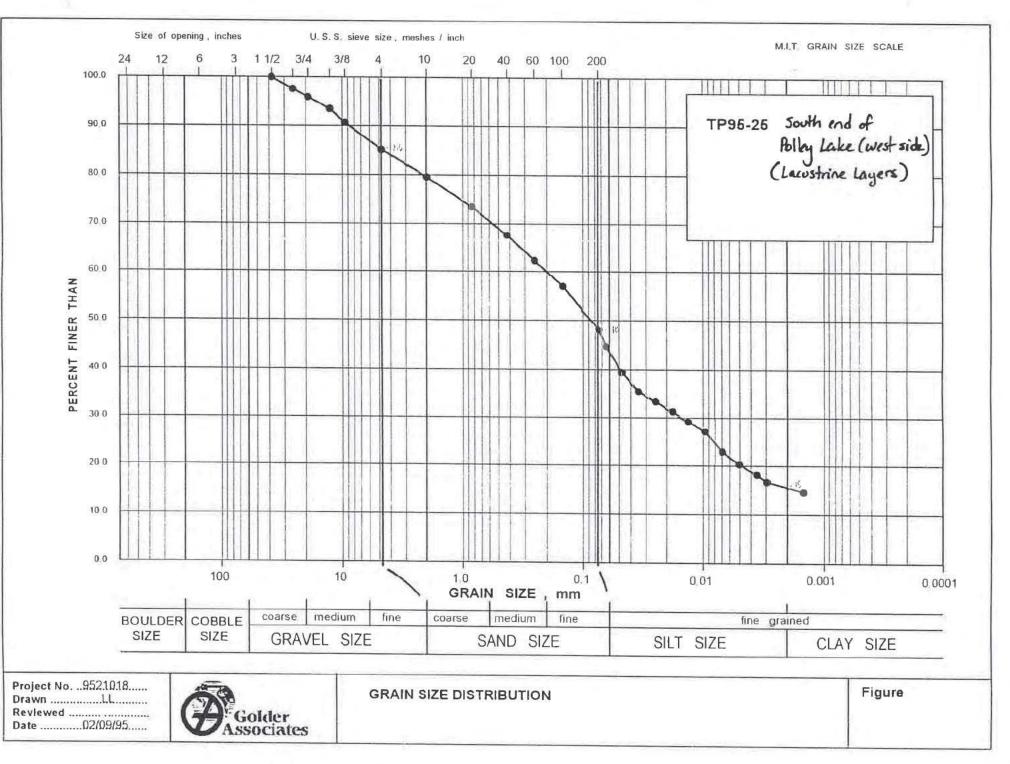

Golder Associates


INVESTIGATION KP 1-9 457 of 500

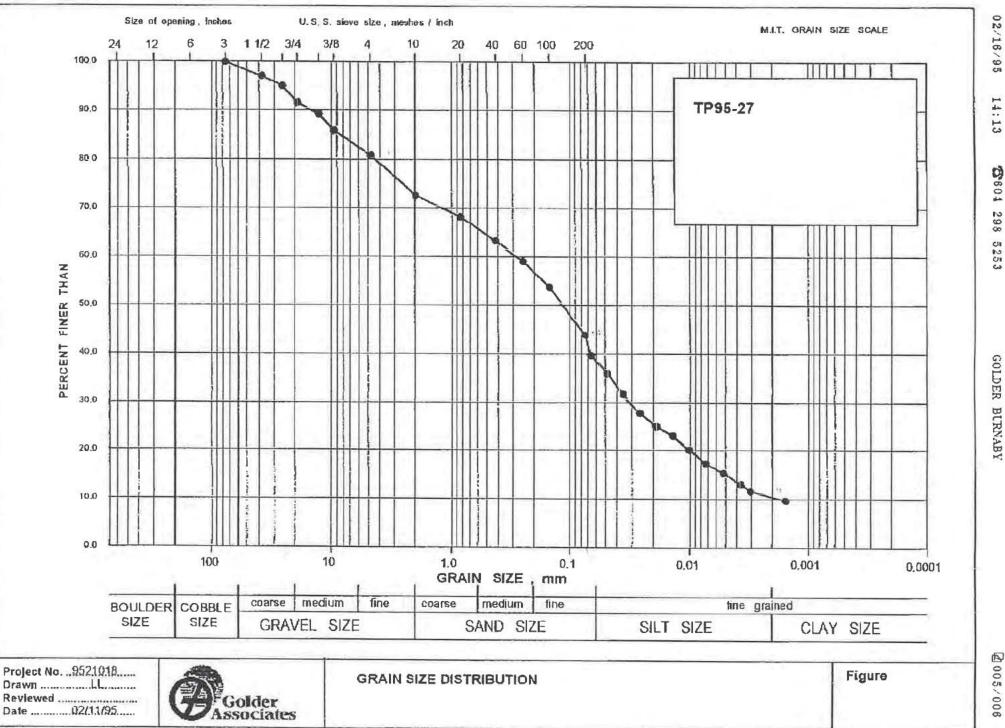
+



INVESTIGATION KP 1-9 459 of 500



INVESTIGATION KP 1-9 460 of 500

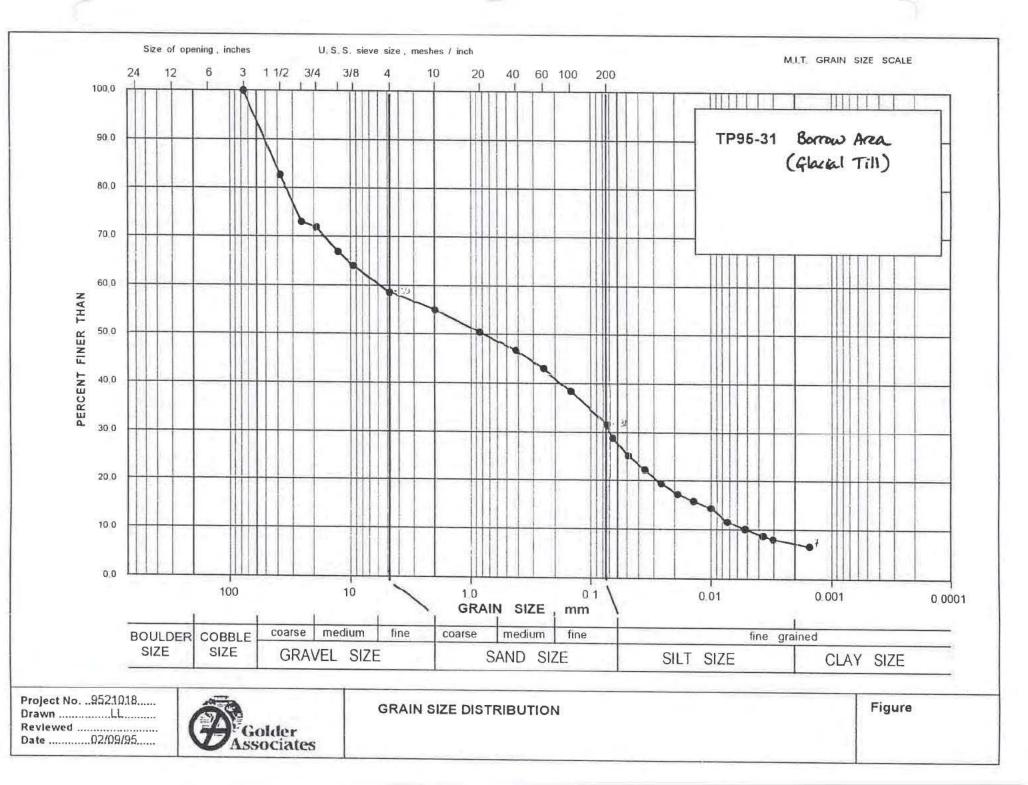


INVESTIGATION KP 1-9 461 of 500

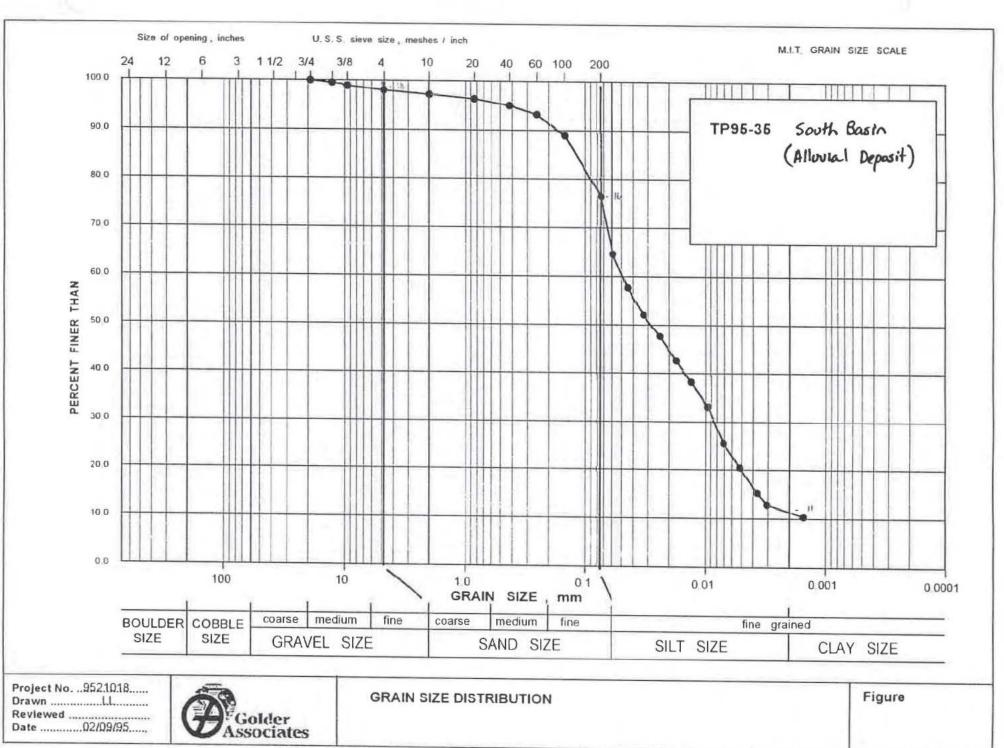
500

INVESTIGATION KP 1-9 462 of 500

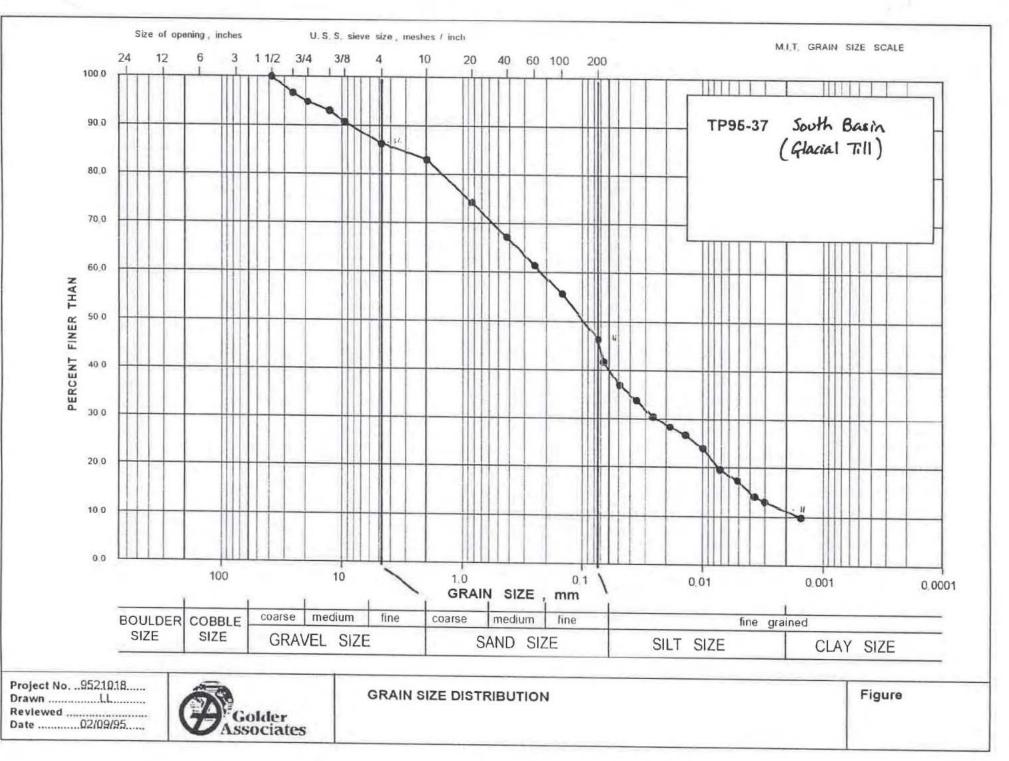
INVESTIGATION KP 1-9 463 of 500


2 005/008

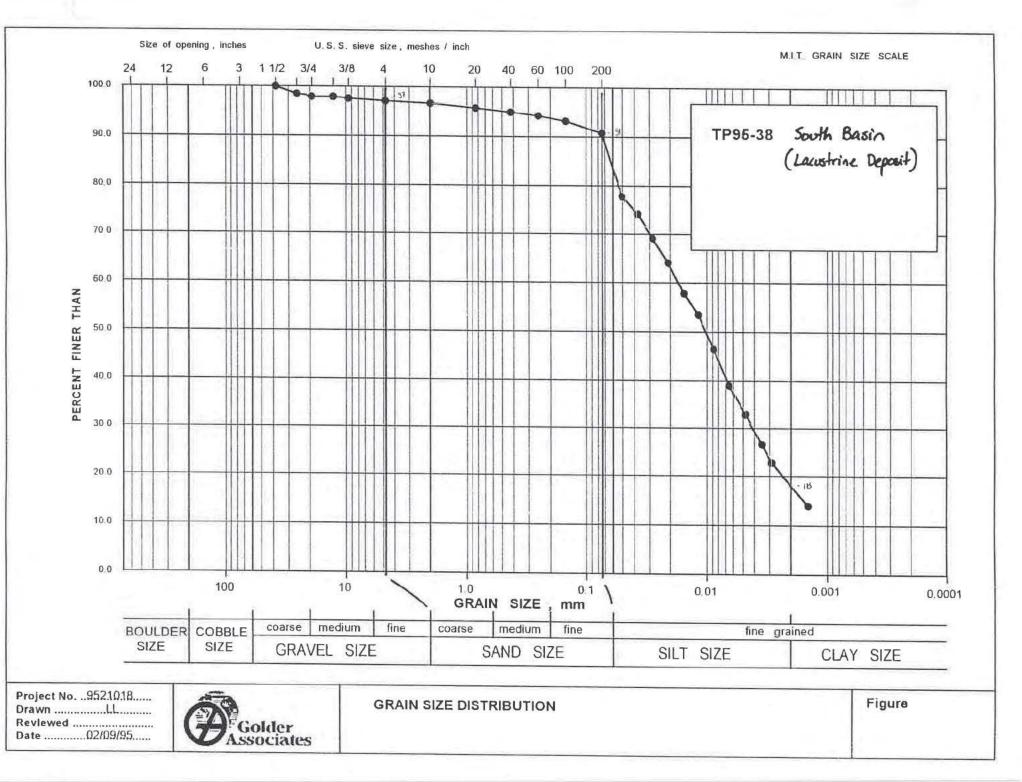
14:13


2804

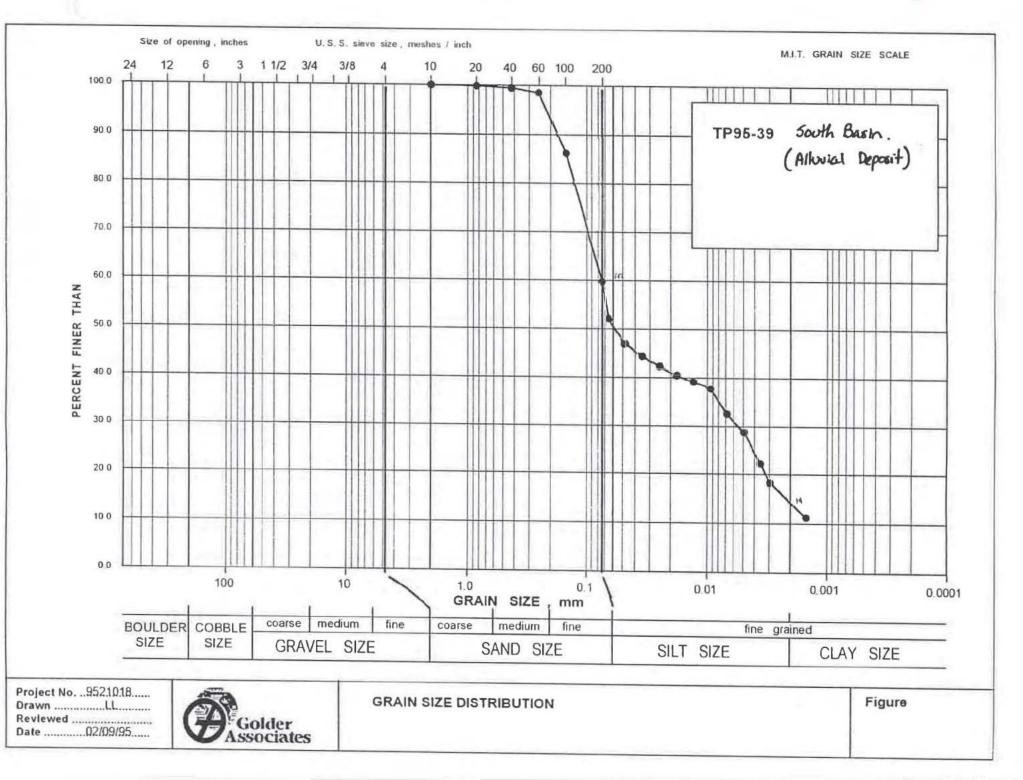
298


5253

INVESTIGATION KP 1-9 464 of 500



INVESTIGATION KP 1-9 465 of 500



INVESTIGATION KP 1-9 466 of 500

f 500

INVESTIGATION KP 1-9 467 of 500

INVESTIGATION KP 1-9 468 of 500

Project No. :	9521018	Client :	Knight Piesold	Ltd_	Test Pit :	TP95-1	
Date :	02/09/95	Project :	Job No. 1623	3/1	Sample :		
Lab Work:	;LL	Location:	Burnaby		Depth :		
	1ST SIEVIN	iG	Hydrometer:	(Minus #10)	Residual #200	0.7	
	Total Weight	3468.7	Before Wash		Total -200	38.0	
	1		After Wash	37.7	Gs	2.78	
Size (USS)	Weight Retained	% Retained	Weight Retained	% Retained	% Retained Total	Diameter (mm)	% Passin
6"	0.0			1		152.4	100.0
3"	0.0					76.2	100.0
1 1/2"	0.0					38.1	100.0
1 1/2	41.8	1.2		1000	1.2	25.4	98.8
3/4"	87.4	2.5			2.5	19.1	96.3
1/2"	172.3	5.0			5.0	12.7	91.3
3/8"	127.0	3.7			3.7	9.52	87.6
#4	308.0	8.9			8.9	4.76	78.8
#10	294.9	8.5			8.5	2.00	70.3
#20	204.0	0.0	8.9	11.9	8.3	0.840	61.9
#40			9.3	12.4	8.7	0.420	53.2
#40	-		6.6	8.8	6.2	0.420	47.0
#100		-	5.9	7.9	5.5	0.149	41.5
#200			8.9	11.9	8.3	0.074	33.2
Pan			38.0	50.7	35.6	0.074	55.2
		HYDE	AN 12 12 12 12 14 14	RANAL	Cale Carlos	and the	
Time	Hydrometer			Composite	Hydrometer	Diameter	% Passing
(min)	Reading	(C)		Correction	Corrected	(mm)	
0.5	38.0	20.1		-3.76	34.2	0.0700	31.2
1	34.0	20.1		-3.76	30.2	0.0511	27.6
2	30.0	20.1		-3.76	26.2	0.0372	23.9
4	27.0	20.1		-3.76	23.2	0.0269	21.2
8	24.5	20.1		-3.76	20.7	0.0194	18.9
15	23.0	20.0		-3.77	19.2	0.0143	17.5
30	20.0	20.0		-3.77	16.2	0.0103	14.8
60	17.0	20.0		-3.77	13.2	0.0074	12.0
120	15.0	20.0		-3.77	11.2	0.0053	10.2
240	13.0	20.0		-3.77	9.2	0.0038	8.4
360	12.0	20.0		-3.77	8.2	0.0031	7.5
1440	10.0	19.9		-3.77	6.2	0.0016	5.7

Project No. :	9521018	Client :	Knight Piesold L	_td_	Test Pit :	TP95-7		
Date :	,02/09/95	Project :	Job No. 1623	/1	Sample :			
Lab Work:	LL	Location:	Burnaby		Depth :			
	1ST SIEVIN		Hydrometer:	the second s	Residual #200	0.1		
	Total Weight	2807.3	Before Wash		Total -200	43.3		
			After Wash	31.8	Gs	2.78		
Size (USS)	Weight Retained	% Retained	Weight Retained	% Retained	% Retained Total	Diameter (mm)	% Passin	
						450.4	100.0	
6''	0.0					152.4	100.0	
3"	0.0					76.2	100.0	
1 1/2"	0.0					38.1	100.0	
1"	0.0					25.4	100.0	
3/4"	120.2	4.3			4.3	19.1	95.7	
1/2"	74.8	2.7			2.7	12.7	93.1	
3/8"	71.4	2.5	and the second	and the second	2.5	9.52	90.5	
#4	182.0	6.5	1	N.	6.5	4.76	84.0	
#10	177.5	6.3	14 - M		6.3	2.00	77.7	
#20		200	6,4	8.5	6.6	0.840	71.1	
#40			5.9	7.9	6.1	0.420	65.0	
#60			4.8	6.4	5.0	0.250	60.0	
#100			5.1	6.8	5.3	0.149	54.7	
#200			9.3	12.4	9.6	0.074	45.1	
Pan			43.3	57.7	44.9			
		HYDI	ROMETE	R ANAL	YSIS		1993	
Time	Hydrometer	Temperature		Composite	Hydrometer	Diameter	% Passing	
(min)	Reading	(C)	1	Correction	Corrected	(mm)		
0.5	44.0	20.1		-3.76	40.2	0.0664	40.5	
1	38.5	20.1		-3.76	34.7	0.0493	35.0	
2	35.5	20.1		-3.76	31.7	0.0357	32.0	
4	33.0	20.1		-3.76	29.2	0.0257	29.5	
8	30.0	20.1		-3.76	26.2	0.0186	26.4	
15	28.0	20.0		-3.77	24.2	0.0138	24.4	
30	25.0	20.0		-3.77	21.2	0.0100	21.4	
60	21.0	20.0		-3.77	17.2	0.0072	17.4	
120	19.0	20.0		-3.77	15.2	0.0052	15.3	
240	17.0	20.0		-3.77	13.2	0.0037	13.3	
360	15.0	20.0		-3.77	11.2	0.0031	11.3	
1440	12.5	19.9		-3.77	8.7	0.0015	8.8	

Project No. :	9521018	Client :	Knight Piesold	Ltd.	Test Pit :	TP95-10		
Date :	02/09/95	Project :	Job No. 1623	3/1	Sample :			
Lab Work:	ILL	Location:	Burnaby		Depth :			
	1ST SIEVIN		Hydrometer:	(Minus #10)	Residual #200	0.1		
	Total Weight	2183.6	Before Wash	and the second se	Total -200	37.2		
			After Wash	37.9	Gs	2.78		
Size (USS)	Weight Retained	% Retained	Weight Retained	% Retained	% Retained Total	Diameter (mm)	% Passin 100.0	
6"	0.0	-	-			450.4		
3"	0.0					152.4	100.0	
			S			76.2	100.0	
1 1/2"	0.0	7.0				38.1	100.0	
1"	158.4	7.3			7.3	25.4	92.7	
3/4"	79.7	3.6			3.6	19.1	89.1	
1/2"	190.4	8,7			8.7	12.7	80.4	
3/8"	119.2	5.5		1	5.5	9.52	74.9	
#4	290.9	13.3			13.3	4.76	61.6	
#10	201.3	9.2		19455	9.2	2.00	52.4	
#20			9.3	12.4	6.5	0.840	45.9	
#40			9.0	12.0	6.3	0.420	39.6	
#60	() () () () () () () () () ()		6.2	8.3	4.3	0.250	35.3	
#100	1		5.5	7.3	3.8	0.149	31.4	
#200	1	1.00	7.5	10.0	5.2	0.074	26.2	
Pan	Lange and		37.2	49.6	26.0			
		HYDE	ROMETE	R ANAL	YSIS			
Time (min)	Hydrometer Reading	Temperature (C)		Composite Correction	Hydrometer Corrected	Diameter (mm)	% Passing	
0.5	40.0	20.1		-3.76	36.2	0.0688	24.6	
1	35.0	20.1		-3.76	31.2	0.0507	21.2	
2	32.5	20.1		-3.76	28.7	0.0366	19.5	
4	30.0	20.1		-3.76	26.2	0.0263	17.8	
8	27.5	20.1		-3.76	23.7	0.0190	16.1	
15	26.0	20.0		-3.77	22.2	0.0140	15.1	
30	24.0	20.0		-3.77	20.2	0.0100	13.7	
60	20.0	20.0		-3.77	16.2	0.0073	11.0	
120	18.5	20.0		-3.77	14.7	0.0052	10.0	
240	17.0	20.0		-3.77	13.2	0.0037	9.0	
360	15.5	20.0		-3.77	11.7	0.0031	8.0	
1440	14.0	19.9		-3.77	10.2	0.0015	6.9	

Project No. :	9521018	Client :	Knight Piesold I	_td_	Test Pit :	TP95-18		
Date :	02/09/95	Project :	Job No. 1623	//1	Sample :			
Lab Work:	LL	Location:	Burnaby	1.	Depth :			
	IST SIEVIN	IG	Hydrometer:	(Minus #10)	Residual #200	0.2	1	
	Total Weight	2189.2	Before Wash		Total -200	50.0		
			After Wash	25.2	Gs	2.78		
Size (USS)	Weight Retained	% Retained	Weight Retained	% Retained	% Retained Total	Diameter (mm)	% Passing	
6"	0.0		80			152.4	100.0	
3"	0.0					76.2	100.0	
1 1/2"	0.0					38.1	100.0	
1 1/2						0.027.6	1	
	0.0					25.4	100.0	
3/4"	0.0		-			19.1	100.0	
1/2"	5.1	0.2			0.2	12.7	99.8	
3/8"	19.5	0.9		1000	0.9	9.52	98.9	
#4	44.0	2.0		1 1	2.0	4.76	96.9	
#10	59.5	2.7		-	2.7	2.00	94.1	
#20			3.5	4.7	4.4	0.840	89.8	
#40			3.8	5.1	4.8	0.420	85.0	
#60			4.1	5.5	5.1	0.250	79.8	
#100		4 4 4	4.9	6.5	6.2	0.149	73.7	
#200			8.4	11.2	10.5	0.074	63.1	
Pan			50.0	66.7	62.8			
	raya na an	HYDI	ROMETE	R ANAL	YSIS		and the second	
Time (min)	Hydrometer Reading	Temperature (C)		Composite Correction	Hydrometer Corrected	Diameter (mm)	% Passing	
0.5	49.0	20.1		-3.76	45.2	0.0633	55.2	
1	44.0	20.1		-3.76	40.2	0.0470	49.1	
2	41.0	20.1		-3.76	37.2	0.0341	45.5	
4	38.0	20.1		-3,76	34.2	0.0247	41.8	
8	35.0	20.1		-3.76	31.2	0.0179	38.1	
15	33.0	20.0		-3.77	29.2	0.0133	35.7	
30	30.0	20.0		-3.77	26.2	0.0096	32.0	
60	27.0	20.0		-3.77	23.2	0.0069	28.4	
120	23.0	20.0		-3.77	19.2	0.0050	23.5	
240	20.0	20.0		-3.77	16.2	0.0036	19.8	
360	18.5	20.0		-3.77	14.7	0.0030	18.0	
1440	15.0	19.9		-3.77	11.2	0.0015	13.7	

Project No. :	9521018	Client :	Knight Piesold	_td_	Test Pit :	TP95-20		
Date :	02/09/95	Project :	Job No. 1623	/1	Sample :			
Lab Work:	LL	Location:	Burnaby		Depth :			
	1ST SIEVIN		Hydrometer:	A STATE OF ALL PROPERTY AND A STATE OF ALL PROPERTY AND A STATE OF	Residual #200	0.2		
	Total Weight	3344.7	Before Wash	100227-255	Total -200	46.6		
			After Wash	28.6	Gs	2.78		
Size (USS)	Weight Retained	% Retained	Weight Retained	% Retained	% Retained Total	Diameter (mm)	% Passing	
6"	0.0					152.4	100.0	
3"	0.0					76.2	100.0	
1 1/2"	0.0					38.1	100.0	
1 1/2	51.7	1.5	1910 - 2 - 2		1.5	25.4	98.5	
3/4"	26.8	0.8			0.8	19.1	97.7	
1/2"	46.0	1.4			1.4	12.7	96.3	
3/8"	34.6	1.4			1.0	9.52	95.2	
#4	192.4	5.8			5.8	4.76	89.5	
#10	221.1	6.6		1	6.6	2.00	82.9	
#20	221.1	0.0	6.3	8.4	7.0	0.840	75.9	
#40			5.2	6.9	5.7	0.420	70.2	
#40			4.6	6.1	5.1	0.250	65.1	
#100			5.2	6.9	5.7	0.149	59.3	
#200	-		7.2	9.6	8.0	0.074	51.4	
Pan			46.6	62.1	51.5	0.074	01.1	
		HYDI	ROMETE	RANAL	YSIS			
Time (min)	Hydrometer Reading	Temperature (C)		Composite Correction	Hydrometer Corrected	Diameter (mm)	% Passing	
0.5	47.0	20.1		-3.76	43.2	0.0645	46.5	
1	42.5	20.1		-3.76	38.7	0.0476	41.6	
2	39.0	20.1		-3.76	35.2	0.0347	37.9	
4	36.5	20.1		-3.76	32.7	0.0250	35.2	
8	34.0	20.1		-3,76	30.2	0.0181	32.5	
15	32.0	20.0		-3.77	28.2	0.0134	30.3	
30	30.0	20.0		-3.77	26.2	0.0096	28.2	
60	26.0	20.0		-3.77	22.2	0.0070	23.9	
120	23.0	20.0		-3.77	19.2	0.0050	20.7	
240	21.0	20.0		-3.77	17.2	0.0036	18.5	
360	19.5	20.0		-3.77	15.7	0.0030	16.9	
1440	17.0	19.9		-3.77	13.2	0.0015	14.2	

Project No. :	9521018	Client :	Knight Piesold I	Ltd,	Test Pit :	TP95-25		
Date :	102/09/95	Project :	Job No. 1623	3/1	Sample :			
Lab Work:	LL	Location:	'Burnaby		Depth ;		1.1	
	1ST SIEVIN		Hydrometer:		Residual #200	0.1		
	Total Weight	2733.1	Before Wash		Total -200	45.4		
			After Wash	29.7	Gs	2.78	N/ Decelier	
Size (USS)	Weight Retained	% Retained	Weight Retained	% Retained	% Retained Total	Diameter (mm)	% Passin	
C 11			4			450.4	100.0	
6"	0.0					152.4	100.0	
3"	0.0					76.2	100.0	
1 1/2"	0.0					38.1	100.0	
1"	66.5	2.4		the survey of	2.4	25.4	97.6	
3/4"	46.3	1.7			1.7	19.1	95.9	
1/2"	66.4	2.4			2.4	12.7	93.4	
3/8"	74.6	2.7	-		2.7	9.52	90.7	
#4	151.9	5.6	a Real of		5.6	4.76	85.2	
#10	152.9	5.6			5.6	2.00	79.6	
#20			5.7	7.6	6.0	0.840	73.5	
#40			5.5	7.3	5.8	0.420	67.7	
#60			5.0	6.7	5.3	0.250	62.4	
#100	and the second		5.1	6.8	5.4	0.149	57.0	
#200			8.3	11.1	8.8	0.074	48.2	
Pan			45.4	60.5	48.2			
		HYDI	ROMETE	ER ANAL	YSIS			
Time (min)	Hydrometer Reading	Temperature (C)		Composite Correction	Hydrometer Corrected	Diameter (mm)	% Passing	
0.5	47.0	20.1		-3.76	43.2	0.0645	44.6	
1	42.0	20.1		-3.76	38.2	0.0478	39.4	
2	38.0	20.1	1	-3.76	34.2	0.0350	35.3	
4	36.0	20.1		-3.76	32.2	0.0251	33.3	
8	34.0	20,1		-3.76	30.2	0.0181	31.2	
15	32.0	20.0		-3.77	28.2	0.0134	29.1	
30	30.0	20.0	0.2.1	-3.77	26.2	0.0096	27.1	
60	26.0	20.0		-3.77	22.2	0.0070	22.9	
120	23.5	20.0		-3.77	19.7	0.0050	20.3	
240	21.5	20.0		-3.77	17.7	0.0036	18.3	
360	20.0	20.0		-3.77	16.2	0.0030	16.7	
1440	18.0	19.9		-3.77	14.2	0.0015	14.7	

Project No. :	9521018	Client :	Knight Plesold L	td	Test Pit :	TP95-27	
Date :	02/11/95	Project :	Job No, 1623	/1	Sample :		
ab Work:	TLÉ	Location:	Eurnaby		Depth :	1	
	1ST SIEVIN		Hydrometer		Residual #200	1.5	
	Total Weight	4128.7	Before Wash	75.0	Total -200	45.3	
			After Wash	31.2	Gs	2.73	
Size (USS)	Retained	% Retained	Weight Retained	, w Kelained.	% Retained Total	Diameter, (mm)	
							100.0
6"	0.0	1				152.4	100.0
3"	0.0					76.2	100.0
1 1/2"	122.4	3.0			3.0	38.1	97.0
1"	81.1	2.0		U. S. Alaka	2.0	25.4	95.1
3/4"	146.7	3,6			3.6	19.1	91,5
1/2"	97.9	2.4		19	2.4	12.7	89.1
3/8"	134.4	3.3		de la casa de la	3.3	9.52	85.9
#4	204.6	5.0	r	and the second	5.0	4.76	80.9
#10	344.3	8.3		100.000	8.3	2.00	72.6
#20			4.5	6.0	4.4	0.840	68.2
#40	100	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	5.0	6.7	4.8	0.420	63.4
#60		(10)	4.5	6.0	4.4	0.250	59.0
#100	and the second		5.6	7.5	5.4	0.149	53.6
#200			10.1	13.5	9.8	0.074	43.8
Pan	The state of the		45.3	60.4	43.8		
		HYDI	ROMETE	RANAL	YSIS		
Time	Hydromefer	Temperature		Chick Cold (2017) Cold (2017) (2017)	Hydroineter	Diameter	% Passin
(m⊧∩)	Reading	(C)		Correction	Corrected	(mm) -	
0.5	45.5	19.5		-3,84	41.7	0.0665	39.6
1	41.5	19.5		-3.84	37.7	0.0488	35.8
2	37.0	19.5		-3.84	33.2	0.0358	31.5
4	33.0	19.5		-3.84	29.2	0.0261	27.7
8	30.0	19.5		-3.84	26.2	0.0189	24.9
15	28.0	19,5		-3.84	24.2	0.0140	23.0
30	25.0	19.5		-3.84	21.2	0,0101	20,1
60	22.0	19.6		-3.83	13.2	0.0073	17.3
120	20.0	19.8		-3.80	16.2	0.0052	15.4
240	17.5	19.8		-3.80	13.7	0.0038	13,0
360	16.0	19.8		-3.80	12.2	0.0031	11.6
1440	14.0	20.0		-3.80	10.2	0.0015	9.7

CONSULTING ENGINEERS

Project No. :	9521018	Client :	Knight Piesold L	.td	Test Pit :	TP95-31	
Date :	02/09/95	Project :	Job No. 1623	/1	Sample :		
Lab Work:	LL	Location:	Burnaby		Depth :		
	1ST SIEVIN		Hydrometer: (Residual #200	0.5	
	Total Weight	2916.2	Before Wash	75.0	Total -200	42.9	
1			After Wash	32.6	Gs	2.78	
Size (USS)	Weight Retained	% Retained	Weight Retained	% Retained	% Retained Total	Diameter (mm)	% Passing
6"	0.0					152.4	100.0
3"	0.0	1				76.2	100.0
		47.0			17.0	10.000	
1 1/2"	505.7	17.3			17.3	38.1	82.7
1"	284.0	9.7	1000		9.7	25.4	72.9
3/4"	31.2	1.1			1.1	19.1	71.9
1/2"	148.2	5.1	2.1		5.1	12.7	66.8
3/8"	79.5	2.7			2.7	9.52	64.0
#4	158.8	5.4			5.4	4.76	58.6
#10	105.9	3.6			3.6	2.00	55.0
#20			6.1	8.1	4.5	0.840	50.5
#40			5.3	7.1	3.9	0.420	46.6
#60			5.0	6.7	3.7	0.250	42.9
#100			6.3	8.4	4.6	0.149	38.3
#200			9.2	12.3	6.7	0.074	31.6
Pan			42.9	57.2	31.4		
		HYDI	ROMETE	RANAL	YSIS		
Time (min)	Hydrometer Reading	Temperature (C)		Composite Correction	Hydrometer Corrected	Diameter (mm)	% Passing
0.5	44.0	20.1		-3.76	40.2	0.0664	28.7
1	39.0	20.1		-3.76	35.2	0.0491	25.1
2	35.0	20.1		-3.76	31.2	0.0359	22.3
4	31.0	20.1	1	-3.76	27.2	0.0261	19.4
8	28.0	20.1	1	-3.76	24.2	0.0189	17.3
15	26.0	20.0		-3.77	22.2	0.0140	15.8
30	24.0	20.0		-3.77	20.2	0.0100	14.4
60	20.0	20.0		-3.77	16.2	0.0073	11.6
120	18.0	20.0		-3.77	14.2	0.0052	10.1
240	16.0	20.0		-3.77	12.2	0.0037	8.7
360	15.0	20.0		-3.77	11.2	0.0031	8.0
1440	13.0	19.9		-3.77	9.2	0.0015	6.6

.

Project No. :	9521018	Client :	Knight Piesold	Ltd	Test Pit :	TP95-35		
Date :	02/09/95	Project :	Job No. 1623	8/1	Sample :			
Lab Work:	ILL	Location:	Burnaby		Depth :			
	1ST SIEVIN		Hydrometer:		Residual #200	0.5		
	Total Weight	2546.3	Before Wash		Total -200	59.3		
			After Wash	16.2	Gs	2.78		
Size (USS)	Weight Retained	% Retained	Weight Retained	% Retained	% Retained Total	Diameter (mm)	% Passin	
6"	0.0			and the second second		450.4	100.0	
3"	0.0			1		152.4	100.0	
	0.0					76.2	100.0	
1 1/2"	0.0	-				38.1	100.0	
1"	0.0	-				25.4	100.0	
3/4"	0.0			 Sultant 		19.1	100.0	
1/2"	12.9	0.5			0.5	12.7	99.5	
3/8"	13.2	0.5	1	and the second second	0.5	9.52	99.0	
#4	22.7	0.9		15	0.9	4.76	98.1	
#10	19.2	0.8			0.8	2.00	97.3	
#20			0.7	0.9	0,9	0.840	96.4	
#40			1.0	1.3	1.3	0.420	95.1	
#60	100		1.4	1.9	1.8	0.250	93.3	
#100			3.4	4.5	4.4	0.149	88.9	
#200	-22		9,6	12.8	12.5	0.074	76.4	
Pan	All States		59.3	79.1	77.0			
		HYDE	ROMETE	R ANAL	YSIS	1		
Time	Hydrometer	Temperature		Composite	Hydrometer	Diameter	% Passing	
(min)	Reading	(C)		Correction	Corrected	(mm)		
0.5	55.0	20.1		-3.76	51.2	0.0593	64.7	
1	49.5	20.1		-3.76	45.7	0.0445	57.7	
2	45.0	20.1		-3.76	41.2	0.0329	52.0	
4	41.5	20.1		-3.76	37.7	0.0240	47.6	
8	37.5	20.1		-3.76	33.7	0.0176	42.6	
15	34.0	20.0		-3.77	30.2	0.0132	38.1	
30	30.0	20.0		-3.77	26.2	0.0096	33.1	
60	24.0	20.0		-3.77	20.2	0.0071	25.5	
120	20.0	20.0		-3.77	16.2	0.0051	20.5	
240	16.0	20.0		-3.77	12.2	0.0037	15.4	
360	14.0	20.0		-3.77	10.2	0.0031	12.9	
1440	12.0	19.9		-3.77	8.2	0.0015	10.4	

Project No. :	9521018	Client :	Knight Piesold	Ltd,	Test Pit :	TP95-37		
Date :	02/09/95	Project :	Job No. 1623	8/1	Sample :	i.		
Lab Work:	LL	Location:	Burnaby	Law and a	Depth :			
	1ST SIEVIN		Hydrometer:		Residual #200	0.2		
	Total Weight	1926.0	Before Wash	the second	Total -200	41.9		
			After Wash	33.3	Gs	2.78		
Size	Weight	% Retained		% Retained	% Retained	Diameter	% Passin	
(USS)	Retained		Retained		Total	(mm)	100.0	
6"	0.0			1		152.4	100.0	
3"	0.0					76.2	100.0	
1 1/2"	0.0		5			38.1	100.0	
1"	65.0	3.4			3.4	25.4	96.6	
3/4"	35.1	1.8		-	1.8	19.1	94.8	
1/2"	34.7	1.8	-		1.8	12.7	93.0	
3/8"	43.1	2.2			2.2	9.52	90.8	
#4	86.5	4.5			4.5	4.76	86.3	
#4	63.2	3.3			3.3	2.00	83.0	
#10	03.2	5.5	7.9	10.5	8.7	0.840	74.2	
#20			6.4	8.5	7.1	0.840	67.2	
			5.3	7.1	5.9	0.420	61.3	
#60			5.3	6.9	5.9	0.250	55.5	
#100	6		8.3	11.1	9.2	0.149	46.4	
#200 Pan			41.9	55.9	46.4	0.074	40.4	
Pan		1	Section and the second	And and a second second				
		HYDI	ROMETE	ER ANAL	YSIS			
Time	Hydrometer	Temperature		Composite	Hydrometer	Diameter	% Passing	
(min)	Reading	(C)		Correction	Corrected	(mm)		
0.5	42.5	20.1		-3.76	38.7	0.0673	41.7	
1	38.0	20.1		-3.76	34.2	0.0495	36.8	
2	35.0	20.1		-3.76	31.2	0.0359	33.6	
4	32.0	20.1	1	-3.76	28.2	0.0259	30.4	
8	30.0	20.1	2	-3.76	26.2	0.0186	28.2	
15	28.5	20.0		-3.77	24.7	0.0137	26.6	
30	26.0	20.0		-3.77	22.2	0.0099	23.9	
60	22.0	20.0		-3.77	18.2	0.0072	19.6	
120	20.0	20.0		-3.77	16.2	0.0051	17.5	
240	17.0	20.0		-3.77	13.2	0.0037	14.2	
360	16.0	20.0		-3.77	12.2	0.0030	13.2	
1440	13.0	19.9		-3.77	9.2	0.0015	9.9	

Project No. :	9521018	Client :	Knight Piesold I	_td	Test Pit :	TP95-38	
Date :	02/09/95	Project :	Job No. 1623	1/1	Sample :		
Lab Work:	LL	Location:	Burnaby		Depth :		
	1ST SIEVIN		Hydrometer	Av	Residual #200	0.1	
	Total Weight	2160.0	Before Wash		Total -200	70.3	
			After Wash	4.8	Gs	2.79	- 01 D
Size (USS)	Weight Retained	% Retained	Weight Retained	% Retained	% Retained Total	Diameter (mm)	% Passing
6"	0.0	-				152.4	100.0
3"	0.0					76.2	100.0
						1. STOCK STOCK	
1 1/2"	0.0	1.5	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		4.5	38.1	100.0
1"	32.3	1.5			1.5	25.4	98.5
3/4"	11.4	0.5			0.5	19.1	98.0
1/2"	0.0	(12.7	98.0
3/8"	7.4	0.3			0.3	9.52	97.6
#4	9.4	0.4		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0.4	4.76	97.2
#10	11.0	0.5		1	0.5	2.00	96.7
#20			0.7	0.9	0.9	0.840	95.8
#40			0.6	0.8	0.8	0.420	95.0
#60			0.6	0.8	0.8	0.250	94.2
#100			0.8	1.1	1.0	0.149	93.2
#200			1.9	2.5	2.4	0.074	90.8
Pan	0.00		70.3	93.7	90.6		
		HYDI	ROMETE	ER ANAL	YSIS		
Time (min)	Hydrometer Reading	Temperature (C)		Composite Correction	Hydrometer Corrected	Diameter (mm)	% Passing
0.5	66.0	20.1		-3.76	62.2	0.0511	77.9
1	63.0	20.1		-3.76	59.2	0.0377	74.1
2	59.0	20.1		-3.76	55.2	0.0282	69.1
4	55.0	20.1		-3.76	51.2	0.0209	64.1
8	50.0	20.1		-3.76	46.2	0.0156	57.9
15	46.5	20.0		-3.77	42.7	0.0118	53.5
30	41.0	20.0		-3.77	37.2	0.0088	46.6
60	35.0	20.0		-3.77	31.2	0.0065	39.1
120	30.0	20.0		-3.77	26.2	0.0048	32.8
240	25.0	20.0		-3.77	21.2	0.0035	26.6
360	22.0	20.0	7	-3.77	18.2	0.0029	22.8
1440	15.0	19.9	-	-3.77	11.2	0.0015	14.0

Project No. :	19521018	Client :	Knight Piesold L	.td.	Test Pit :	TP95-39	
Date :	02/09/95	Project :	Job No. 1623	/1	Sample :		
Lab Work:	ILL	Location:	Burnaby		Depth :		
	1ST SIEVIN	G	Hydrometer:	(Minus #10)	Residual #200	0.7	
	Total Weight	1001.4	Before Wash	press and a second	Total -200	44.3	
		1	After Wash	31.4	Gs	2.79	
Size (USS)	Weight Retained	% Retained	Weight Retained	% Retained	% Retained Total	Diameter (mm)	% Passing
	1	1				150.1	100.0
6"	0.0					152.4	100.0
3"	0.0					76.2	100.0
1 1/2"	0.0	1.000		1.20		38.1	100.0
1"	0.0					25.4	100.0
3/4"	0.0				la ser esta	19.1	100.0
1/2"	0.0					12.7	100.0
3/8"	0.0					9.52	100.0
#4	0.0					4.76	100.0
#10	0.0					2.00	100.0
#20	and the second		0.1	0.1	0.1	0.840	99.9
#40			0.3	0.4	0.4	0.420	99.5
#60			0.7	0.9	0.9	0.250	98.5
#100			9.3	12.4	12.4	0.149	86.1
#200			19.8	26.4	26.4	0.074	59.7
Pan			44.3	59.1	59.1		
		HYDI	ROMETE	RANAL	YSIS		
Time (min)	Hydrometer Reading	Temperature (C)		Composite Correction	Hydrometer Corrected	Diameter (mm)	% Passing
0.5	44.0	20.1		-3.76	40.2	0.0662	52.1
1	40.0	20.1		-3.76	36.2	0.0485	46.9
2	38.0	20.1		-3.76	34.2	0.0349	44.3
4	36.5	20.1		-3.76	32.7	0.0250	42.4
8	35.0	20.1		-3.76	31.2	0.0179	40.4
15	34.0	20.0	1	-3.77	30.2	0.0132	39.1
30	33.0	20.0		-3.77	29.2	0.0094	37.8
60	29.0	20.0		-3.77	25.2	0.0068	32.6
120	26.0	20.0		-3.77	22.2	0.0049	28.8
240	21.0	20.0		-3.77	17.2	0.0036	22.3
360	18.0	20.0		-3,77	14.2	0.0030	18.4
1440	12.5	19.9		-3.77	8.7	0.0015	11.3

Project No. 9521018 Date : 2/9/95

CONSULTING ENGINEERS

Г

SPECIFIC GRAVITY OF SOILS

DETERMINATION NUMBER	1	1	2	3	4
BOTTLE NUMBER		1	3		
AIR REMOVAL METHOD		Vacuum	Vacuum		
WEIGHT OF BOTTLE , gm.		179.54	173.97		
INITIAL WEIGHT OF BOTTLE + SOIL, gm.		279.54	273.94		
INITIAL WEIGHT OF SOIL, gm		100.00	99.97		
WEIGHT OF BOTTLE + SOIL + WATER, gm.	W,	741.29	735.22		
TEMPERATURE, °C	Т	19.6	19.5		
WEIGHT OF BOTTLE + WATER, gm.	W2	678.08	672.43		
EVAPORATING DISH NUMBER		7	17		
WEIGHT OF DISH + DRY SOIL, gm.		468.58	457.71		
WEIGHT OF DISH, gm		370.20	359.46		
WEIGHT OF SOIL, gm.	Ws	98.38	98.25		
SPECIFIC GRAVITY OF WATER	G-	0.9994	0.9994		
G ₇ W ₅		98.32	98.19		
W1 - W2		63.21	62.80		
Ws-(W1-W2)		35.17	35.45		
SPECIFIC GRAVITY OF SOIL	Gs	2.796	2.769		001

 $G_{S} = (G_{T} W_{S})/((W_{S} (W_{1} W_{2}))) =$

2.78 (average value)

REMARKS:

(1) Method A - Oven Dried Procedure

(2) Passing the #10 sieve (2.00 mm)

Test Pit: 95-7 Sample :

Depth :

Tested By : Calculated By : Checked By :

LL

LL

LL

CONSULTING ENGINEERS

Project No. <u>9521018</u> Date : <u>2/14/95</u>

SPECIFIC GRAVITY OF SOILS ASTM D 854-92

DETERMINATION NUMBER		1	2	3	4
BOTTLE NUMBER		1	3		-
AIR REMOVAL METHOD	1	Vacuum	Vacuum		0.00
WEIGHT OF BOTTLE , gm		179,54	173.97		
NITIAL WEIGHT OF BOTTLE + SOIL, gm.		279.54	273.97		
NITIAL WEIGHT OF SOIL, gm		100.00	100.00		
WEIGHT OF BOTTLE + SOIL + WATER, gm_	W ₁	741.35	735.58		1 cut
TEMPERATURE, °C	Т	19.9	19.4		i
WEIGHT OF BOTTLE + WATER, gm.	W ₂	678.06	672.43		
EVAPORATING DISH NUMBER		9	38		
WEIGHT OF DISH + DRY SOIL, gm	1	470.84	457.10		
WEIGHT OF DISH, gm.		371.13	357.40		-
WEIGHT OF SOIL, gm.	Ws	99.71	99.70		
SPECIFIC GRAVITY OF WATER	GT	0.99825	0.99835		
G _T Ws	1	99.54	99.54		
N1-W2		63.29	63.16		1
W ₅ -(W ₂ -W ₂)		36.42	36.55	1	
SPECIFIC GRAVITY OF SOIL	G ₃	2.733	2.724	N. States and States and	

 $G_{s} = (G_{T^{*}}W_{s})/((W_{s}-(W_{1}-W_{2}))) =$

2.73 (average value)

REMARKS :

- (1) Method A Oven Dried Procedure
- (2) Passing the #10 sieve (2.00 mm)

Test.Pit:TP95-27 Sample : Depth

Tested By : Calculated By : Checked By : LL

LL

EL

CONSULTING ENGINEERS

Project No. 9521018 Date : 2/9/95

SPECIFIC GRA	VITY OF D 854-92	SOILS			1. Mg.
DETERMINATION NUMBER		1	2	3	4
BOTTLE NUMBER		1	3		
AIR REMOVAL METHOD		Vacuum	Vacuum		
WEIGHT OF BOTTLE . gm.		179.54	173.97		
INITIAL WEIGHT OF BOTTLE + SOIL, gm.		279.54	273.97		
INITIAL WEIGHT OF SOIL, gm	-	100.00	100.00		
WEIGHT OF BOTTLE + SOIL + WATER, gm.	W,	741.45	735.71		
TEMPERATURE,°C	т	20.3	20.4		
WEIGHT OF BOTTLE + WATER, gm.	W ₂	678.02	672.33		
EVAPORATING DISH NUMBER		18	27		
WEIGHT OF DISH + DRY SOIL, gm.		464.33	451.53		
WEIGHT OF DISH, gm.	_	365.41	352.61		
WEIGHT OF SOIL, gm.	Ws	98.92	98.92		
SPECIFIC GRAVITY OF WATER	Gr	0.9994	0.9994		
G _T W _s		98.86	98.86		
W1 - W2		63.43	63.38		
W _s -(W ₁ -W ₂)		35.49	35.54		
SPECIFIC GRAVITY OF SOIL	Gs	2.786	2.782		
$G_{S} = (G_{T} W_{S})/((W_{S} (W_{1} W_{2})) =$	2.78	(average va	lue)		
REMARKS : (1) Method A - Oven Dried Procedure (2) Passing the #10 sieve (2.00 mm)					
<u>Test Pit: 95-35</u> <u>Sample</u> : <u>Depth</u> :			<u>Tested</u> <u>Calculate</u> <u>Checked</u>	d By:	EL LL LL

Project No. 9521018

CONSULTING ENGINEERS

Depth :

Date : 2/9/95

AST	M D 854-92				
DETERMINATION NUMBER		1	2	3	4
BOTTLE NUMBER		1	3		
AIR REMOVAL METHOD		Vacuum	Vacuum		
WEIGHT OF BOTTLE , gm.		179.54	173.97		
INITIAL WEIGHT OF BOTTLE + SOIL, gm.		279.54	273.97		
INITIAL WEIGHT OF SOIL, gm		100.00	100.00		
WEIGHT OF BOTTLE + SOIL + WATER, gm	w,	740.95	735.26		
TEMPERATURE, °C	Т	20.3	20.0		
WEIGHT OF BOTTLE + WATER, gm.	W2	678.01	672.38		
EVAPORATING DISH NUMBER	T	с	23		1
WEIGHT OF DISH + DRY SOIL, gm.		292.50	458.26	_	
WEIGHT OF DISH, gm.		194.42	360.28		
WEIGHT OF SOIL, gm.	Ws	98.08	97.98		
SPECIFIC GRAVITY OF WATER	G,	0.9994	0.9994		
G ₇ W ₅		98.02	97.92		
N, - W2		62.94	62.88		
Ns-(W1-W2)		35.14	35.10		
SPECIFIC GRAVITY OF SOIL	Gs	2.789	2.790		
$G_{S} = (G_{T^{*}}W_{S})/((W_{S}-(W_{1}-W_{2}))) =$	2.79	(average va	lue)		
REMARKS : (1) Method A - Oven Dried Procedure (2) Passing the #10 sieve (2.00 mm)					

Checked By :

LL

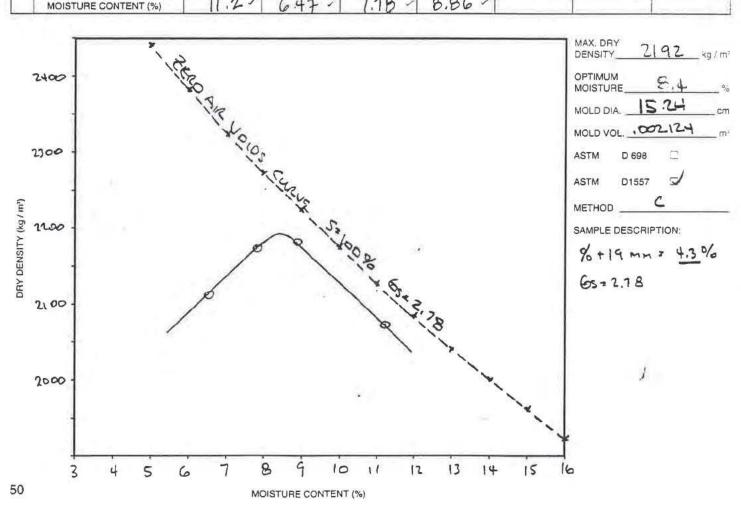
Project No. 9521018

CONSULTING ENGINEERS

Date : 2/9/95

ASTIN	D 854-92				
DETERMINATION NUMBER		1	2	3	4
BOTTLE NUMBER		1	3		
AIR REMOVAL METHOD		Vacuum	Vacuum		
WEIGHT OF BOTTLE , gm.		179.54	173.97		
INITIAL WEIGHT OF BOTTLE + SOIL, gm.		279.54	273.97		
INITIAL WEIGHT OF SOIL, gm		100.00	100.00	1	
WEIGHT OF BOTTLE + SOIL + WATER, gm,	W,	740.86	735.04	1	
TEMPERATURE.ºC	Т	20.0	20.0		
WEIGHT OF BOTTLE + WATER, gm.	W2	678.05	672.38		
EVAPORATING DISH NUMBER		5	31		
WEIGHT OF DISH + DRY SOIL, gm.		220.97	209.10		
WEIGHT OF DISH, gm.		122.61	110.71		
WEIGHT OF SOIL, gm.	Ws	98.36	98.39		
SPECIFIC GRAVITY OF WATER	G,	0.9994	0.9994	-	
GrWs		98.30	98.33		
$W_1 - W_2$		62.82	62.66	-	
Ws-(W1-W2)		35.54	35.73		
SPECIFIC GRAVITY OF SOIL	Gs	2.766	2.752		
$G_{s} = (G_{T} W_{s})/((W_{s} - (W_{1} - W_{2}))) =$	<u>2.76</u>	(average va	ilue)		
REMARKS : (1) Method A - Oven Dried Procedure (2) Passing the #10 sieve (2.00 mm)					
Test Pit: 95-39 Sample : Depth :			Tested Calculate Checked	d By :	

PROJECT No. 1521018	_ LAB No.	19
SITE LOCATION:		


MOISTURE DENSITY RELATIONSHIP (Malified)

DATE TESTED: JAN-25-95 BY: LC

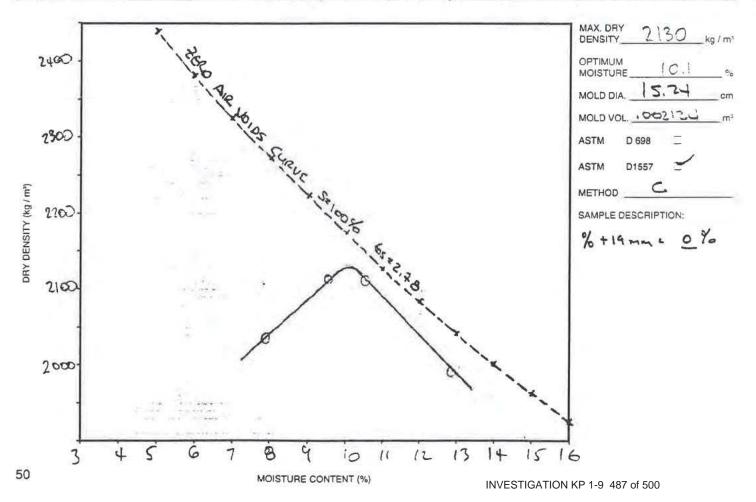
	TRIAL NO.	1	2	3	4	5	
	WT. OF SAMPLE WET + MOLD	10,517.7	10,394.6	10,598.0	10,6007		
SITY	WEIGHT OF MOLD	56184	5618.4	5618,4	56184	5618.4	-
DEN	WT. OF SAMPLE WET	+899.3	47762	4979.6	50423	lear terrer	
1	WET DENSITY (kg / m³)	2306.6	2248.7	2344.4	2373.9		1
1	DRY DENSITY (kg / m3)	2074.3-	2112 0-	21752	2130,8-		

SOURCE:

	MOISTURE ADDED	NAT	-	+	+	
Ę	CONTAINER No.	22	17	7	23	
NTE	WT. OF WET SOIL + TARE	1531.9	10934	1433.6	1710.3	
8	WT. OF DRY SOIL + TARE	1414.4	1039.4	1356.9	1600.4	
JRE	WEIGHT OF WATER	117.5	44.0	76.8	109.9	
UISIO	TARE WEIGHT	360.3	359.7	370.2	360.2	
WO	WEIGHT OF DRY SOIL	1054.1	679.7	986.6	1240.2	
	MOISTURE CONTENT (%)	1.21	6.47 -	7.18 -	8.86	

JK45 F6614/95

PROJECT NO. 9521018 LAB NO. 19 SITE LOCATION:


MOISTURE DENSITY RELATIONSHIP (MODIFIED)

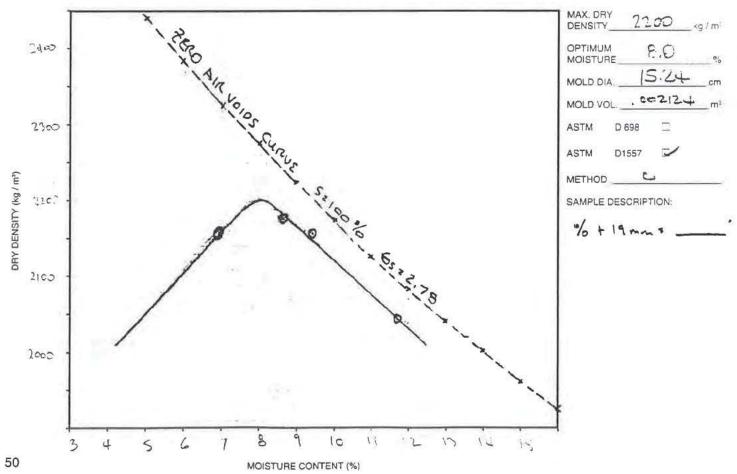
	F	13.	13	
SOURC	E:	-		

DATE TESTED: Feb-01-95 BY: L. Lac

	TRIAL NO.	1	2	3	4	
. [WT. OF SAMPLE WET + MOLD	10,396.7	10,281.3	10,519.5	10,578.3	
VSITY	WEIGHT OF MOLD	5618.4	5618.4	5618.4	5184	
DEN	WT. OF SAMPLE WET	47783	46629	4921,1	49599	
- [WET DENSITY (kg / m³)	2249.7	21953	2316.9	2335.2	
Ī	DRY DENSITY (kg / m³)	1992.10-	203613.	2114.5	2112.4	

	MOISTURE ADDED	NAT		Car I		
Ę	CONTAINER No.	148	191	232	110	
ONTENT	WT. OF WET SOIL + TARE	412.4	312.1	376.6	400.7	
0	WT. OF DRY SOIL + TARE	367.5	290.8	345.3	364.2	
HE	WEIGHT OF WATER	44.9	21.3	31.3	310.5	
MOISTI	TARE WEIGHT	18.2	18.1	18.4	18.2	
WO	WEIGHT OF DRY SOIL	349.3	272.7	326.9	346.0	
11	MOISTURE CONTENT (%)	12.9	7.81-	9.57	10.55	

11145 Fre 14/95


the second se	

MOISTURE DENSITY RELATIONSHIP (MODIFICD)

DATE TESTED: JAN-23/95 BY: LL

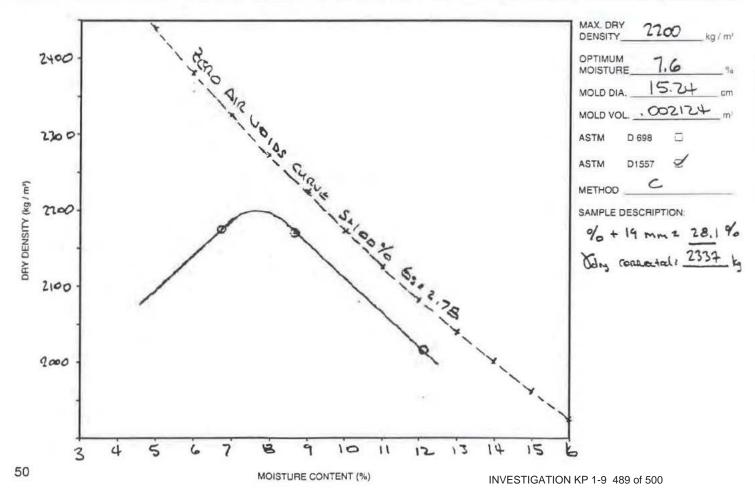
	TRIAL NO.	1	2	3	4	5	
	WT. OF SAMPLE WET + MOLD	10,473.6	10,637.5	10,6333	10,520.4		
£ [WEIGHT OF MOLD	5618.4	5618.4	5618.4	5618.4		
DENSIT	WT. OF SAMPLE WET	4BSSA	5019.4	5014.9	4902.0		
1	WET DENSITY (kg / m ^a)	2285.9	2363.2	2361.1	2307.9		
1	DRY DENSITY (kg / m ²)	2046.4	217611	2158.2	21589-		

	MOISTURE ADDED	NAT		-		
ENT	CONTAINER No.	13	25	34	7	
ONTE	WT. OF WET SOIL + TARE	1483.3	1312.2	1295.4	1287.2	
00	WT. OF DRY SOIL + TARE	1366.1	1237.0	1214.7	228.0	
JRE	WEIGHT OF WATER	117.2	75.2	80,7	59.2	
MOISTI	TARE WEIGHT	364.7	362.4	357.5	370.1	
N I	WEIGHT OF DRY SOIL	1001.4	874.6	861.2	851.9	
T	MOISTURE CONTENT (%)	11.7-	8.60.	9.4	6.9	

MOISTURE DENSITY RELATIONSHIP (Modified)

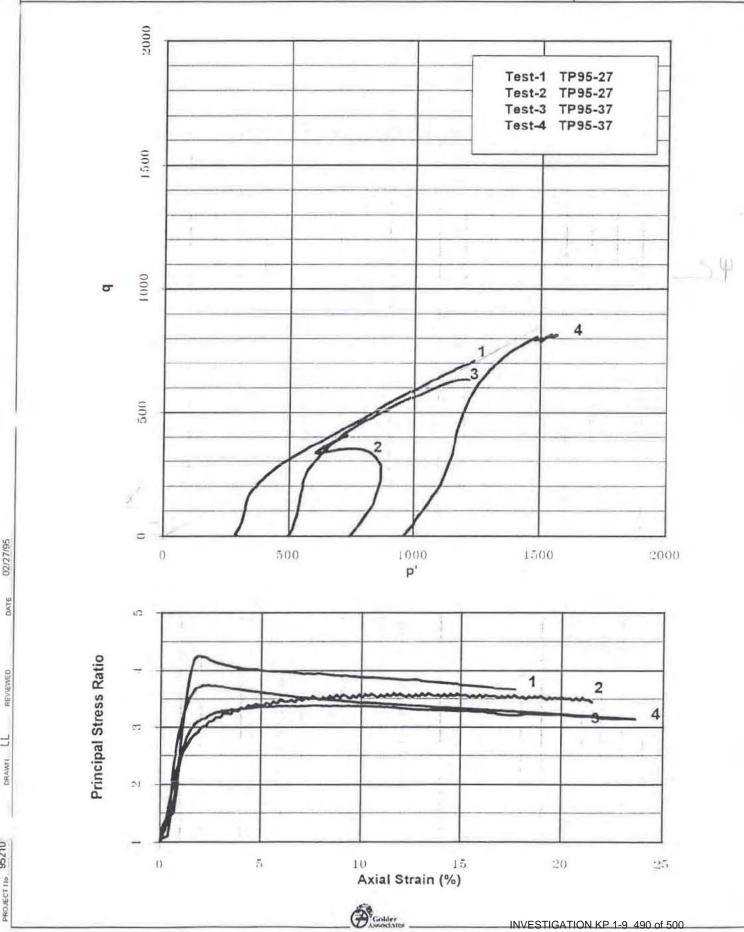
111.2 Fec 14/45

PROJECT No. 9521018 LAB No. ____

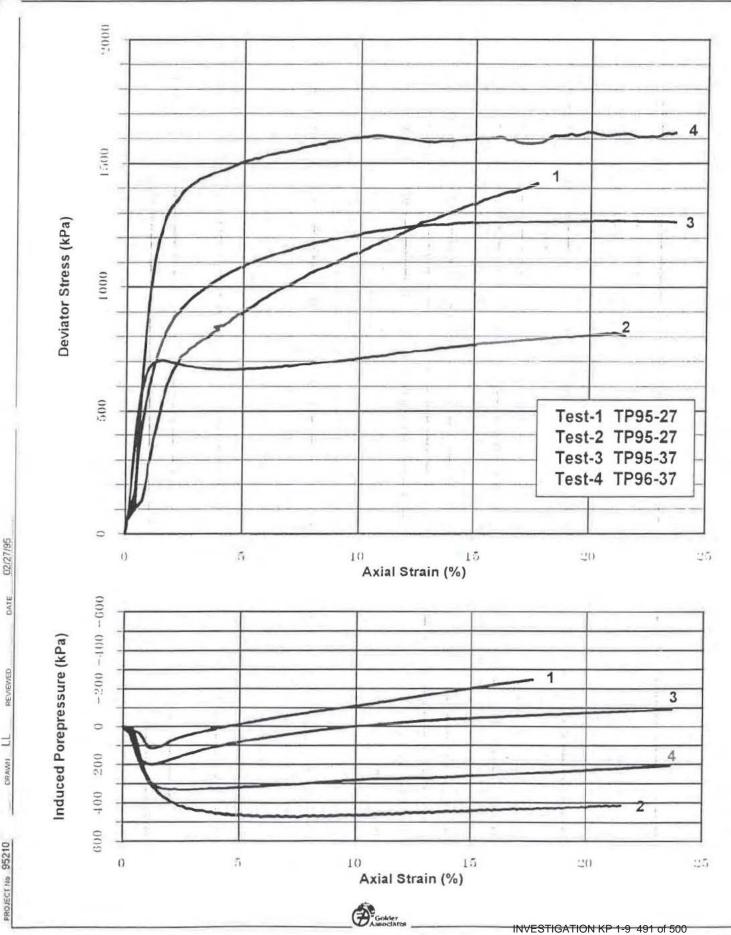

TP95-31

SOURCE:

DATE TESTED: Feb-02-15 BY: LC


	TRIAL NO.	1	2	3	4		1	
	WT. OF SAMPLE WET + MOLD	10,424.6	10,631.1	10,551.5				
YTIS	WEIGHT OF MOLD	5618+	5618.4	5618:4	5618.4	1		
DENSIT	WT. OF SAMPLE WET	4806.2	5012.7	4933.1				
-	WET DENSITY (kg / m³)	2262.8	2360.0	2322.6				-
	DRY DENSITY (kg / m ³)	2018.6	2172.2	2178.1				

	MOISTURE ADDED	NAT	-		
E	CONTAINER No.	399	250	250	
CONTENT	WT. OF WET SOIL + TARE	595.9	768.3	1015.8	
	WT. OF DRY SOIL + TARE	533 4	715.6	1015.4	
JRE	WEIGHT OF WATER	62.5	52.7	604	
MOIST	TARE WEIGHT	17.6	104.1	104.	
₹	WEIGHT OF DRY SOIL	515.8	611.5	911.3	
	MOISTURE CONTENT (%)	12.1	8.62	6.63 -	


Figure

PROJECT IIO 95210

Figure

PROJECT No. 95210

		Consoli	dated U	ndraine		al Comp M D 476		Test o	on Cohes	ive Soi	Is		
est Pit ample	9421897-5040 TP95-27)	L. = A. = V. =	44 76	am cm ^e cm ³	DATE: FILE TEST#	20-Feb-SS 3+250 XLS CIU-1		Strength Re Max.go = Strain @ = Max. PSR =	1415.6 17.66 4.25	kPa %	<u>Density</u> (K <u>y, =</u> y, = E, =	216 220 0 25
epth							110		Strain @ =	1.85	%	E.s	0 23
EMARKS	te Bulgng		Consolidatio CP =	Contract of the second second second	kPa	LOAD =	0 0026	kN/mV	Consolidatio δV, =	11.8	CC	Water Conte W. =	79
	mm malenal		BP =		kPa	PORE =	0 6895	kPa/mV	Tent =	26.0	min	W. =	97
Corrections	applied for me	mbrane	σ ₃₁ * α		kPa	LVDT =	0 0285	mm/mV	C.=	2.7E-02	cm²/s	-	
			ByALVE =			Feed Rate =	0.010	mm/min			-	and a state of the	
δL	LOAD	δU	E	LOAD	Ac	00	δU	(0 ₂	σ,'	PSR	A	p,	P I
(mV)	(mV)	(mV)		(kN)	(cm²)	(kPa)	(kPa)	(kPa)	(kPa)			(kPa)	(kPa
139.4	108 7	-702 2	3.30	0.00	44.76	0.0	0.0	287.4	287.4	1.00		267.4	0.0
143.2	169 1	-715 2	3 05	0.22	44.79	48 6	90	278.4	327.0	5.17	0.13	302 7	24.3
147.9	205.0	.723.3	315	0.35	44 83	77.3	14.5	272.9	350 1	1 28	0.19	311.5	38.6
153.4	231 1	+733.T	425	0.44	44.33	53 1	21.3	266.1	364.2	1.37	422	315 1	49.0
158,9	242.6	-738.3	0.25	0.49	44,93	107 1	24.5	262.5	169 6	1.41	0,23	316 1	53.6
164.1	244,8	-737,8	0.48	0.49	44,97	105 5	24.5	262.9	371.6	1.41	0.23	317.2	54.4
169.2	258.4	-742.0	0.58	0.54	45 02	115 4	27.4	260.0	379.4	1.46	0.23	3197	557
175,4	276 8	-750.8	0 70	0.61	45 07	134.0	33.5	253.9	387.9	1.53	0.25	320.9	67.0
179,6	315.2	-765.7	0,73	0.74	45,11	164.5	43.8	243.6	408 1	1.68	0,27	325.9	32.2
185.3	378.8	-796.2	2.85	0.97	45,16	214.9	64 8	222.6	437.5	1.97	030	330 1	107.5
189.2	452.9	-830,2	0.97	1.24	45.19	273 8	68.3	199.1	472.9	2.37	0.32	336.0	136 5
195.7	525.6	-857 8	1.05	1.50	45.25	322.0	1073	150,1	512 1 554 2	3.22	0.32	346 *	166.
200,4	590.0 650.8	-869.3 -872.6	1.54	173	45.29	429.8	115.2	172.2	599.1	1 53	0.30	384.3	214.5
2061	708.5	-8717	1.4	2.16	45.39	475.1	11/3	170.5	298.7 645.6	3 23	0.27	405 T	2370
216.7	708.5	-866.0	1.54	236	45 14	518.9	1129	174.5	693.4	3 8	0.25	400 1	259.5
223.1	320 1	-858.4	· 6:	2.56	45.50	562.2	107.7	1797	741.5	4.13	0.19	460 E	281.1
228.3	2 865	+848.1	¥ 44	274	45 54	585.9	100 5	186.5	736.7	1.21	0.17	485 *	299.6
734 7	907.3	-835.0	1.61	2.58	45.60	625 7	53.6	193 8	823.4	3 25	0.15	508.0	3148
240.0	538 8	-826.7	1.95	2.99	45.65	657.5	35.9	2015	355.4	4 24	0.13	528.5	326 5
245,2	964.9	-816 2	204	3.05	45 39	672.7	78.6	208.8	362.5	4.23	0.12	545 6	336 8
251.1	985 1	+807.5	2.17	3.17	45 73	351 5	72.5	214.5	208.4	4 23	0.11	560.4	345.6
256.3	1009 3	.799 5	2.21	3.24	45 80	707.0	67.2	220.2	927 2	4.21	0.09	573.7	352 5
261.3	1023 9	-793.4	2 37	3,29	45.84	717 T	62.9	224.5	942.2	4 20	0.09	583,4	358.8
267.2	1036,0	-786.6	2.48	234	45.89	726.3	58.2	229.2	555.5	417	208	552.4	363.1
272,9	1047 3	-7814	2 58	3 38	45.95	734.3	54.9	232.8	967 1	4.15	0.97	559,5	367 1
277 5	1060.3	-775.8	2.66	3.43	45 99	742.7	50.7	236.7	580,4	4.14	0.07	608 5	371.9
283.6	1071.5	-770.5	2.80	3.47	45 05	751.5	47.1	240.3	991.8	4.13	0.06	616 :	375.8
259 6	1081 3	-766.1	2.91	3 50	46 10	758.2	44 7	243.3	1001 6	4.12	0.06	622.6	379.1
294,6	1093.0	-761.0	2,01	3.54	#6.15 46.20	756 5	40.5	246.9	1013.4	4 13	0.05	630 1	383.3
200 ð	1103.7	-757.2	1.13	3.58	46.24	750.8	34.6	249.5 252.8	1023.3	4 05	0.05	636.4	386.5
304,9	1113.5	-752.4	3.36	3.55	45.31	787.2	32.3	255.1	1033.6	4.05	0.04	646 7	393,5
317.3	1132.3	-744.3	3.45	3.69	46.36	753.4	290	258.4	10517	4.67	3.04	655 1	356 1
322.6	1144.0	-739.8	3.56	3.73	45.41	801 5	25.5	261.5	1063.0	4.67	0.03	6623	400.6
327 6	1152.3	-736.3	3 65	3.76	45.45	807 1	23.5	263.9	1071.0	4.06	0.03	667.5	403.8
332.7	1162.4	-731.8	3.75	3.79	46.50	814.1	20.4	267.0	1081.1	4.05	0.03	674.0	407.0
139 6	1172.6	-728.5	3.89	3.83	46.57	820.8	18.5	269.3	1090.0	4.05	0,02	6791	410.4
344.0	1180.9	-723.8	3.97	3.86	46.61	526.4	14.9	272.5	1096.9	4,03	0.02	685.7	413.2
335.6	1190.0	-720 6	3.81	3 39	46.53	834 9	12.7	274 7	1109.6	4 04	0,02	692.2	417.5
353 8	1201 4	-716.2	4 16	3.93	46 70	840 5	97	277 7	1118/2	4 03	0.01	698 0	420 2
159 7	1212.6	-711.5	± 28	3,97	45:76	845 1	6.6	280.8	1128 8	4.02	0.01	704 8	424.0
365 1	1222.0	-708 5	4.38	4.01	46.31	354 3	4.3	283 1	1137.4	4 02	0.01	710.2	427.2
70.7	1235 0	-704,5	4.45	4 65	46.36	\$613	16	285.8	1149 1	1 02	0.00	7174	4316
175.9	1247 1	-701.1	4.58	4 10	46.91	4714	-0.3	288.7	1159.8	4.02	0.00	724.0	435,8
50.7	1255.8	+697 0	4 68	4.13	46.92	877 A	-36	291 0	1168.4	4 02	0.00	729T	438.7
85 5	1268,1	-693.7	4.72	4.15	47 00	#8\$ # 850 5	-5.5	293.2	1179,1	4 02	-0.01	736.2	442.3
190.7	1276 0	-685 4 -685 5	4 58	4.20	47.05	856 5	-5.5	296,2	1187.2	400	-0.01 -0.01	7470	443 2
03.0	1284.5	-685 5	512	4.25	47.17	901 B	+13.5	300.9	1202.5	4 00	-0.01	74-2	450.5
07.6	1302.6	-675 5	5.21	4 20	47 21	905 0	-163	303 ?	12117	3.99	20.0-	757 7	45.4.0
123	1302.6	-6754	5 30	1 32	47.28	912.0	-18 \$	305.5	1218.4	3.98	-3.02	7612	456 3
18.3	1318.7	-6717	541	4 36	47.32	516.2	-21.0	308.4	1226.6	3.98	+1 02	167.5	459 1
23.2	1325 5	-0050	5.51	4 39	47.37	824.5	-22.9	310.3	1234 9	3 98	-0.02	772.6	462.3
28.4	1338 4	-865.0	5 61	4.43	47.40	931 1	-25 6	313.0	1244.2	3 97	-0.03	7765	465.6
32.2	1348.4	-6611	5 68	4.46	47.45	937 9	-28.3	315.7	1253 7	397	-0.03	784 7	469.0
37.8	1359.3	-658 4	5.75	4.90	47.51	945 0	-30.2	317 6	1262 €	3.98	-0.03	750 *	4725
43 9	1368 2	-654 8	5.51	4 53	47.5*	950 đ	-32.7	320.1	1270.6	3.97	-0.03	795.4	475 3
49.2	1376 8	-652 1	£ 01	4 57	4, 5,	956 0	-34.5	3215	1277 9	3.97	-0.04	799 5	475 0
54.5	1386 6	+048.0	632	1 60	27.47	561 1	-37-0	324.4	1286 8	2.57	-0.04	305 ñ	4812
59.5	1395.4	-646 1	8.21	4,63	40.72	567 8	-38.7	326 1	1294,0	3.57	-0.04	5100	483.9
64 9	1404.3	-642.5	4.32	4 56	47.73	\$75 I	-41.2	328.6	1302.0	396	-0.04	515.3	4657
69.7	14.14.7	-6391	341	4.70	47.32	380 3	-42.5	330 9	1111 2	196	+0.04	821.0	450 1
753	1422.9	-6363	ā 52	4.73	4135	965 2	-451	332.5	13177	3.56	-0.05	325 1	452.4
79.7	1428 8	-633.4	5.61	4.75	47.92	386.7	-47.4	334 8	1323 6	3 95	-0.05	829.2	454.4
84 1	1438 1	-630.9	6.69	1.79	47 57	994 3	-49 2	336.6	1331.3	3.96	+0.05	833.9	427.4
89.8	1445 4	-627.7	6 80	4.31	48,02	999.0	-514	338.8	1337.8	3.95	+0.05	8383 8410	455.5
95.3 1	1450.2	+625.5	5.91	4.53	45 08	10014	270	340 3	13417	394	-0.05		500 7

δL	LOAD	δU	E	LOAD	Ac	(To	5U	G,	α,	PSR	A	P'	q
(mV)	(mV)	(mV)	(%)	(KN)	(cm²)	(kPa)	(kPa)	(kPa)	(kPa)			(kPa)	(kPa
505 7	1456 6	-619 0	7,55	4.89	48 18	1011.4	-57.4	344 3	1356-1	193	-0.06	850 5	505 7
510.6	1475 2	-616.8	7.21	4.92	48.23	1015.7	-38.9	346 3	1362.0	3 94	-0.06	854 6	508
5157	1484 7	-613.8	7 30	4 35	48 28	1022 7	-610	348 4	12710	1.94	-0 36	859 7	5113
521 0	1492,2	-6119	7.41	4 98	48.34	1027.1	-62.3	3497	13767	194	-0.05	863 2	513.5
526.6	1500 2	-608.9	7.52	5.01	48 39	5 1631	-64.3	351 T	1353 5	3 93	50.0-	6 765	5153
5311	1507 7	-605.8	7.50	5 04	48 44	1035.2	-66.5	353 9	1230 2	3.93	-0.06	972.0	518.3
5367	1517.7	-603 9	7.71	5.07	48.50	1042.5	-678	355.2	1267.6	3.54	-0.07	8764	521 2
541.2	1527.9	-800.9	7 80	511	48 54	1045 0	-69 8	357 2	1406.2	5,94	-0.07	361.7	5245
546.2	1538 6	-598.5	7.90	5 14	48.55	1054 2	. 77.5	3585	1413.2	3.94	-0.01	0 355	527 1
551.8	15418	-595.9	5.01	516	48.65	1056.8	-73 3	360.7	141 5	3.93	-0.07	889 1	518 4
556.5	1550 5	-592.5	3.10	5 19	48,70	1062.2	-75.6	263.0	1425 2	3.93	-0.07	694 T	\$21.1
562.1	1557.7	-590.8	8 21	5.21	48.76	1055 8	-768	364 2	1430.0	1 93	-0.07	897 1	532.9
567 5	1,564 1	-587.7	8.31	5.24	48.81	1069 6	-789	3663	1436 0	3,92	-0.07	501 Z	534 8
5721	1568.5	-585.6	\$ 40	5 26	48.86	1071 8	+30.4	367 5	1435 6	191	-0 08	903 7	535 9
577 9	1575,5	-582.6	8 51	5.28	48 52	1075.6	-82.5	3693	1746 1	3.91	80.0-	901.7	£37 £
583 1	1583.4	-580 7	3 61	531	48.97	1050.1	-33.8	371.2	145:3	3.91	50.0-	911 2	540 *
588.4	1591 4	-577 5	8.72	5,34	49,03	1084 8	.36.0	3734	1453.1	3.91	-0.08	915 à	54.44
592.4	1599.6	-574 7	8 7 9	5 37	49.07	8 2801	-57 9	375 2	1465 1	3.90	-0.08	\$20 C	511.8
\$99 3	1607.3	-572.7	8.93	5.40	4914	1093 8	-393	275.7	1470 5	3 90	-0,05	923 8	545 9
603 B	1615.3	-569.5	F 01	5 42	49,15	1058.5	+915	378 2	*47** 4	3.90	-0.08	921.2	5493
609.0	1623 5	+567.8	\$ 12	5.45	49.25	1103.3	+32.7	386 1	1432.3	1.80	0.08	931 7	351 8
614.4	1633.0	-564 8	\$ 22	5.45	49.30	1108,5	-94.7	3621	1421.2	3 90	-0.09	936.6	554.4
619.2	1629.9	-562.3	5 31	5.51	49.35	1112.7	-96.5	183 5	1495 6	2.90	-0.05	540 2	5564
624.2	15457	-559 7	5.41	5.53	49 41	1115 7	+98.3	385 7	1501.4	3 89	+0 0ĕ	9415	\$27.5
629 4	1653.6	+558.7	951	5.56	49 46	1120.2	-100 C	327 F	1507.9	3 39	+0.09	947.8	560 1
634.0	1662 6	-554 6	9 60	5.55	49.51	1125.6	-101 3	389 2	15147	3 89	-0.09	952.0	562 8
639.9	1669.0	-551.7	9.72	5 62	45.57	1128 7	- *03 8	391 2	1519.9	3 89	+0.09	555 <u>5</u>	564.4
6511	1681 5	-545,5	9.93	5.86	49,69	1135.0	-107.4	394.5	1529 7	2 88	-0.05	562.2	567 5
561,8	1697.2	-542.3	10 14	5.72	49.81	11416	-310.3	397 7	1541.2	3.88	-0 10	969.4	571.8
671.7	1711.4	-536.8	10.33	5.77	49.91	11513	-114.0	401.4	1552.7	3.87	-0.10	977.1	5756
682.5	1729.6	-532 7	10,54	5.84	50.03	1161.5	×* 16 9	404 3	1545.5	3.87	610-	985 1	589 d
692.9	1745.4	-527 1	10.74	5.85	50 14	1170.2	-1207	408.1	1578.3	3.87	-0.10	392 2	565 1
702.6	1761.2	-522,4	10.93	5.55	50,25	1175.0	124.0	4114	1550 3	3.87	-0.11	1000 9	5261
712.5	1775.5	-516.5	11.13	5.00	50 36	1186 5	-128.0	415 4	1502.0	1,33	-0.11	1008 7	563 2
723.2	1791 0	-512 5	11.33	6.06	50 48	1354.7	-130 5	418 2	1612.9	2.36	-011	1015 6	557.4
733.0	1804.8	-507 0	11.52	6.15	50,55	1201 9	+134.8	422.0	1622.9	2 85	-0.11	1022.9	6005
743.5	1821.0	-502.4	11.72	615	50.70	1210 5	-137.8	425 2	1935 1	3.85	-0.11	1030 4	605 3
753 4	1834 5	+497.0	*1.92	6,21	50 81	1217.3	-141.5	428 3	1646.2	2.54	-0.12	1037 5	6037
762.4	1849,7	-492.0	12.09	6.27	50 31	1225.6	.144.9	432.3	1651 9	3,83	-0.12	1045 1	612.9
173.4	1866.0	-486 6	12.31	6 33	51.04	1234 0	-148.7	436 1	1670 0	3.92	-0.12	1053.1	ā170
782.6	1884.2	-482 1	12 49	6.35	\$1.14	1244.2	151.5	439.2	1683.4	3,83	-0.12	1061 3	6221
92.0	1909.3	-475.7	12.67	6,48	51,25	1259.1	155.5	442.9	1702.0	3.84	-0.12	1072.5	679 6
502.3	1917.8	-471 T	12.87	6.51	51.37	1262 1	1158.9	446 3	1768.4	3 83	-0.13	1071 4	631.1
11.5	1928.0	-466.0	13,95	8 55	51 47	1266 5	-162.9	4\$0.3	1715.5	3.81	-0.12	1083 5	633 1
22.1	1940 4	-461.7	13,25	6.55	51 59	1272.1	+165.8	453.2	1725.3	3.81	-0.13	1039 3	639.1
31.6	1955.0	-455.8	13.44	6 55	51 70	1279.5	-169,9	457.3	1735.8	08 E	-013	1097.0	6257
341.6	1968.8	+451 5	13.63	670	51 82	1286 1	-172.9	460.3	1746 4	3.79	-9.13	1103.3	643.0
50.9	1983 2	+445.9	13.81	6.75	51.93	1293 3	+176.7	464.1	17574	3.79	+0.14	1110.8	645 0
60.7	1998.8	-441.3	14.00	6.80	52.04	1301 1	+179.9	467.1	1756.4	378	-0 14	1117.3	650 6
706	2014.3	+436.0	14 15	6.88	52 16	1308.8	-183.5	470.9	1779.8	3.78	0.14	1125-4	654.4
30,5	2027.8	-431 1	14.39	6.51	52.28	1315.1	+185.9	474.3	3789.4	3.77	-0.14	1131 9	41.1
89.9	2042.4	-425 5	14.57	6.96	52 39	1322.2	+190.8	475.2	1500 4	377	-0.14	1139.2	- 11 - 1
99 9	2056.9	-420 6	14.76	7.01	52.51	1329 1	+194.2	481 8	1810.6	376	-0.15	1125 1	664 5
097	2070.0	-415.3	14.95	7,06	52.63	1334.9	+197.5	485 2	1820.2	375	-0.15	1152.7	6671
18.8	2080 5	-410 5	15 13	7.10	52 74	1319.2	-201.1	488 5	1827.8	3.74	+0.15	1158 2	669.6
28.5	2098 8	-405.4	15 32	716	52,65	1348.6	-204.6	492.0	1840.7	3.74	-0.15	1166.4	6743
39.1	2112.4	-400 4	15 52	7.21	52.98	1354.5	-208.1	495.5	1850.0	3,73	+0.15	1172 7	677 \$
48.9	2127 4	-395 8	15.71	7 27	53.10	1361.5	-211.3	498.7	1860.2	3.73	-0.16	1179-4	680.8
58.5	2139,1	-390.6	15.90	7:31	53.22	1366 3	+214.8	502.2	1863 6	3 72	-0 16	1185,4	683 2
68 1	2151.4	-385 2	16 05	7.35	53.34	13715	-217.9	505 3	1376.8	3.71	-0 16	11910	655.7
78.4	2167.3	-381.2	16.29	7.41	53 46	1378.8	-221.3	308 T	1087 5	371	+01ů	1198-1	685.4
58 G	2177.6	-376.8	16.48	7.45	53 59	1382.4	-224.4	511.8	1854 1	3.70	+0.15	1202.9	651.2
98.8	2183.5	-372 1	16 55	7.47	53.72	1302.9	227.6	5150	1857.5	3.69	-0.16	1204.5	461.5
108 4	2196.8	-366.7	15.57	7.52	53.84	1388 6	-231 3	515.7	130*4	3.68	-D.17	1213 0	6543
16.7	2213 1	-363.0	17.07	7.58	53 97	1356 1	-233.9	521.3	15173	368	-0.17	1219.2	635.0
28.9	2228.8	-357 9	17 27	7.63	54 10	1403 1	237.4	524.1	1527.9	3.67	-0.17	1226/3	701.5
138,7	2243.9	-354 t	17.46	7.69	54 22	1405.8	-240 0	527.1	1937.2	3.67	-0.17	1230 3	204 \$
130.1				7.74	54 25	1415.5	-243.3	530 -	1946.3	367		and the second se	707.8

.

Consolidated Undrained Triaxial Compression Test on Cohesive Soils ASTM D 4767 - 88

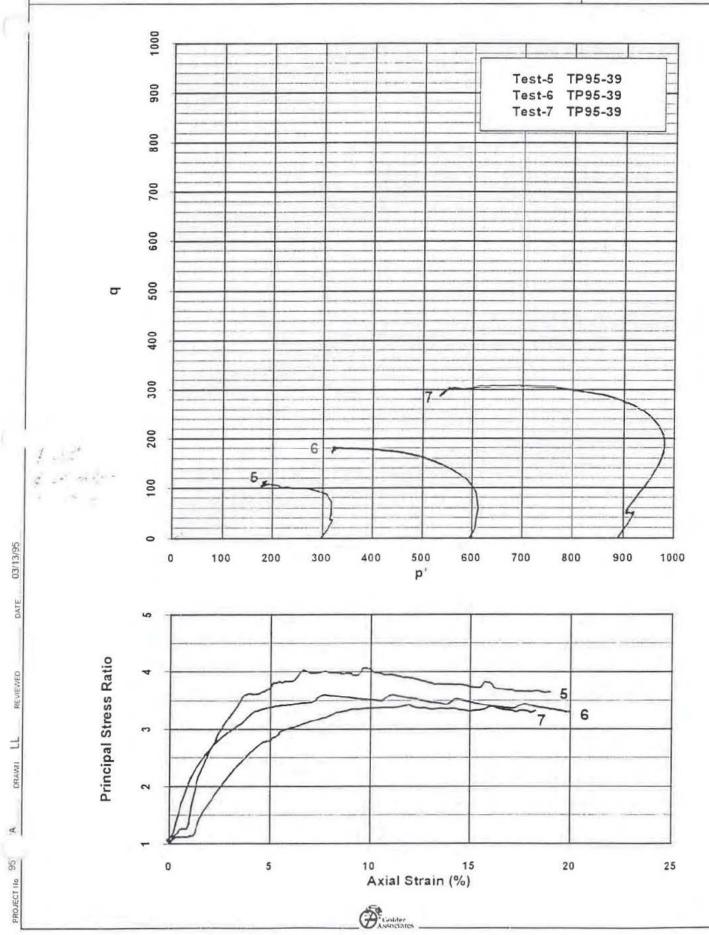
		1							Strength Re	and the second se		Density (M	(g/M')
ROJECTA		10	L		c/m	DATE:	27-Feb-95		Max. ag' =	812 3	kPa	y. =	:07
est Pit	TP95-27	-	Ac	and the second se	cm²	FILE :	31-750 XL5		Strain @ =	4 60	%	γ ₁ =	216
ample			Ve 3	= <u>672</u> 4	cm'	TEST#	0:0-2		Max PSR =	2.272101		E.=	2.31
epth ove			Consolidatio	Practice		CALIBRATIO	NS		Strain @ =	3.66	<i>i</i> j	E, =	3.26
EMARKS Failure Mo	de Bulging	-	Consolidatio CP :	and the second se	kPa	LOAD =	0 0423	kN/mV	SV, =	26.5	CC	Water Conte W, =	7.6
and so have a short of	mm material	-	BP	the second se	kPa	PORE =	0 5895	kPa/mV		1.32	imin		9.8
	s applied for m	embrane	(Ja) 1		kPa	LVDT =	0 0285	mm/mV	C, =	2 36-02	cm²/s	10	
	s applied for th	A REAL PROPERTY AND A REAL	ByALDE -			Feed Rate =	0.024	mm/min					*****
δL	LOAD	δU	E	LOAD	As	0 D	δU	01	σ,	PSR	A	p*	9
(mV)	(mV)	(mV)	(%)	(kN)	(cm ²)	(kPa)	(kPa)	(kPa)	(kPa)	1	1	(kPa)	(kPa
1						-		-		-			
-1743	14 3	-689 8	0.00	0.00	14 20	0,0	0.0	744 7	7447	1 00		744.7	0.0
168.5	22.4	-698 0	ə 15	0,34	14 26	77.1	57	735.0	516.2	1 10	0.07	777.6	36.6
-157 5 -148 8	41 9 61 3	-728 7	0.45	1 17	44 34	263 1	33 7	711.0 547.1	974 1 1094 0	137	0.13	342.5	131
-140 7	73.9	-918.5	0.63	2.52	44 48	566 1	1577	587.0	1054 0	1.69	0.22	870.6 870.1	223
-130.9	81.6	-1003 1	0.55	2.84	44.56	437.5	216.0	528.7	1166.3	2.21	0.28	847.5	3184
-121.4	85 6	-1064 9	0.99	3.01	44 64	674 5	258 19	486.1	1160.9	2.39	0.38	823.5	3374
+112.5	87.7	-1123.2	1 16	3.10	44.72	693 5	298.8	445.9	1139.4	2.55	0.43	792.6	3461
-102.3	88.6	-1160 3	1 35	3 14	44 80	700.4	324.4	420.3	11207	2.67	0.46	770 5	350.
-93.1	89.1	-1197 7	1.52	3 16	44,58	703.4	350.2	394.5	1097.5	2.78	0.50	745.2	3517
-83.8	88.9	-1222.2	1.69	3.15	44.96	700.5	367.1	377 6	1078.2	2,85	0.52	727.9	350.3
-73.7	38.5	-1239 3	1.88	3 14	45,05	6957	379.2	365.5	1061.2	2,90	0.55	713 5	247.5
-64.9	88.5	-1264 6	2.05	3 13	45 12	653 7	356.3	348 4	1042.1	2.99	0.57	695,2	346.5
-54 7	88 1	-1274 8	2.24	3 12	#5 21	689.2	403.2	3415	10307	3.02	0.59	686.1	3448
-46 1	87.8	-1294.8	2.40	311	45 28	525-1	417.1	327 6	1012.6	3 09	0.61	670.1	3423
-36.0	87.5	+1300.4	2.59	3.09	45 37	680 5	421.0	323 7	1004.2	3.10	0.62	663.9	340.3
-27.5	87.5	-13174	2.75	3.09	45.45	679.3	432.7	312.0	891,3	3 18	0.64	651.6	339.7
-17 1	87.2	-1320.2	2.94	3.08	45.54	675 0	434.7	310.0	985.0	2.18	0.64	647.5	337 5
-7.4	87 2 87 0	-1333 0	1 13 3 29	3.08	45 70	674.4	443.5	301 2 299.7	975.6 970.7	3.24	0.65	638.4	337.3
1,2	87.0	-1335.2	3.48	3.07	45 70	668.0	445.0	299.7	970,7	3.24	0.66	635.2	235,5
20.3	87.0	-1332.6	3.65	3.07	45 79	668.0	453.2	299.4	967.4	3 23	0.67	633.4 625.7	3340
30.5	87.0	-1345 5	3.65	3 07	45.96	966 3	452.1	292.6	958.9	3.28	0.68	625.7	334.2
39.4	87.1	-1345 2	4.00	3 08	45.04	6889	459.8	284.9	9517	3 34	0.69	618.3	333.4
49.5	87.0	-1354 1	4.19	3.07	46 13	f64.4	458.0	286.7	551.0	3 32	0.69	618.8	332.2
58 7	87,4	-1364 6	4.26	3 09	46.21	666 Z	465.3	279.4	945.6	3,36	0.70	612.5	333.1
67.2	87.4	-1361.0	4.52	3.00	45.29	665.0	462.8	281.9	946.9	3 36	\$70	614.4	332.5
77,8	87 6	-1369.0	4,72	3 10	+6.39	666.2	468.3	276.4	542.6	3 41	0.70	609 5	333.1
674	87.8	-1366.3	4.90	311	45.48	366 Ó	466.8	277,9	943,9	3.40	0.70	610.9	333.0
95.3	67 B	-1362 1	5.02	211	46.56	445.3	164.0	2807	145 0	3.37	0.70	6113	3327
105.4	66 3	-1371.4	5 24	3 13	46 64	557-8	470.0	274 7	942.6	3.43	070	508.7	333 9
1158	56 3 01 7	-1366 -	5 43	313	46 74	687.0	466.7	278,0	945.0	3.40	0.70	G11.5	333.5
124,9	88 7	-1374.8	5 69	314	46.82	663 7	472.3	272.4	941 :	3,45	0.71	6067	334.4
134 5	88.8	-1369 8	5.78	3 15	45.91	668,5	455.9	275.8	944.4	3.42	070	510,1	334.3
143.5	89.3	-1378.4	5.95 6.14	3.17	47 00	671.7	474,8	269.9	941.6	3.49	0.71	¢05.8	335.9
153 5	894	-1373.0		3.18	47.09	5725	470.7	273.6		3 45	070	509.5 610.7	335.8
162.4	89 7 90 0	-1372 4 -1375 8	6.31	3 19	47.27	574.2	473.0	274.0	346.6	3,45	0.70	610 3 608 5	336.3
1/2.3	90.0	-1375 8	6 67	3 20	47.36	6742	469.0	275.7	#45.9 949.9	3,46	0.70	612.8	337.1
191.0	90.8	-1378.0	6.84	3 23	47.30	678.6	474.5	270.2	545.8	3.45	0.70	609.5	339.3
200.3	90.8	-1371.8	7.02	3 23	47 53	677.0	470.2	274.5	351.4	3.47	3.69	612.9	338.5
209.5	91.2	-1379.6	7.19	3.25	47 52	579.6	475.6	269.1	948.7	3.53	0.70	608.9	339.8
218.6	915	-1373 6	7 36	3.26	47.71	680.9	4715	273.2	954.1	3.49	0.69	613.7	340 5
228.5	92.0	-1380 4	7.55	3.29	47.81	544 0	476 2	268 5	952.5	3.55	070	610.5	342.0
237 2	92.2	-1374 6	7,71	3 29	47 39	584.0	4723	272.4	956.3	3.51	0.65	614,4	342.0
247 0	92.4	-1368 8	7 89	3 30	47.98	684.8	468.2	276 5	961.3	3.48	0.66	616.5	342.4
256.4	93.1	-1375 6	8.07	3,33	48.08	505.8	472.9	2718	\$50.6	3.53	0.69	616.2	344.4
265 1	93,3	-1369 2	5.23	3 34	48,15	633 4	468 4	276,3	365.6	3.50	0.68	621.0	344.7
274.5	93.8	+1376.4	3 43	3 36	45 25	692 7	473.4	271.3	964.0 028.5	3.55	0.58	617.6	346.3
282.7	94.0	-1369.8	8 56	3 37	45.34	692 7 696 5	473.5	275.8	968.5 967.6	3.51	0.68	622.2 619.4	346.3
301.4	94.6 94.7	-1370.0	8 91	3 40	48 52	696.4	469.0	275.7	972.1	3.53	0.67	619.4	348.2
310.4	947	-1370 0	9.08	3 42	48.61	700 1	472.6	272.1	972.2	3.57	0.67	623.9	340.2
318.8	95.5	-1370 4	9 24	3 43	45 70	70* 0	465 3	2754	376.5	3.55	0.67	625.9	350.5
328.7	95.8	-1364 2	9,42	3.44	43 80	701.7	465.0	279.7	981,4	3.51	0.55	930.5	350.8
337.0	96.3	-1370 4	3.58	3.47	45 58	704.9	469 3	275.4	580.3	156	0.67	627.9	352.4
45.5	96.5	-1363 4	9.74	3.48	48 97	705.5	464.4	280.3	985.8	3.52	0.66	633.0	352.8
354.2	97 1	-1370 2	3 50	3.50	49.05	709.0	469 1	275.6	984 5	3 57	0.66	630.1	354.5
163 0	97.4	-1363 4	10 07	3.51	45 14	705 8	463.4	280.1	590 1	3.53	0.65	635.2	354.9
371.0	97.9	-1369 8	10 22	3.53	49 23	7128	468.9	275.8	958 7	3.58	0.66	632.3	356 4
380 1	98.0	-1363 2	10 39	3.54	49 32	792.3	464 3	280.4	553 2	3.54	9.65	636.5	356.4
188.4	98 7	+1368 2	10.54	3.57	45,41	-1.5	467.8	276.5	394 1	3.59	0.55	635.5	358.6
397 1	98 8	-1363 2	10.70	3.57	49 50	168	464.3	260.4	867 2	3.56	0.65	635 8	358.4
05.2	99.1	-1356 7	10.86	3.59	49 58	718.3	459 8	284.9	1003 7	3.52	0 54	644 0	359.2
114.3	99,6	-1362 8	11.03	161	49 35	720 9	464 0	280.7 1	1001.6	3.57	0.64	641 1	360.4
22.7	100 0	-1355 7	11 18	3 62	49 76	722.6	459,1	285 6	1008.2	3.53	0.64	646 9	3613
430 9	100.5	-1362,2	11.34	3.64	49 85	725.3	463.6	281 1	1006.8	3 58	0.64	643.9	362.4
139.2	100.7	-1355 1	11 49	3.65	49.94	726.4	4587	786 0	10124	3.54	0.53	549.2	363.2
48.4	101.4	+1361 5	11 67	3.68	50.03	730.6	463.2	261.5	10121	3 60	0.63	646 3	365 1

δĻ	LOAD	δU	E	LOAD	Ae	(To'	δU	01	O,	PSR	A	P'	P
(mV)	(mV)	(mV)	(%)	(ktN)	(cm*)	(kPa)	(kPa)	(kPa)	(kPa)			(kPa)	(kPi
456.7	101.6	-1354.9	11 82	3.69	50.12	730.8	458.6	286.1	10169	3 55	0.63	651.5	365
465 2	102 1	-1359 9	11 98	3 71	50 21	733 5	462.0	2827	1016.1	3.59	0.63	549.4	366
472.6	102.3	-1354.5	12.12	3.72	50 29	734 3	458 3	286 4	10207	3.56	0.62	653.6	367
4821	102.7	-1347 9	12.30	3 74	50.39	735 7	453 8	290.9	1025.6	3.53	0.62	658.8	367
490 1	103.3	-1353.7	12 45	3 76	50.48	739.6	457 8	286 5	1026.5	3.58	0.62	556.7	369
498 5	103,4	-1346.9	12.60	3 77	50.57	738.8	453 1	291.6	:030 5	3 53	0.61	651.0	369
507 3	103.9	-1353 1	1277	3.79	50 67	741 5	457 3	267 4	:028.9	3 58	0.62	658 1	370
514 7	104 1	-1346 3	12.91	3 80	50 75	742.0	452.7	292 0	1034 1	3 54	0.61	663 0	371
523.9	104.6	-1352 7	108	3.92	50.85	745.1	457 1	237.5	:031-	3 59	0.61	650 2	372
5321	105.0	+1345.9	12.22	3.82	50 94	716 "	452.4	292.3	• 235 0	3.55	0.61	665 7	373
540 7	105.5	-1351.1	13 35	3 86	51 03	7497	456.0	255 7	1033.4	3 60	0.61	663.6	374
548,8	105.9	-1 345.5	13.55	3.87	51 17	751.5	452.1	252 -5	1044 1	3.57	9.60	558 4	375
557.2	106.2	-13414	13.70	3.89	51 22	752.6	449 3	295.4	10431	3 55	0.60	6717	376
566 0	106.6	+1344.9	13.87	3 90	51.31	753.9	4517	293.0	1046.9	3.57	0.60	670.0	377
574 3	107 0	-1338.0	14.02	3 92	51.41	755,5	445,9	267.8	10533	3 54	0.59	675 5	377
582,7	107 4	-1344 2	14 13	3.92	51 50	757.6	451.2	293.5	1051:1	3.58	0.60	672.3	378
5913	107 5	+1337 2	14 34	3.94	51.60	756.7	446.4	298 3	1055 1	3.54	0.59	576.7	378
599.4	108.1	-1343.6	14 45	3.96	51 69	750.1	450.5	253 9	1054.0	3,59	0.59	674.0	380
508.3	108 3	-1337.0	14.56	3.96	51.79	760.9	446.2	298.5	10593	3 55	0.59	678 9	380
616.6	108.8	-1342.6	14.82	4 00	51 89	763 5	450 1	294 8	*053 *	3 59	0.59	676.3	381
624.9 633.9	109.1	-1336 4	14.97	4 01	51 98 52 06	764 1	445 8	298.8	1063.0	3.56	0.58	610.9	382
and the second second		-1336 8			52.00	767.4	445.4	296.3			in the second	681.0	382
642.2	109.9	-1335.8	15.30	4 04	52.26	767.0	440.7	304.0	1070.9	3 56	0.58	683 0 687 5	383
550,6 559 3	110.0	and the second second	15.62	4.05	52.28	769.1	445.0	259.7	1070.9	3.52	0.57		
557 3 ·	110.5	-1335.2 -1328.0	15 77	4 07	52 47	769.4	440.0	304 7	1074 1	3 53	0.58	684.2 689.4	384
176.2	111.2	-1328.0	15.93	4.10	52.57	771.8	444.5	300 2	1072.3	3.55	0.58	686 1	384
184.3	111.4	-1327.4	16 08	4.10	52.67	772.0	439.6	305 1	107*0	3.57	0.57	691.1	385
91.9	111.8	-1333 2	16.23	4.12	52.76	773.5	443 6	301 1	1074.9	3.57	0.57	688 0	386
7012	112.2	-1327.4	15 40	4 14	52.87	775.0	439.6	305 1	1050.0	3.54	0.57	692.6	387
709.6	112.5	-1327 8	16 56	4.15	52.97	776.3	439.9	304 3	10511	3.55	0.57	652.9	385
7177	112.9	-1327 2	15.71	4 17	53.07	778.0	439.5	305.2	1063.0	3.55	0.56	654.2	389.0
25.7	113.1	-1320 2	16.82	4 18	53 16	778.3	434.7	310.0	10883	3.51	0.56	699.2	389
34.4	113.6	-1326 2	17:02	4 20	53 27	730.4	438.3	305 à	10154	3.55	0.56	656 1	390
42.4	113.9	-1319.4	12.17	4 21	53.34	781.4	434 1	310 8	-392.0	3 52	0.55	701 3	390,1
50.4	114.5	-1325.6	17.12	4 24	53 46	784 4	438.4	206.2	1280.7	2.56	0.56	698.5	392
58 1	114.5	-1315.2	17 47	4 24	52 55	763.0	434.0	210.7	1193 -	3 52	0.55	702.2	391 !
66.7	115.1	-1324 5	17.63	4.26	53 66	786.2	437 7	307 0	*093.1	3.56	0.56	700.2	395.
74.6	115.4	-1319.2	17.78	4.27	53.75	786.8	434.0	3107	10973	2 53	0.55	704 1	393 (
82.5	115.7	.1315.5	17.92	4.29	53.85	7676	431.4	313 3	**00 5	3 51	0.55	707 1	393.6
90.4	116.1	-1315 8	18.97	4.30	53.95	789.2	\$23.7	311.0	1100.2	3.54	0,55	705.8	294.8
98 7	116.3	.1311.9	18 22	4.31	54 05	789.3	428.9	315.8	1:055	3.50	0.54	710.4	394.7
05.0	116.8	+1318.2	18 16	4.33	54.14	792.2	433.3	311.4	1123.6	3.54	0.55	707 5	396 1
14.3	117.1	-1311.7	16.52	4 35	54.24	793.0	428 8	315 5	11635	3.51	0,54	712.4	396 5
22.0	117.7	-1317 4	18 66	4.37	54.34	795.7	432.7	312.0	1502 T	3 55	0.54	709.5	397.9
29.5	117.9	+1311 3	18 10	4 36	54.43	795 8	425.5	3182	12.0	3 52	0.54	714.1	397 5
37.7	118.3	+1315 5	18,98	4.39	54 54	797.2	421 4	313.3		3.54	0.54	711,9	398.6
45.8	118,4	-1311-1	15 11	4.40	54 64	795.8	428 4	316.3	11131	3.52	0.54	714 7	398.4
53.5	118.6	+1304 7	19,25	4.41	5474	797.0	424.0	320 7	110.44	3 49	0.53	719.2	398.5
61.1	119.3	-1310.5	*5 40	4.44	54.83	800 3	428.0	3167	15770	3.53	0.53	716,9	400.2
69,1	119.4	-1304 1	19.55	4,44	54.94	600.0	423.6	32: 1	11211	3 49	0.53	721 1	400.0
76,6	119.7	-1310.1	19 89	4 46	\$5.03	801.0	427.7	317.0	44.43.0	3 53	0.53	717.5	400.5
34.8	120.0	-1303 7	15.84	4.47	55.14	801.4	423.3	3214	1*22.8	3.49	0.53	722 1	400.7
93.0	120 5	-1369 3	19.99	4.49	55,24	803.7	427.1	317.6	** 24 2	3.53	0.53	719.4	401.8
10.7	120.7	-1303.5	30,14	4.50	55 34	803.5	423.1	323 E	1125.0	3.50	0.53	723.3	401.7
08.7	121.1	-1302.2	20.29	4.52	55,45	805 3	422.2	122.5	1:277	3 50	0.52	725 1	402.6
16.7	121.6	-1303.1	20 44	4.54	55.55	807.4	422.9	321.8	1125 2	3.51	0 52	725.5	403.7
24.2	121.7	-1296 8	20.58	4 54	55 65	806 6	4185	326.2	1132.8	3.47	0.52	729 5	403.3
32.6	122.3	-1302.9	20 74	4.57	55.76	809 3	422 7	322.0	11313	3.51	0.52	726.6	404 7
40.5	122.4	-1296.4	20.89	4 57	55.87	£.608	418.3	326 4	1134.8	3.48	0.52	730.6	404.2
18.5	123 1	-1302.0	21.04	4.50	55 97	812.3	422.1	322.6	1134.9	3 52	0,52	728.8	406.2
56.8	123.0	-1296 0	21 19	4 59	56.08	809.4	418.0	3267	** 36 1	3 48	0.52	731.4	404.7
54.9	122.7	-1299.8	21 34	4.58	56.19	805,9	420.5	324 1	1:30.0	3 49	0.52	727.0	402.9
2.9	122.5	-1295 4	21.45	4.57	58 30	302.4	417.5	327 *	** 25.6	3.45	0.52	728 4	601.2

-

Consolidated Undrained Triaxial Compression Test on Cohesive Soils ASTM D 4767 - 88

2		-	1						Strangth Res	and the second se	5	Densky: (K	(°Mug
	9421897-5040)	L. #	15 35	cm .	DATE:	27-Feb-95		Max.org' =	1267 6	kPa	y, =	207
ast PN	TP95-37		A, =		cm*	FILE	3x-500 XLC		Strain @ =	21.14	1%	γ, =	218
ample			V. =	669.0	em'	TEST#	CIU-3	_	Max. PSR =	3 74		E, =	0,34
plh	_								Strain @ =	2,09	%	E, =	0.27
EMARKS			Consolidation			CALIBRATIO	and the second se		Consolidation		1.00	Water Conte	
silure Mode			CP=	979.0	kPa	LOAD =	0 0423	kN/mV	5Vc =	35,9	cc	W, =	93
Minus 19.5 m	The second s		8P =	480 6	kPa	PORE =	0 6895	kPa/mV	T : 34 =	40,3	imin	W, =	9.8
and a second	applied for the		(75) ⁴ =	498.4	kPa	EVDT =	0.0285	mm/mV mm/min	C, =	7 4E-04	cm²/s	-	
	pper la ror me	i babei	Bvalus =	0.963		Feed Nate -	0.024	maximi	-		-	-	-
δL	LOAD	δU	E	LOAD	Ar	Go	δÜ	σ,	σ_{i}	PSR	A	p'	p
(mV)	(mV)	(mV)	(%)	(kN)	(cm ²)	(KPa)	(kPa)	(kPa)	(kPa)			(kPa)	(kPa
_			1167		10.00				10.5 .			100.0	
+1225.0	11.2	-697.0	0.00	0.00	43 57	2.0	30	458 4	498.4	1,00	0.14	498.4	0.0
-1219.4	17.6	-713.6	0.10	0 27	43.62	432.2	28.9	469.5	545 2	1.23	0.18	518 1 523 7	311
-1210.5	22.4	+768.5	0.42	074	+3 02	165.3	19.6	445.5	218.1	1.38	0.29	533.5	34 6
-1194.8	46.6	+872.9	0.56	1.50	43.82	241.4	121 3	377 1	718.5	1.91	0.36	547.3	170
-1187.2	57.4	.930.5	0.70	1.95	43.88	445.0	151.0	337.4	782.4	2.32	0.36	559.9	222
-1179.2	66.2	-965,7	0.85	2.32	43.95	528,4	185.3	313.1	341.5	2.59	0.35	577 3	264
-1170.8	73.6	-980.6	1.01	2.64	44.02	598 8	195 5	302.9	901.7	2.98	0.33	602 3	299
-1162.5	79.8	-990,1	1,15	2.90	44.08	657.5	202.1	296.3	953 8	3.22	0.31	625.1	326
-1154.4	85.5	-967.9	1.31	3.14	44.15	710.5	200.8	297.8	1008.4	1 39	0.28	652 1	355
-1146.0	90.3	-367.2	1.47	3.35	44.22	736.0	199.4	299.0	1055.0	3.53	0.26	677.0	378 (
-1137.5	94.7	-977 2	1.62	3.51	44.25	36.4	193.2	305 2	11016	3.61	0.24	703 4	398
-1129.6	68.3	-971.7	1.77	3.68	44.36	529.7	189.4	309.0	1138.7	3 69	0.21	723.8	414
-1120.2	101.4	+960.6	1.95	3.81	44 44	357-0	181.8	316.6	1173.6	3,71	0.21	745 1	428
-1112.3	104.0	-953.8	2.09	3.92	44.50	820.5	177.1	321.3	1201.9	3,74	0.20	761.0	440.3
-1103.5	106.2	942.3	2 26	4.02	44.58	829.5	169.1	229.3	1228.9	3.73	0.19	779.1	445.
-1095.2	108.1	-935 5	2.41	4 10	44 65	216.2	164.4	334.0	1250 1	3.74	0.18	792.0	458
-1095 2	109.8	-923 9	2.57	4 17	44.72	531.0	156.4	342.0	1273.0	1.72	017	807 5	465
-1078.4	1116	-917 7	2,72	4 24	44 79	248.1	152.2	346.2	12923	3.73	0.16	815 3	471
-1069.8	113.1	-905.9	2.88	4.31	44.87	050 1	144.7	353,7	1312.8	1.71	0.15	633.2	479.5
1060.2	114.6	-900.9	3.05	4.37	44.95	571.0	140.6	357 8	1329.0	3.71	0.14	843.4	485.
1051.9	115.9	-890.6	3.21	4.43	45.02	552.2	133,6	364.8	1347.0	3 69	014	855.9	451.
1043 3	117.4	-884.8	3.37	4,49	45 09	294.0	129.5	368.9	1363.0	3 69	0.13	865.9	457 0
1034.8	118 6	-875.9	3.53	4 54	45.17	:024 1	123.4	375.0	1370.1	3.68	0.12	877.1	502 0
1026.2	119.9	-369.4	3.69	4 60	45 24	1014 1	118,3	379.5	1393.6	3.67	0.12	855.6	507 (
1017.4	121,2	-862.0	3.85	4 65	45.32	1024 5	113.8	384.6	1409.1	3,66	0.11	895,9	5123
1008.6	122.4	-854.6	4.02	4.70	45.40	1034.0	108.7	389.7	1423.7	3.65	0.11	908.7	5170
1000 1	123.6	-849.1	4.17	4.75	45.47	1042.8	*04,9	393.5	1436.3	3.65	0.10	914.9	521-
-991.2	124.7	-841.4	4 34	4 50	45 55	1251 4	11 6	396 :	1450.4	3 64	0.09	924 d	525
-982 5	125.7	-335 E	4.50	4.84	45 63	1068-3	96 J	402 1	1451.4	3.65	0.09	531 à	\$25 8
-973.6	1267	-829.2	4,67	4.68	.45.71	1 550."	ā12	407.2	1473 8	3.62	0.09	940.5	533.3
-964.5	127.8	-824.8	4.84	4,93	45.79	4074.4	38.1	410.3	1484,7	3.62	0.08	947.5	537 2
-555.9	128 8	-817.6	4,99	4,97	45 86	1281 5	\$3.2	415 2	1495.8	3 60 L	0.08	956.0	540.3
-947 0	129 7	-813.7	5.35	5.01	45.94	*18£ 3	30.5	4179	1506.2	1,60	0.07	962 1	544 1
-938 0	130,7	-806 7	5.33	5.05	46.02	1/26.3	-5.6	422.8	15185	3,59	0.07	970.6	547.9
-529.2	121.7	-803.0	5.45	6.05	46 10	:102.3	72.1	425.3	1527.6	1.59	0.07	9765	5512
920 0	132.6	-796.2	5.66	5 13	46.19	** 08.5	53.4	\$30.0	1538.5	3.58	0.06	984.2	554 3
-911.0	133.4	-792 7	5.83	5 17	46 27	*114 Q	66.0	432.4	1546.4	3.58	0.06	989.4	557 0
-901.8	134.2	-785.8	6 00	5 20	46,35	1115.6	61.2	437.2	1556,8	3,56	0.05	997 0	559 8
-892.3	135.2	-783.1	6.18	5.24	46.44	1125.5	59.4	439.0	1564.8	3 56	0.05	1001 3	562.9
-883,7	135.9	.7757	6.33	5 27	46.52	1130 6	55.0	443.4	1574.0	3.55	0.05	1008.7	565.3
-874.6	135.7	.771.0	6.50	531	46 60	1135 8	53.1	445 3	1581 1	1.55	0.05	1013.2	567.9
-865.3	137 4	-767 6	6.68	5.34	46 69	1140 1	467	449.7	1589.8	3.54	0.04	1019.8	570.0
356.4	138.2	-764 1	6.64	\$ 37	48 77	11453	453	452.1	1597.4	3 53	0.04	1024 3	5726
8477	139.0	-759.4	7.00	5.40	46.85	1149 -	43.0	455.4	1605.1	3 52	0.04	1030 2	5749
638.4	139 9	(754.3	7.18	5 44	45 94	11227	35.5	458.9	1614.5	3,52	0.03	10367	577.5
829.4	140.5	-75 ⁺ 4	7.34	\$47	47 03	1199.0	37.5	460 5	1619.9	1.51	0.03	1040.4	579 5
320.6	141.2	-746.2	7.51	5.5C	47.11	*160 2	13.9	464.5	1627 7	3.50	0.03	1046 1	5216
311.8	141.9	-744.0	7.57	5 53	47 19	**37.6	32.4	466.0	1633.6	3.51	0.03	1049.8	583.9
502.5	142.6	-738.6	7.84	5 58	47 28	1171.5	29.7	469.7	1641 2	3,49	0.02	1055 5	5857
793.6	143.4	-736.9	5.00	5 5 5	47 36	1175.1	27.5	470.9	1647.0	3.50	0.02	1059 0	588 1
784 3	144 1	-731 7	8 18	5 62	47.45	1180.2	23.9	474.5	1654.7	3.49	0.02	1054.6	550 1
775.8	144.7	-729.9	8.34	5.64	47.54	1153.4	22.7	475.7	1659.1	3,49	0.02	1067.4	591 -
766.5	145.2	-724.6	8.51	5 66	47 63	*115.5	190	479.4	1554 9	3.47	0.02	1072.1	592.7
757 ê	145.0	-723.4	8.67	570	47.71	1153 *	182	480.2	1670 9	3.48	0.02	1075.5	5953
748 7	145.6	-718.5	5.84	572	47 50	* 192 2	14.5	483.6	1674.8	3.47	0.01	1080 2	596.6
739.3	147.2	-715 7	9.02	\$75	47 35	*136.7	13.6	484 3	1681 5	3.47	0.01	1053.2	598.4
730.8	147.7	-712.4	9 17	577	47.97	11583	10.6	487 3	1686 5	3 46	901	1087 2	599.4
721 7	148.3	-710.0	9.34	5 80	48.06	*201 £	20	489 4	1691 3	3 46	301	1090.4	600 B
712.9	148.9	-706.6	9.51	5.82	48 15	1204 5	6.6	491.8	1696 3	3 45	0.01	1094 0	6023
703.9	149.4	-703,3	9.67	5 84	45.24	1207.2	43	494 1	1701.2	3.44	0 00	1097 7	6036
695.0	150,0	-700 5	9.54	5.87	48.33	+205 B	2.6	495,8	1705.6	3 44	0,00	1100 2	604 9
686 1	150 €	-6967	10.00	5.90	48.42	1213.0	-0.2	495.6	1711,6	3.43	0.00	1105 1	6065
677 1	151.2	-695 4	10,17	5.30	48.51	1215.5	-1.1	499 5	1715.3	3.43	0.00	1107 4	607 9
668.5	151.8	-691 4	10 33	594	43.59	1218.5	-3.9	502.1	1720.8	3.43	0.00	1111 #	609.3
659 0	152.4	-690 2	10.51	5.97	48 69	1978 -	-47	503.1	1724.8	3.43	000	1113.9	610.3
650.2	153.0	-686 4	10.67	5 99	+8.78	1224.0	.73	505.7	1729.8	3.42	+0.01	11177	6120
6410	153.5	+685 3	10.84	6.02	48.87	1226.2	-8.5	506.5	17327	3.42	-0.01	1119.6	6131


δL	LOAD	δU	E	LOAD	A.	00	δU	G3'	σ ₁ ,	PSR	A	p'	P q
(mV)	(mV)	(rnV)	(%)	(KN)	(cm²)	(kPa)	(kPa)	(kPa)	(kPa)			(kPa)	(kPa
-522.4	154 5	+680.5	11.19	6 06	49 06	1229.7	-11.4	509 8	1739 5	3.41	+0.01	1124.6	614
-613.5	155.0	+676.8	11 35	6 08	49.15	1231.7	+13.9	512,3	1744.1	3 40	-0 01	1128.2	615
604 3	155.6	-675 9	11 52	6 10	49 22	1234.3	-14.5	5129	1747.2	3.41	-0.01	1130 1	ē17
595 2	156.0	-672 1	11 69	6.12	49 34	1235 8	-17.2	515.6	17513	3.40	-0.01	1133.4	517
-585.9	156 6	-671 2	11 86	6.15	49 44	1237 9	-17 8	5162	1754 1	3 40	-0.01	1135 1	618
576 5	157.1	+667 8	12 04	6 17	49.54	1230 8	-20 1	518.5	1758.3	3.39	-0 02	1138 4	619
-566 9	1577	-666 0	12.22	6 19	49.64	1242.1	-21.4	519.8	1761 9	3.39	-0.02	1140.8	621
-557 6	158 2	-663 5	12 39	6 21	49.73	1243.7	-23 1	521 5	1765 2	3 38	-0.02	1143.4	621
-547 9	158.7	-661 0	12.57	6.24	49.84	1245 4	-248	523.2	1766.6	3 38	-0.02	1145.9	622
-538 4	159 2	+659.2	12,74	6.26	49 94	1247.1	-261	524.5	17716	3 38	-0.02	1148.0	523
528.8	159.7	-656.1	12,92	6 28	50.04	1246.3	-28.2	526.6	17754	3 37	-0.02	1151.0	624
-5190	160 1	-655.4	13.10	5.30	50 14	1249,8	-287	527 1	1776.5	3.37	-0.02	1151.9	624.
509 0	160.5	-652.2	13 29	631	\$0.25	1249 7	-30.9	529.3	1779.0	3 36	+0 02	1154.2	624 9
499.2	160.8	651.5	13,47	5.33	30.36	1249 9	-31,4	529.8	17796	3.36	+0.03	1154.7	624.5
489.2	161,1	-648 3	13.66	6.34	50.47	1249.4	-33.6	532 0	1781.4	3.35	-0.03	1156.7	\$24
479.2	161.5	-647 9	13.84	6.36	50 57	1250 6	-33.9	532.3	1782.3	3 35	+0.03	1157.5	625.3
469 2	162.2	-644.7	14.03	6.36	50 68	1253.0	-36.1	5345	1737.5	3.34	+0.03	1161.0	626.
458 8	162.9	-644.2	14.22	5.41	50.80	1256 1	-36.4	534 8	1790.9	3.35	-0.03	1162.9	628,1
448.7	163.3	-641.3	14.41	6.43	50.91	1256.3	-38.4	536 8	1783.5	3.34	-0.03	1165.2	628.4
438.6	163.8	-640.4	14.60	6.45	51 02	1257 5	-39.0	537.4	1735.;	3.34	-0.03	1166.2	828.0
428.6	164.2	-837 é	14.78	6.47	51.13	1255.1	-410	539.4	1797.5	3.33	-0.03	1168.4	529
417 8	164.6	+636 7	14 98	6.49	51 25	1258 3	41.6	540.0	1758 6	3 33	-0.03	1169.3	6293
407.5	165.1	-634 3	15.17	6.51	51.37	1259.9	-41.2	541.6	1601 5	3.33	+0,03	1171.6	629.5
397 0	165.5	-632 0	15.17	6.52	51.49	1259 8	-44.8	543.2	1803.0	3.32	-0.04	1173.1	529.9
387.4	166.0	+631.0	15.55	6.54	51.59	1261.2	+45.5	543.9	1805 1	3 32	-0.04	1174.5	630 6
376.0	166 3	+525.5	15 76	6,56	51.72	1251.0	-47.2	545 6	1906 6	3,31	-0.04	1176 1	630,5
365.9	166.8	-527.9	15.95	5.58	51.84	1262.2	-47.6	546.0	1803 2	3 31	-0.04	1177_1	631 1
355 0	167,2	-625.3	16 15	6.60	51 96	1261 8	-49.4	547.8	1809.6	3 30	-0.04	1178.7	630.9
344.8	167.6	-625 1	16,34	6.61	52.08	1262.5	-49.6	548.0	18105	3,30	-0.04	1179,2	631.2
334.3	168.0	-622.2	16.53	6.63	52.20	1252.4	-51.6	550.0	18124	3.30	-0.04	1181.2	631 2
323.4	168.5	-621.5	16 73	6.65	52.33	1263.4	+51.8	550.2	1513,6	3 30	-0.04	1181.9	6317
313.5	168.9	-619.0	16.92	6.67	52.45	1263 2	-52.8	5522	15154	3.29	-0.04	1163.8	6316
303.2	189.2	-618.5	17.11	6.68	52.57	1264.6	-54 1	552.5 554.0	18158	3.29	+0.04	1184 1	6316
293.0	165.8	-616.4		the set of	52 59 52 82	1254.2	-56.6	555.0	1819.0	3 28	+0.04		5323
282.1	170 1	-614.9	17 60	6.72		1264.9			and the second second	3 20	-0.05	1187 2	
272.0	170.6	-613.4		6,74	52.94	1294.5	+57.5	556.0 557.9	1821.0	3:27	-0.05	1188.5	6325
262 7	170.5	-610.7	17 16	6.75	53.05	1255 6	-59.5	557.9	1323.3	3 27	-0.05	1190,1	632 A
152.0		-6107	*3.06	6.79	53.30	1264 5	-58.5	559.9	1824.5	3.26	-0.05	1192.2	6323
241 5	171.7		13.44	681	53.42	1268.5	-61.5	559.9	1826.4	1.26	-0.05	1193.2	6333
	172.3	-607 8	18.63	6 32	53.55	1264 6	-63.3	561 7	1825 2	1.25	+0.05		632 3
2213		-505 2	18.61		53 55	1265.8	-63.4	561.8	1827.5	3 25	+0.05	1194 0	632.9
	173.0	and the second se		6.84 6.85	and the second second	1265 4	-65.3	563.7	1529-1	Carl In the second	-0.05	and the second sec	6327
202 7	173.3	-602 3	18 98	6 86	53.76 53.92	1286.5	-65.4	563.8	1830 3	3.24	+0.05	1196.4	533.3
914	173.8	-602.2	19.36	68.0	54.03	1265 6	-67.2	565 6	1831 3	3.24	-0.05	1198.4	632.8
182.1	174 5	-599.5	19.56	6.91	54.17	1265 6	-67.8	566 2	1833.0	3.24	-0.05	1199.4	633.4
	174.6	-598.6	19.00	6.91	54.17	1266 7	-97.0	567.5	1833.0	3 23	+0.05	1200 8	633.4
163 1	175.3	-596.8	19 93	6.94	54.42	1265.9	-70.3	568.7	1634 6	3.23	-0.05	1200 6	633.4
423	175.8	-594 2	20 10	6.96	54.53	1266.8	-70.9	569.3	1535.0	3.23	-0.06	1202.7	633.4
32.8	176.0	-591 7	20.27	6.97	54.65	1266.0	+72.6	571.0	1837.0	3.22	-0.05	1204 0	633.0
23.7	176.5	-591 3	20.44	6.99	54.77	1266.6	-72.9	571.3	1837.9	1.22	-0.06	1204 6	633.3
13.5	176.9	-589.2	20.63	7.00	54 90	1266.4	-743	572.7	1935 1	3.21	-0.06	1205.5	533.2
03.8	177.2	-589.0	20 81	7.02	55.02	1265.9	-74.5	572.9	1838.8	3.21	-0.06	1205.8	633.0
33.8	177.5	-586.6	21.00	7.03	55.15	1265.6	-76.1	574.5	1840.1	3.20	-0.06	1207 3	632.6
36.0	175.1	-585.9	21.14	7.05	55 25	1267.6	-76.6	575.0	1642.5	3.20	+0.06	1208.3	633.8
4.6	178.2	-583.9	21.35	7.06	55.40	1265.0	-78.0	576.4	1841.4	3 19	-0.06	1208 9	632.5
5 4	178.8	-583.0	21.52	7.09	55.52	1256.5	-78.6	577.0	1843.5	3 19	-0.06	1210.3	633 3
55.1	179.0	-581 3	21.72	7.10	55.00	1264.8	-79.0	578.2	1942.9	3.19	-0.06	1210.6	637.4
17 6	179.4	-579.9	21.86	7.11	55.76	1265 8	+30 7	579.1	1844 2	3.19	+0.06	1212.0	632.9
16.4	179.9	-578.8	22.06	7.13	55.91	1265.4	-81.5	579.9	1845 3	3 18	-0.06	1212.6	632.7
7.4	100.0	-5763	22 23	7.14	56.03	1263.6	-63.2	581.0	1645.3	3.17	-0.07	1213.4	631.8
7 1	180.5	-576.2	22.42	7.16	56.17	1264.0	-83.3	581.7	1845.7	3.17	+0.07	1213.7	632.0
8.7	180.8	+3/8-4	22.58	7.17	56.28	1263 7	-85.0	583.4	1847.2	3.17	-0.07	1215.3	631.9
17	181.4	-573.0	22.77	7.20	56.42	1264 5	-84.5	583.1	1548 2	317	-0.07	1215.8	633.4
97	181.4	-571.2	22.52	7.21	56.53	1264 5	-367	585 1	1349.6	316	-007	1217.4	633.2
5.7	the second se	-571.2	23.14	7 22	56.69	1254 2	-367	585 1	1543.0	3.16	-0.07	1217.1	631.5
	182.1			7 24	56 82	1263 2	-39.7	586.6	1849.3	3.15	-0.07	1218 2	631.6
1.5	182.4	-569 1	23.32	7 25	56 95	1262.7	-88.6	587.0	1849.7	3.15	-007		831 B
02	182.7	-568.5	23 48			and the second s					the state of the second	1218.4	
	183 0	-566.2	23 154	7.25	57-06	1261.8	-30.2	535.5	1850 4	1.14	-0.07	1219 5	530.9

	interes and								Strength Re	SURS :	1	Dansty: IK	ניאיט
ROJECT	and the second second second	0	4.	and the second second	cm	DATE	27-Feo-95		Max, σ_n' *	1624 3	kPa	¥, =	2063
st Pit	TP95-17		A, =		cm²	FILE : TEST#	3+950 X10 CIU-4		Strain (#) =	8.88 3.38	:%	Y,=	2180
inple			V, =	567 1	cm ²	TESTA	010-4		Max. PSR = Strain (d) =	7 34	%	E.= E.=	0 34
MARKS	-	-	Consolidatio	Pressure -		CALIBRATIO	NS-		Consolidatio	and the second se	20	Water Conte	
	te Buiging	-	CP =		kPa	LOAD =	0.0423	kN/mV	5V, =	37.9	CC	W. =	91
Ainus 19 5	mm matenai		BP =	412.2	kPa	PORE =	0.6895	kPamV	T =	27 0	min	W, =	9.9
1	applied for me		Ø 11° =	961.6	kPa	LVDT =	0.0255	mm/mV	C., =	1.1E-03	cm²/s		
Corrections	applied for fill	er paper	B.4.04 =	0 997	_	Feed Rate =	0 026	mm/min	-		-		-
δL	LOAD	L SU	E	LOAD	A	σο	δU	0,	0,	PSR	A	p'	9
(mV)	(mV)	(mV)	(***)	(KN)	(cm ²)	(kPa)	(kPa)	(kPa	(kPa)			(kPa)	(kPa
510.0		-597.0		A 80	43.46	0.0	25.4	961 e	561.6	1 00			
513.9	163	-601.4	0.00	0.00	43.40	52.2	20	961.6	10114	1.05	0.05	961.6	0.0
523.8	24 2	+605 3	0.26	0.33	43.57	75.8	52	956.4	1032.2	1.08	0.07	994 3	373
533.1	26.8	-611.7	0.43	0.44	43.65	101.5	9.6	952.2	1053.6	1.11	0.09	1002.8	50 8
540 1	59.6	-681.2	0.56	1.83	43 70	418.5	57.5	204 1	1322.6	1.46	0.14	1113.4	209
548.5	84.8	-794.0	0.71	2.89	43.77	660.7	135.3	826 3	1487.0	1.80	0.20	1156.6	330
557 3	103.7	-899.5	0.88	3.69	43.84	842 1	208.0	753.6	1595.7	2.12	0.25	1174.7	421
566.1	119.0	-971.6	1.04	4 34	43.92	987.4	257.7	703 9	1691.3	2.40	0.26	1197 6	493
574.9	131.5	-1022.6	1 21	4 87	43.99	1106.3	292.9	668.7	1775.0	2,65	0.26	1221.9	553,
563.4	143.4	-1049.0	1 36	5.24	44,06	1189.6	3111	650.5	1840.1	2.83	0.26	1245.3	594
593 2	146.8	-1065.2	1.54	5.51	44.14	12487	323.0	638.6	1887 3	2.96	0.26	1263.0	624
600 8	151.4	-1072.9	1 69	5.71	44.20	1290.9	327 é	634.0	1924.9	3.04	0.25	1279.5	645
610.4	154.9	-1076 6	1.36	5.86	44.29	1321.6	330 1	631 5	1953 1	3 09	0.25	1292,3	860
620.0	157-5	-1080_4	2.04	5,07	44 37	1344.0	332.8	628 2	1972 8	3 14	0.25	1300.8	672
629.3	159.8	~1075 B	2 22	5.07	44,44	1364.1	329.6	632.0	1996 1	3 16	0.24	1314/1	682
637.8	162 1	-1982.1	2 37	6.16	44.52	1363 4	333.9	627 1	2011.1	3 20	0.24	1319.4	691
647 3	164 1	-1079 4	2 \$5	9.25	44,60	1399.6	332 *	629.5	2029.5	3.22	0.24	1329 5	200
857.0	166 1	1081 9	273	6.33	44 53	1415.5	333.8	627 3	2043 4	3 25	0.24	1335.6	707
C 886	167.4	5 6701-	2.90	6 39	44.76	1425.7	332 3 332 6	629.3	2055.0	3 27	0 23	1342.1	7121
574.2 70.4 7	168-6	-1080 2	2.05		44 83	1434.4		629 0 629 0	2063.4	3 28	0,23	1346 2	717.
84.2 94.1	159.5 170.5	-1075 3 -1075 6	3-23	6.48 5.52	44.91	1440.8	332.0 330.1	629 6	2070.4	3 25	0.23		720 4
	179.5	and the second second	2.57	9.52	45.07		330.6	631.0		a balance and	0.23	1355.1	723/
02 1	1717	-1077 3	3.76	5.57	45 07	1455.6	326.8	6310	2086.5	331	0.23	1358.8	727.
21.0	173.5	+1071.7	3.93	6.64	45.24	1460.9	3290	632.6	2099.0	3.30	0.22	1365 3	733.5
31.2	174.4	-1071.5	4.11	6.68	45.32	1472.5	326 6	635.0	2107.5	3.32	0.22	1371.2	736.3
40.0	175.3	-1072.3	4.27	6.72	45.40	1478.3	327.2	634.4	2112.7	3 33	0.22	1373 6	739 1
49.1	176.2	-1069 8	4.44	6.76	45.48	1484 2	3254	636.5	2120.4	3.33	0.22	1378.3	742.1
58.6	177.2	-1068.5	4 62	5.80	45.56	1490.2	324.8	636.8	2127 1	1.34	0.22	1382.0	745 1
66 5	178.3	-1067 t	4.76	5.85	45.63	1498 5	323.5	638 0	2136.5	3.35	0.22	1387 3	749.0
76.2	179.2	+1063 1	4 94	6.89	45.72	1504.2	320 5	840.5	2145.1	3 35	0.21	1392.0	7521
85.6	180.0	-1054 8	\$ 12	6.92	45.80	1508.4	322 0	639 6	2148.0	1.36	0.21	1393 8	754.3
94.2	180 5	-1058 9	5 28	6.95	45 88	1511 6	3179	643.7	2155.3	2.35	0.21	1399.5	755 0
03.5	181.6	-1061.2	5 45	6.09	45.96	1517.7	310.5	642.1	2159.8	3.36	0.21	1400.9	758.5
12.6	182.0	-1057.6	5,62	7.00	46.05	1518.7	317.0	644.6	2163.3	3,36	0.21	1403.9	759.3
20.7	182,9	-1057.6	5.77	7.04	46.12	1524.2	317.0	644 5	2168.7	336	0.21	1406.7	762.1
29.8	181 8	-1055 0	5.94	7.08	46.20	1530.1	315.2	646.4	2176.5	3.37	0.21	1411.4	765 1
37 5	184.4	+1052.7	5 08	7 11	46.27	1532,9	3137	647.9	2180.8	3 37	0.20	1414.4	766.4
47.1	185.3	-1051.7	6.26	114	46.36	1536,1	313.0	648,6	2186.7	3.37	0.20	1417.7	769.0
55 2	105.0	-1045.8	5 41	7 17	46 44	1540,5	308.9	652.7 651.1	2193.2	3 36	0.20	1422.5	770.2
54 4 74 3	186.5 187.0	-1048.1	6.58	7 20	46.61	1543.5	310.5	654.7	2195.0	3.37	0.20	1423.0	771.9
14.3	167.0	-1042.9	6.08	7.26	46.72	1550.6	307.9	553 7	2199.6	3.36	0.20	1429 1	775.3
99.7	188.5	-1040.8	7.24	7.29	46.85	1553.2	305.4	656 2	2209 3	3.37	0.20	1432.7	776.6
19.4	189.9	-1040 3	7.42	7.34	46.94	1559 6	3051	556 5	2215.1	3.38	0.20	1426.3	779 3
17.8	190.6	-1037.6	7.57	7.37	47 02	1563.7	302.2	658 4	2222.0	3 38	0.19	1440.2	751.8
27.2	191.3	+1035.9	774	7.40	47.11	1566.5	3021	359 5	2226 1	138	0.19	1442/8	783 3
15 5	191.8	-1034 2	7.90	7.42	47 19	1268.9	300 9	560 7	2229 6	3 37	0.19	1445 1	7544
5.3	192.5	-1030.2	3.08	7.45	47.28	1571.8	298.1	663.5	2235 2	3.37	0 19	1449,3	785.9
9 8	193 2	-1030 6	5.24	7.45	47.36	1574.7	293.4	663.2	2217.5	3.37	0.19	1450.6	787.4
3.4	191.7	+1025.4	8.42	7.50	47.45	1576 1	294 8	665.8	2242.9	3.36	0 19	1454 8	785 0
21	194.7	-1027.0	5.58	7.54	47.54	1582.6	295.9	555 7	2248.2	3 38	0.19	1456.9	791.3
9.0	195 2	-1022.9	5.74	7.55	47 52	1583.9	293 1	668.5	2262.4	3:37	0.19	1460.5	792.0
0.6	1957	+1023_1	892	7.58	47 72	1585 3	293.2	668 4	2253 7	3 37	0.18	1461.0	792.7
8.9	196 3	-1019.8	908	7.61	47 80	1588 1	291.0	570 6	2258.7	3 37	0.15	1464 7	754.1
08.6	197.2	-1018.7	9.26	7 65	47.89	1592.5	290.2	6714	2263.9	3.37	0.18	1457.6	796 2
15.6	198.0	+1016.6	9 41	7 6ā	47.97	1596.5	258.8	672.8	2269.3	3.37	0.16	1475 1	798 2
25.1	1987	-1012 6	9.58	7.73	45.07	1599.5	286.0	675.6	2275.2	2.37	0.18	1475 4	799.8
36.0	199 2	-1011.4	9.77	7.73	48 16	1601.2	286.8	575 0 578 4	2276.2	3.37	0.18	1475 6	800 5
45.6	199.6	+1008.5	3.94		48.26	1605.5	284.1	677 5	22/5 /	3.37	318	1429-1	300 € 302 8
54.9	200.5	-1009.8	10 12	7.79	45.44	1608.4	284.1	680 1	2286.5	3.36	0.18	1480.3	803.2
63.8 73.5	200.9	-1005.0	10.28	7.83	48.54	1606.4	2813	680 3	2286.7	3 36	0.12	1484 5	804.2
53.8	201 5	-1005.8	10.65	7.85	48.64	1611.1	2795	682 1	2293.2	3.36	0.17	1487.7	805 5
05.0	202.8	-1001 1	11.07	7.66	48.87	1608.5	278.2	683.4	2293.2	3.35	0.17	1467.6	804 2
52.6	202 8	-9997	11.93	7.91	49.35	1558.2	277 1	684 5	2282.7	3.33	017	1483 6	799 1
00 5	203.9	-994.6	12,82	7.93	49.85	1584.5	273.6	688.0	2272.6	3.30	0.17	1480.3	792.3
25.0	2015	-996 3	13.28	7.96	50.11	1582.2	274.5	666.3	2269 0	3 30	0.17	1477 9	7911
34.2	205.4	-992.6	13.45	1.00	50 21	1585.2	272.2	569.4	2275.5	3 30	0.17	1482 5	7011

δL	LOAD	Uõ	E	LOAD	Ae	σø	SU	C,	σ,'	PSR	A	p'	P
(mV)	(m\/*	(mV)	(%)	(kN)	(cm ²)	(kPa)	(kPa)	(kPa)	(kPa)			(kPa)	(kPa
1244.7	206 1	-992.7	13.64	8.02	50 32	1588 3	272.3	685.3	22776	3 30	0.17	1483.5	794
1263.4	206 8	-990 1	13.99	8.05	50.53	1587.2	270.5	691 1	2278.3	3.30	0 17	1484 7	793.
12727	207 7	-988 5	14 16	8.09	50.63	1591 3	269.4	692.2	2283.5	3 30	0.17	1487 9	795
1283 1	208.0	-987.0	14.35	8.10	50.74	1590 4	268.4	693.2	2283.6	3.29	0.17	1485.4	795
1292.8	208 5	-983.4	14.53	8 13	50.85	1591 4	265.9	6957	2287 1	3 29	0.17	1491.4	795
1302.4	209 2	-983.6	14.71	8.16	50 96	1593.9	266 0	695.6	2289 5	3.29	0.17	1492.5	790.5
1211 7	209.7	-978.5	14.89	8.18	51.05	1594.3	262.5	6991	2293.4	3.25	0.16	1496 3	797
13217	210.4	-980.4	15.07	8.21	51 17	1596.9	263 8	697 8	2294.7	3.29	0.10	1496 3	798 5
			15.27	8.23	51.29	1597 0	261.6	700.0	2297.0	3.25	0.16	1498 5	798 1
1332.5	210.9	-977 2		and the second se	51.40	1558.0			and the second second				
1342 4	211.5	-976 0	15.46	8.25			260.8	700.8	2298.9	3,28	0.16	1499 8	795 (
1352 6	212.0	-974.5	15 84	8.27	51 52	1598.8	259 7	701.9	2300 5	1 28	0.16	1501.3	799 4
1362.6	212.5	-971 7	15.83	8.30	51.63	1599.4	257 8	703 5	2303.2	3.27	0.16	1503.5	759.7
13728	213.5	-971 5	16.02	8.33	51.75	1603.2	257.7	703.9	2307 1	3.28	Q 16	1505 5	8016
1382.4	213.6	-966 3	16.20	8.34	51.86	1600 5	254.4	707 2	2308.0	3,26	0.16	1507 5	\$00.4
1393 5	212.7	-967.9	16.40	8.30	51.99	1 569 1	255.2	706 4	2295 5	3,25	0.16	1501 0	794.6
1404 3	213.5	-964 9	16.60	5 34	52.11	159' 3	253 1	708,5	2300.3	3,25	0,16	1504 4	795.9
1414 4	212.6	-964.4	16 79	8 30	52.23	1581.4	252.8	708.8	2290.3	1.23	0.16	1499.5	790.7
1423.8	212.8	-962 1	16.97	8.31	52.34	1579 1	2512	710.4	2200 5	3.22	0.16	1499.5	789 5
1433 7	213.0	-960 6	17.15	8.31	52.46	1577 0	250.2	711.4	2288 5	3.22	0.16	1500 0	788.5
1443 2	213.2	-959 1	17 23	5.33	52.57	1575 8	249.1	712.5	2288.3	3.21	0.16	1500.4	787.0
1452.1	213.9	+955.5	17.49	8.35	52.67	1578.0	246.6	7150	2293.5	3.21	0.16	1504.0	789.0
14621	214.5	-956.3	17.68	8.38	52,79	1575 3	247.2	714.4	2293 7	3.21	0.16	1504 1	789.7
1471.7	215.3	-951.7	17.86	5 41	52.91	1542.2	244.0	717 ć	2299 5	3 20	0.15	1508.7	791.1
1480 7	216.9	-952 8	18.02	8.48	53.01	1391 5	244.8	716.8	2208.2	3.22	0.15	1512.6	795.7
			18.21	8.57	53.14	1504 t	243.0	715.5	2322.7	3.23	0.15	1520 6	802.0
1450.8	219.0	-950.2	A 199 199 199	2-15-14		1609-0	a second and a	719.3		3.23			
1500.1	220.0	-949 2	18.38	8.61	53 25	and the second se	342.3	100 C C C C C C C C C C C C C C C C C C	2328.3	and the stand of the	0.15	1573.6	804 5
1510 3	220.5	-947 5	18 57	8,63	\$3.37	1608.5	241 1	720.5	2329.0	3.23	0.15	1524.8	804 3
:520.0	221.0	-944.2	18.75	8 65	\$3.45	1605 2	238,8	722,8	2332.1	3.23	0.15	1527 4	804.7
1530.0	225.7	-944 0	18.94	8.68	53.61	1510.5	238,7	722.9	2333.7	3.23	0.15	1528.3	8054
1538.9	222.8	-939 5	19 10	8.73	51.72	1616 4	235.6	726.0	3342.4	3,23	0.15	1534.2	808.2
1549 3	222.4	-941.3	19,30	8.71	53 85	1608.5	236 8	724.8	22337	3.22	0.15	1529 2	804 5
1558.3	223 3	-937 8	19.46	875	53,96	1612.3	234.4	7272	2339.5	3.22	0.15	1533 3	8062
1568 4	224.3	-937.8	19.65	8,79	54.09	15167	234.4	727.2	2343.9	3.22	0.15	1535.5	808.4
578.4	225.7	-935 3	19,84	8.85	54.21	1822.4	232.7	728,9	2352.3	3.23	0.14	1540 6	8117
588.0	226.3	-933 7	20.02	8.88	54.34	1624 3	231.6	730.0	2354.3	3.23	0.14	1542.1	8122
1558 1	226.0	-932.5	20.20	8.87	54.46	1618 3	230.8	730.8	2349 6	3.21	0.14	1540 2	809 4
607.6	226 1	-929.2	20.28	8.87	54 58	16157	228.5	733 1	2348 8	3.20	0.14	1540.9	507 B
617.6	226.3	-929.2	20.57	8.85	54 71	1612.8	228.5	733.1	2345 9	3.20	0.14	1539.5	806.4
627 1	229.8	-929 2	20.31	6.85	54 83	1612.2	2251	736.5	2348 6	3 19	0.14	1542.6	306 1
637.4	227.5	-924 3	20.93	8.93	54 57	1614.5	226.3	735.3	2349.5	3.20	0.14	1542.6	8073
And the second second			20 83	8.95	55.09	1616.6	226.3	737.5	2354 3	2.35	0.14	1545.9	508.4
646.7	228.2	-922.8			55 22	1617.4		737.9	2355.3	3 19	014	1. E. J. P. 194	
656.0	228.8	-922 3	21.30	8.99			222.7					1546.5	8087
666.2	229 6	-920.2	21 47	9.02	55.34	16197	222.3	739.1	2359.0	3 19	0.14	1549 1	309.5
676.2	229 7	-918,8	21.65	9.02	55.47	1616 7	221.3	740,5	2357.0	2.18	014	1548.6	808.4
686.0	229.4 1	-917.3	21.84	9,01	55.60	1610 3	220.3	741.3	2351.6	3.17	0.14	1546.4	805.1
655.0	229.3	-913 6	22,00	10.6	55 72	1606.0	217.7	743.9	2549.9	3 16	0.14	1546.5	803.0
705 1	229.9	-914 5	22.19	9.02	55 85	1606 2	2184	743.2	2349 5	3 16	0.14	1546.4	803 1
714.8	230.4	-910.2	22 37	9.05	55 9ā	1606 7	215 4	7462	2352.9	3 15	0.13	1549 6	603.4
724.4	231.3	-9113	22.55	9.09	56 11	1609 7	216.2	745.4	2355 1	3 15	0.13	1550.3	804.9
734.1	231.4	-908 3	22.73	9.05	56.24	1606 3	2141	747.5	2251.8	3.15	0.13	1553.7	803.2
743 E	232.4	-908.0	22.90	9,13	56.37	1609 5	213.9	747.1	2357.5	3.15	0.13	1552.6	804.9
752.5	234.0	-905.7	23.07	9.20	56 49	1618.5	2123	749.3	2367.9	3.16	0.13	1558.6	8093
762.3	234.9	-902.9	23 25	5.24	\$6.62	1621.2	211.1	750 5	2371.8	3.16	013	1561 2	8106
	234.8	-902.9	23.44	9.24	56.76	16:6.6	210.4	751.2	2367.8	3 15	0.13	1559.5	808 3
772.2			and the second se	and the second s	56 88	100 C C C C C C C C C C C C C C C C C C	207.5	754.1	2307.0	3 15	0.13	1559.5	8113
7807	236 1	-695 6	23 59	3.29	36.92	1622.6	101.2	1.54.1	20101	212	0.12	1503 4	0113

Consolidated Undrained Triaxial Compression Test on Cohesive Soils ASTM D 4767-88

Figure

INVESTIGATION KP 1-9 500 of 500