

TABLE 4a: Summary of Analytical Results for Mount Polley, Hazeltina Creek - Surface Water DRAFT

						Plty	sical Parte	netw/u								To	tal Inorgan	iles				
Sample Location	Sample ID	Sample Date (yyyy mm dd)	Hardness Img/L)	pH (field) (pH)	pH (pH)	Temperature (field) (C)	Turbidity (NTU)	Consuctivity (u8/cm)	TD8 (mg/L)	185 (mg/L)	DOC (mg/L)	Total Nitrogen (N) (ng/L)	Arnmonie Nitrogen (µg/L)	Nitrate Nitrogen (µg/L)	Hitrogen Sug/Li	Nitrate+Nitrate Nitragen (yg/L)	Chloride (mg/L)	Rucelde (so/L)	Selphata (mg/L)	Total Askalinity (as CaCO3) (mgrL)	Ortho- phosphate (mg/L)	Total Phosphon (mg/L)
C Standards										,			,					Y-20-1-1				
BCWQG Aquetic t	Life (AW)		rva	5.5-9.0	6,5-9.0		Change of 8	rvk	n/a	Change of 25	rve_	r/e	700-24,500	32,600	60 (CI+2)	32,800	600	1324-1592	19'8	rya .	rua	IVA
						change from	Change of			Criange of	+30% of				1							
GCWGG Aquate	Life (30day) (AW)		rva	r/a	7148	ambient*	2	IVE .	n/a	54	background	rve	135-17,7004	3,000	20 (CI+2)	3.000	150	n/a	128-309*	rvio	rvie	rya
							Change of					- 10			1,000	10.000	250	1,000	500	ak:	n/a	0.01
CWQQ Drinking			rva	6.5-8.5	6.5-B.5	n/w	rs/a	r/t	nis	n/s	U/S	n/é	INE	10,000	1,000	The second second	250	1,500	500	n/e	rve rve	n/a
	Water Quelity (DW)		rvis	5.5-8.5		n/a		rute	500	n/a	n/a 6.62	0.378	n/a		1.000	ryre	< 0.5		27.5	71.B	< 0.001	0,0056
HAD-1	HAD-1	2014 08 10	90	6,96	8.48	10.8	5.24	198	138	10.7	6.58	0.378	< 5 < 6	< 5	41		< 0.5	65	27.6	74.7	< 0.001	0.0006
	HAD-1	2014 08 10	100	4.08	8,86	21.3	2,75	183	139	<3	6.00	0,366	< 5	45	1 41	-:-	< 0.5	62	27.4	74.4	< 0.001	0.0056
	HAD-1	2014 08 11	102	E.94		21.1	2.16	198	148	×3	6.12	0.368	<5	45	<1		₹0.5	63	27.2	74.7	< 0.001	0.0055
	HAD-1	2014 08 12	99.9	8.99	8.85	21,2	1.5	194	135	<3	6.32	0.346	6.7	< 5	51		< 0.5	65	27.3	73.9	0.0011	0.0053
	HAD-1	2014 98 13							131	<3	6.45	0.341	< 5	× 6	61	-	₹0.5	63	27.4	76.2	< 0.001	0.0045
	HADM	2014 08 14	99	9.00	8.59	21.5	1.24	200				0.37			1 41	₹5.1	< 0.5	81	27.3		< 0.001	0.0057
	HAD-1	2014 05 15	99.1	8,79	8,43	22.3	1.25	201	136	< 3	5.39		< 5	4.5	61		< 0.5	67		75		0.0058
	HAD-1	2014 08 16	101	₽.67	8.26	20.4	3,21	203	141	4.5	6.71	0.363	<5	45		<5.1			27.6	75.2	< 0,001	
	HAD-1X	2014 08 18	102	8,67	8.21	20.4	3,04	203	138	3.4	8.73	0,371	< 5	< 5	< 1	<51 500000000000000000000000000000000000	< 0.5	69	27.5	74.6	< 0.001	0.0061
	THE RESIDENCE		A MATERIAL SCORE	THE CHILL	相談主題			HANDEL CONTRA	11/2/4	Account to the second	EURIC HARRY	Transfer Hereit	A STATE STAT	CONTRACTOR OF THE PARTY OF THE	A DESCRIPTION OF THE PERSON OF						< 0.001	0,0068
	HAD-1	2014 08 17	97.9	8.79	6.21	20.5	2.95	201	141	4.3	6.57	0.352	< 5	< 5	61	***************************************	< 0.5	69	27.5	75		0,006
	HAD-1	2014 08 18	100	8.65	8.37	21.0	1,51	201	135	< 3	7.37	0,425	5.7	× 5	41	-	< 0.5		27.4	76.1	< 0.001	
	HAD-1	2014 08 19	98	8.77	8.28	20.7	1,52	200	105	<3	7.02	0.372	<5	< 5	41		< 0.5	75		76.3	< 0.001	0.0059
	HAD-1	2014 08 20	102	8.72	8.21	20.7	7.79	201	139	8,5	5.45	0.364	< 5	< 5	<1		< 0,5	63	26.6	76	< 0,001	0,006
	HAD-1	2014 08 21	101		8.32		6.14	200	141	4	6.29	0.34	<5	45	41		< 0.5	65	27.5	74.8	< 0.001	0.004
	HAD-1	2014 08 22	103	8,58	8.29	*	4.33	200	131	4.2	6.61	0,349	<5	< 5	1 <1		< 0.5	95	27.5	75.2	< 0.001	0,0069
	HAD-1	2014 08 24	104	8.22	8,11	19.2	7.44	207	140	7.8	6.95	C.354	< 5	< 5	41		< 0.5	69	27.2	77,7	0.0012	0,0036
	HAD-1	2014 08 26	106	8.86	6.47	17.6	1.14	204	130	< 3	5.2	0.364	7.6	10.4	<1		< 0.5	67	29.5	77	< 0.001	0.0044
	HAD-1	2014 08 28	108	8.78	8.33	18.2	1.00	209	132	< 3	5.68	0.335	5	< 5	<1		< 0.5	67	28.9	76.6	9.001	0,0075
	HAD-1	2014 08 30	103	8.25	8.16	17.3	4.03	210	130	5,4	7.06	0.362	< 5	< 5	<1		< 0.5	72	29.5	77.3	< 0.001	0.0058
	HAD-1	2014 06 31	104	8.67	8.29	16.0	1.3	209	137	3.3	6.52	0.35	9	6.6	41		< 0,5	69	29.5	77.3	0.0011	0.0047
	HAD-1	2014 09 01	1 105	8.28	8.14	16.6	2.36	208	131	4.3	6.52	0.37	5.6	5.9	×1		* 0.5	66	29.5	77	< 0.001	0.0045
	HAD-1	2014 09 C2	106	8.57	8.1	16.6	1,24	212	142	43	5.64	0.347	< 5	< 5	<1		< 0.5	65	29.5	78.1	< 0,001	0,004
HAD-2	HAD-2	2014 08 30	104	8.14	8,15	17,3	4.41	211	137	3.9	6.73	0.359	< 5	< 5	<1		< 0.5	71	29,4	78,6	< 0.001	0.004
	HAD-2	2014 08 31	104	8.67	8,34	17.0	1.5	208	137	3.6	6.53	0.357	7,4	6.4	<1		₹0,5	71	29.7	78.4	< 0.001	0,004
	HAD-2	2014 09 01	106	8.37	8.25	16.2	2.56	208	136	<3	6.52	0,348	5.1	< 5	<1		10.5	66	29.4	77.6	< 0.001	0.004
	HAD-2	2014 09 02	105	8,57	8.21	16.6	1.63	212	140	3.1	6.21	0.346	< 5	< 5	<1		< 0.5	65	29.5	78.9	< 0.001	0.0041
	HAD-2	2014 09 03	107	6.2	8.38	21.6	1,91	208	144	43	6,79	0.345	€5	< 5	<1		< 0.5	65	29.8	77.9	< 0.001	0.008
HADD1	HAC01	2014 08 24	161	9.22	8.17	18.2	> 4000	343	243	3,380	6.04	0.902	82.2	453	6.1		1.56	120	75.0	93,4	0.0056	0,009
	HADDI-24HRS	2014 08 24	159		6.24		57.1	345	256	38.7	5,71	0.601	72.9	461	6.4		1.58	119	77.7	95.5	0,0061	0.007
	HAC01	2014 08 25	155	8,62	8.23	18.6	4.090	320	140	4,040	5.73	1.81	63.2	409	4.4		1.3	111	60	92.1	0.0032	0.008
	HAC01	2014 08 26	151	8,76	8.3	18.0	> 4000	317	219	3,950	6.16	0.73	67.3	418	4.6		1.01	120	85 1	94.7	0.0066	0.009
	HACD1	2014 08 27	156	8.83	8.17	18.8	> 4000	396	260	35,000	5,43	2.7	183	356	20.9		3.45	226	101	90.6	0,0024	0,000
	HACE IN THIRD SETTLING	2014 08 26	153		8.21	-	2/4	319	216	3.8	5.61	0.643	77.1	415	5		1	103	65.2	96.1	0.0057	0,011
	HAC1	2014 08 28	166	6.29	8.18	17.6	> 4000	411	282	28,900	5.59	2,3	174	403	16.7		3.96	248	114	91,4	0.0026	0.000
	INCV-2005 DITTLEAT	2014 08 28	160	Data Case Clare	8.14	*	69.3	420	312	44.0	5.13	0.925	169	397	16.2	-	3.95	247	116	89,6	0.0027	0.008
	HAC01	2014 08 29	169	8.3	8.17	14.6	> 4000	501	341	62,800	4,16	4.55	300	432	36,5		6.35	348	162	78,3	0.0024	0,006
	INCH - SHING SCITTLES	2014 08 29	190		8.13	The state of the s	80.8	502	367	31.4	4.23	1.06	306	437	36.1		8.4	329	156	78.2	0.0029	0,008
	HAC-1	2014 08 31	164	-	8.23	-	100,000	384	266	40,600	5.54	3.26	201	365	17.7	-	3.35	222	89.9	92.4	9.0063	0,013
	HAC-1	2014 09 03	137	-	8.34	-	3- #000	317	217	20,866	6.02	2.57	125	80	13.1		2.49	166	64.0	97.4	0.0008	0.02
HACOS	HAC-05	2014 06 28	152	6.39	8.24	18.2	> 4000	375	212	27,900	5.51	1.27	141	412	14.8	1	3.17	207	29.3	79.8	3.0027	0.007
THE CASE	Marie Markey Walker	2014 OB 28	169	9.49	8,12	10.2	61.2	361	264	4.7	5.04	0.916	160	400	15	-	3.16	208	101	82.2	0,002	0.007
in and	HALIST THES LETTERS		165	0.00	6.22	17.5	> 6000	402	282	41,500	5.22	1.78	155	383	15.9	1	3.69	242	106	84.9	0.0005	0.007
HACDS	HAC-06	2014 08 26		8.25		17.5	57.7					0.88		384	16.3	-	3.7	247	111	84.7		0.0084
	HASAM DOURS SETTLAND	2014 08 28	162		8.19		REL	396	225	46.9	5.29	0.63	160	304	19,3	1	13.7	247	1111	04 7	0.0026	0.008

ANDICIDING ALS FIRST LT500200, LT500200, LT500200, LT501501, LT501 L1511205. L1511213. L1511246. L1511774, L1511866, L1511905, L1512096, L1613376.

RPDs are not normally calculated where one or more concentrations are less than two three MDL sweets of the second state of the second state of the second sec

POLD Concentration greater than SCWQQ Drinking Water (DW) guideline. KHAOED Concentration greater their DCWOO Aquatic Life (20thy) (AVI) guidalities.

POLO Conveniration greater than or equal to Consolion Orinking Water Quality (OH) guideline.

W/1717/2014 00 11

As terms delitred within the body of SNC-Lavabr's report (available upon request),

v. Denotes concentration less than indicated detaytion limit or SPC taxs than indicated valve.

Denotes enalysis not conducted. N's Denotes no applicable standard.

^{*} Laborskay dakeclen lami sud of range.

* Birtish Celumbia Approved Water Quality Quidelines 2008 Edition, updavled 2014,

* A Commission of Wonding Widel Quality Quidelines for British Columbia, updavled August 2008

* Guideline verlies with pit and or Temporation on Membrish.

^{*} Hastin Common Orinhing Water Guspelman, 2012.

**Guspelman of themse valve, and 30 day heads.

**Guspelman or these appeals

**Colidation are respective to develop appeals

**Sereate, valve's applied to develop from optimize fish species (emperature rungs, in this case, a reference to a inflament is made above the background rungs (Atomice 2014) is <0.020/10 pupper Hasedina Chees;

**Callutation blood on an indictional sample hassa, not average reset back.

**Based on a change from benkground at any one Pectoreon rungs (Bronce, 2014) 0,346.38 RTU and <3.10 mg/L TGS.

TABLE 4a: Summary of Analytical Results for Mount Policy, Hazeltine Creek - Surface Water DRAFT

							e							Dixe	colves Mats	als	r												
Sample Location	Sample 9D	Bample Data (yyyyy mm dd)	Cirrolved Alaminum (pg/L)	Dissolved Calcium (mg/L)	Dissolved fron (µg/L)	Dissolved Magnesium (mg/L)	Dissolved Manganese (pg/L)	Dissolved Potassium (mg/L)	Olesofved Sodium (mg/L)	Antimony (pg/L)			Beryfitum [µg/L]			Chromium (ug/L)					Molyhdanunt (µg/L)		Selentum (pg/L)						Zinc (ug/l
Standards					Marriago - TTTO																y	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	····	****			-		
			100.0										-							7									
DWQG Aquelle I	Ife (AW)		100"	rve	350	IVA	n/a	rva	IN/B	1968	n/a	nAi	nia	ria	IV#	1VM	18,0	14,9	170	rva	nia	19/46	IVe	rva	rye	16.9	rva.	n/a	rv/a
				-										1							1								
activon animiral	ite (30day) (AW) AM		504	rules	nia	rule	1978	rvie	rule	rs/m	nás	rota	n/m	17/4	zela	rya	nis	nha	nle	n/a	n/a	nifa	THAT	nAu	nie	nie	n/a	rida	ro/s
OCH GO PRODUCT	THE CHANGE ALL PARKET			100		100		100	-		1.00	1		149	1	12.0	100	100		100	100	1	1110	7.35	1.00			100	1
OCWOG O minng	Weter (DW) total		200	elle	ry's	n/e	D/A	n/a	run	IV's	n/a	rich.	n/e	n/a	THE .	rve	nte	rn*es	nie	riva.	rsim	ra/se	rva	nia	nie	n/a	N/R	est)s	n/s
	Water Quelty (DW)*		n/a	ruta	TV#	rs/e	TVN	nru	Pulm .	n/a	nja	IVA	TUA	rva .	TYR.	(VB	D/W	n/a	n/u	rva	n/a	rs/a	rva	n/a	rvin	rs/a	TVN.	rs/a	rv's
HAD-1	HAD-1	2014 08 10	14.5	31.6	< 30	4.85	5.48	0.458	4.4	< 0.1	0.61	19.9	< 0.1	19	< 0.01	< 0.5	< 0.1	3.4	< 0.05	< 0.5	2.84	< 0.5	0.56	< 0.01	< 0.01	< 10	0.11	1.1	< 3
	HAD-1	2014 08 10	13.5	32.3	< 30	4,81	4,56	0.444	4.52	<01	0.6	11	< 0.1	18	< 0.01	< 0.5	< 0.1	3.19	< 0.05	< 0.5	2.77	< 0.5	0.55	< 0.01	< 0.01	< 10	0.099	1.2	<3
	HAD-1	2014 08 11	10.4	32.5	< 30	4.97	2.44	0.437	4.25	< 0.1	0.53	8.45	< 0.1	21	< 0.01	< 0.5	< 0.1	2.49	< 0.05	<0.5	2.68	< 0.6	0.58	<0.01	< 0.01	< 10	0.106	1.1	43
	HAD-1	2014 08 12	9,5	32	< 30	4.85	1.4	0.356	4.14	< 0.1	0.53	7.48	< 0,1	22	< 0,01	< 0.6	40,1	2.15	×0.05	< 0.5	262	< 0.5	0.59	< 0.01	< 0.01	< 10	0.107	1,1	63
	HACL1	2014 08 13	10	31,2	< 30	4,73	0.282	0.397	4.43	< 0.1	0.58	7.07	< 0.1	20	< 0.01	< 0.6	< 0.1	2.41	< 0.05	< 0.5	2.41	< 0.5	0.53	< 0.01	< 0.01	× 10	0.096	1.2	< 3
	HAD-1	2014 08 14	8.9	31,9	< 30	4,67	0.224	0.388	4.48	< 0.1	0.6	7.51	< 0.1	22	<0.01	< 0.5	< 0.1	2.19	< 0.05	€0.6	2.63	< 0.5	0.57	< 0.01	< 0.01	< 10	0.113	1.1	€3
	HAD-1	2014 08 15	10.1	31.7	< 30	4.86	3.31	0.434	4.59	< 0.1	0.61	7.72	< 0.1	19	<0.01	< 0.5	< 0.1	2.51	< 0.05	< 0.5	2.51	< 0.5	0.58	< 0.01	< 0.01	< 10	0.118	1.1	×3
	HAD-1	2014 08 16	11.1	32,4	< 30	4.9	7.12	0.463	4.43	< 0.1	0.62	8,52	< 0,1	18	< 0.01	< 0.5	< 0,1	2,77	€0.05	<0,5	2,59	< 0,5	0,59	< 0.01	< 0.01	< 10	0.101	1.1	< 3
	HAD-1X	2014 08 16	10.9	32.6	< 30	4,92	7.97	0.477	4.47	< 0.1	0.6	8.45	< 0.1	18	< 0.01	< 0.5	< 0.1	2,67	< 0.05	<0.5	2.52	< 0.5	0.57	< 0.01	< 0.01	< 10	0.102	1.1	< 3
	THE CAICC	RPD STEEDING		41.4	CONTACTOR	OMORS THE			WHAT STIERE	建制和推翻	間原理	1000	非常性的	I Blacker	SECRETARY.	E LEHISTERI LA PLA	RUGH		THE RE	HEAD	Mercal Angles	ETIMANI	BURNELLI	CHA BOR	THE REAL PROPERTY.	LE CALL	描版注述	I HARE WAS	Havera
	HAD-1	2014 CB 17	10.4	31.5	< 30	4.7	0.57B	0.467	4.56	< 0.1	0.57	8.05	< 0.1	21	< 0.01	< 0.5	≤ 0.1	2.65	< 0.05	< 0.5	2.66	< 0.5	0.54	< 0.01	< 0.01	× 10	0,106	1,3	< 3
	HAD-1	2014 08 16	to	32.2	< 30	4.78	4.26	0.463	4.43	< 0.1	0.57	6,29	< 0.1	20	< 0.01	< 0.5	< 0.1	2.41	€ 0.05	< 0.5	2.62	< 0.5	0.52	~ U.Q1	< 0.01	< 10	0.108	1,1	< 3
	HAD-1	2014 CB 19	10.8	31.5	< 30	4.71	7.21	0.465	4.44	< 0.1	0.61	8.15	40.1	20	<0.01	< 0.5	< 0.1	2.44	< 0.05	<05	26	< 0.5	0.57	< 0.01	× 0.01	< 10	01	1.2	< 3
	HAQ-1	2014 GB 20	15,1	32.7	< 30	4,65	4.9	0,478	4.52	< 0.1	0.61	9,04	< 0.1	19	< 0.01	< 0.5	< 0.1	3.31	< 0.05	< 0.5	2.62	< 0.5	0.58	< 0.01	< 0.01	< 10	0.105	1,1	< 3
	HAD-1	2014 08 21	13.5	32.3	< 30	4.9	0,453	D.467	4,57	< 0.1	0.59	8.23	<0.1	20	< 0.01	< 0.5	× 0.1	2.99	< 0.05	< 0.5	2.81	< 0.5	0.56	< 0.01	× 0.01	× 10	0.103	1	<3
	HAD-1	2014 08 22	10.7	33.1	< 30	4,91	3.02	5.48	4.66	< 0.1	0.63	8,69	< 0.1	30	4 0.01	< 0.5	< 0.1	2.92	< 0.05		2.66	< 0.5	0.57	< 0.01	< 0.01	< 10	0.104	1.1	<3
	HAD-1	2014 08 24	15,1	33.5	< 30	4.92	3,04	0.532	4.69	< 0.1	C 67	9.76	< 0.1	18	< 0.01	< 0.5	< 0.1	3.71	< 0.05		2,79	< 0.5	0.56	< 0.01	< 0.01	< 10	0.107	1,1	€3
	HAD-1	2014 08 26	31.5	34.4	< 30	4.98	4.05	0.675	5	< 0.1	0.63	9.06	< 0.1	19	0.014	< 0.5	< 0.1	3.59	0.078	< 0.8	4.53	< 0.5	0.63	< 0.01	< 0.01	× 10	0.117	1.1	56.5
	HAD-1	2014 08 26	10,9	34.7	< 30	5.07	2.33	0.495	4,56	< 0.1	0.65	4.74	< 0.1	21	< 0.01	< 0.5	< 0.1	2.42	< 0.06		2,98	< 0.5	0.60	< 0.01	< D.Q1	< 10	0.116	1,1	<3
	MAD-1	2014 08 30	15.1	32.9	< 30	4.96	4.24	0.61	6.23	< 0.1	0.73	10.3	< 0.1	19	0.015	< 0.5	< 0.1	4.25	< 0.06		3.61	4 0.5	0.65	× 0.01	< 0.01	× 10	0.132	1.1	1 <3
	HAD-1	2014 08 31	10,5	33.4	4 30	4.97	1.07	0.551	4.83	< 0,1	0.56	9,34	× 9.1	20	< 0.01	< 0.5	< 0.1	2.82	€ 0.05	< 0.5	3.52	< 0.5	0.71	< 0.01	< 0.01	< 10	0,110	1.1	4.3
	HAD-1	2014 09 01	10	34	< 30	5,02	3.07	0.56	4.66	< 0.1	0.65	9.35	KD.1	20	5 0.01	< 0.5	<0.1	3.01	< 0.05		3.39	< 0.5	0.69	< 0.01	< 0.01	< 10	0.119	1.1	<3
	HAD-1	2014 09 02	11.3	34	< 30	5.02	2.68	0.543	5.02	< 0.1	0.68	9.06	< 0.1	19	€ 0.01	< 0.5	<0.1	2 89	< 0.05	< 0.5	3.41	<0.5	0.77	< 0.01	< 0.01	< 10	0.126	1.1	< 3
	HAD-2	2014 OB 30	12.4	33.4	< 30	4,95	3,96	0.593	5,2	<0.1	0.69	10,1	< 0.1	19	< 0.01	< 0.5	<0.1	3.85	40.05		3.53	<0.5	0.63	< 0.01	< 0.01	4 10	0,121	1.1	< 3
HAD-2	HAD-2	2014 08 31	10.9	33.5	< 30	5.02	2.71	0.553	4.9	< 0.1	0.67	9.4	×0.1	20	< 0.01	< 0.5	< 0.1	2.93	< 0.06	< 0.5	3.5	< 0.5	0.7	< 0.01	< 0.01	× 10	0.117	1.1	×3
nous	HAD-2	2014 09 01	11	34	< 30	5.04	3.42	0.558	4.97	< 0.1	0.68	9.45	< 0.1	20	< 0.01	< 0.5	< 0.1		< 0.05		3.42	< 0.5	0.7	< 0.01	< 0.01	<10	0.119	1.1	43
	HAD-2	2014 05 02	105	34	€ 30	4.99	3.25	0.554	4.98	<01	0.68	9.15	< 0.1	19	< 0.01	× 0.5	×01	2.93	< 0.05		3.43	< 0.5	0.76	< 0.01	< 0.01	< 10	0 118	1.1	< 3
	HAD-2	2014 09 03	11.6	34.6	< 30	4.96	2.37	0.533	4.82	< 0.1	0.65	9.49	< 0,1	20	< 0.01	< 0.5	<0.1	3.08	< 0.06		3.56	< 0.5	0.7	< 0.01	< 0.01	×10	0.133	1.1	<3
HAC01	HACC1	2014 08 24	116	50	< 30	8.78	52.7	2.00	9.63	<0.5	1.72	35.2	< 0.5	< 50	< 0.05	< 0.5	< 0.5		< 0.25		12.3	< 2.5	3.44	< 0.05	< 0.05	< 10	0.986	< 5	45
10.001	HACO1-24HRS	2014 06 24	10.3	49.2	< 30	8.83	53.9	2.16	9.82	0.27	1,93	37.9	<0.1	29	0.013	< 0.5	0.12	17.8	< 0.05		12.2	0.74	3.77	< 0.01	< 0.01	× 10	0.954	3.2	< 3
	HACQ1	2014 08 25	9.6	46	€ 30	8.45	51.6	1.78	8 23	0.23	1.65	38.6	<02	24	< 0.02	₹ 0.5	<0.2	15.8	< D.1	<1	10.1	41	3.36	< 0.02	< 0.02	< 10	0.66	25	×3
	HACDI	2014 06 26	12.1	46.4	< 30	8.44	52.8	1.7	7.95	< 0.5	1.67	38.4	<0.5			< 0.5	< 0.5			< 2.5	10.4	< 7.5	3.43	< 0.05		< 10	0.746	< 5	< 5
	HAG01	2014 08 27	27	53	< 30	8.26	48.2	4.2	18,5	<2	2.5	44.6	× 2	< 200		< 2	42		41	C 10	35.9	< 10	3	< 0.2	< 0.2	< 10	1.51	< 20	< 20
	(ACD) - DOMES SEPTIME	2014 08 26	13.2	47.1	< 30	8.55	51.9	1.56	7.62	0.25	1.69	39,8	<01	26	0.01	€0.5	0.11	15.5	< 0.05	1.13	10,3	0.62	3.6	× 0.01	< D.Q1	< 10	0.727	2.8	6.3
	HAC1	2014 06 26	44	53.2	× 30	8.07	45,8	4.6	16	s 2	2.5	37.6	< 2	< 200		< 2	*2	15,3	*1	< 10	38,5	× 10	3	< 0.2	< B.2	< 10	1.52	< 20	< 20
	IMCS 201190 SETTLING	2014 06 28	19.9	54.1	< 30	8.03	60.2	5.32	20.4	0.62	2.9	423	<02	42	< 0.02	< 0.5	<02		0.18	2.5	41.5	1 41	3.55	< 0.02		< 10	1.65	4.3	< 3
	HACO1	2014 06 20	BAR STAN	61,1	< 60	8.74	62.9	5.7	79.1	<5	< 5	42.9	< 5	< 500		< 5	< 5	19	<25		68.3	< 25	<5	< 0,5	< 0.5	< 30	2,18	< 50	< 50
	ושנטי באות ברוונואם	2014 08 29	26	61.5	< 60	8.81	55,6	6	30.9	41	3.1	43.4	<1	< 100		K1	1	14.5	<05		69.4	×5	3.7	1 × 0.1	< 0.1	< 20	2.27	s 10	< 10
	HAC-1	2014 06 31	27	51.8	< 150	8.35	37	4.2	16.8	<2	2.4	46.9	<2	< 200		*2	42	12.0	<1	< 10	33.6	< 10	2.5	< 0.2	< 0.2	< 50	1.08	< 20	< 20
	HAC-1	2014 09 03	22	43	< 30	7.25	34,1	1.48	20.3	1.4	3.2	39.8	<1	< 100		41	6.3	12.8	< 0.5	CONTRACTOR OF THE PERSON NAMED IN	21.9	< 5	3.1	0.1	4 0.1	< 10	0.84	1 <10	< 10
HACUS	HAC-05	2014 09 29	100 00	53.1	< 30	7.14	43.4	44	17.8	*2	2.7	35.7	42	< 200		42	42		<1		41.2	< 10	3.7	< 0.2	< 0.2	≤ 10	0.92	< 20	₹ 20
MACUS	P	2014 06 28	22	55,6	< 30	7.44	58.6	4.92	19	0.85	2,96	39.3	< 0.2	48	0.035	< 0.5	0.21		×0,1		49.7	5.1	4.41	< 0.02		₹10	1.3	3.9	< 3
MACOR	HAC-06	2014 09 29	1.650	52.3	1.059	8.35	25.1	5.9	20.8	×2	3,5	63	42	< 200		12	<2	85.2	1.1	< 10	38,6	< 10	3,4	<02	≥0.2	135	1.7	€ 20	< 20
HACOS	CONTRACTOR OF THE PARTY	2014 06 26	19.6	52.9	< 30	7.38	86,9	5.55	20.9	0.95	2.85	40	< 0.5	< 50		4.0.5	< 0.5		< 0.75		45.5	€25		< 0.05			2.08	< 5	< 5
	*** C-06- 241006 511 (LWG)	2014 00 70	19.0	25.9	1 430	7.50	20,5	0.50	ED 2	V. PO	1 5.90	, 99	- 4,3	1 4 90	- 0.00	1 10 100 100	1.00.0	31.1	. 0,40	34	70.0	-20	2/04	1-000	- 0.00	- 10	230		

Associated ALS flow 1,1500/203, 1,1500/203, 1,1500/203, 1,1500/204

All terms defined within the body of SNC-Lavelin's report (avelable upon request),

« Describe conceptration less than instruted detection limit or RPD less than indicated within.

. Darroles anathals not conducted.

nia Denotes no applicable standard.

FOPDs are not normally salculated where one or more concentrations are less than the times MOL.

Concentration greater than BCWOG Aquatic Life (AW) guideline

Concentration greater than BCWGG Drinking Water (DW) guideline. SEASTED Contentration greater trun SCHADG Aquatic Life (States): (AW) guideline

EDLO Concentration greater than or equal to Consolut Defining Weter Quality (DW) guideline.

Libboratory detection hard cut of range.

Battini Celements Approved Wyster Quality Quide lines 2005 Estatur, updated 2014.

A Conquestion of Welding Wyster Cutality Quidelines for British Golumbies, sprided August 2006.

Duideline varieties willing JPJ, and or Temperature or Heldmans.

* Health Compate Drinning Water Castishers, 2012.

Successory streets of change value mot 30 day much.

Galdaine for Warete applied

Stream criteria appaias to deviation from optimizm filin appaigas, to expense transport in manual criteria i

SNC-LAVAUN PIC.

Page 2 of 0

421717/2014 CB 15

TABLE 4a: Summary of Analytical Results for Mount Polley, Hazeltine Creek - Surface Water DRAFT

					·	,		-	-		7		1			,	Tota	ni idetulo										-			
Sanaple Location	\$ample ID	Sample Date Dyygy mm dilj	Aluminum (µg/L)				Beryfflum (pg/L)			Cadmium http://	Calcium	Chromium (µg/L)	Cobalt (Hg/L)		(pg/L)	Local (jeg/L)	Lithiam. bug/Lj		Manganese (µg/L)	Mercury (ug/L)	Molybdenum hig/Li	Pricial (ug/L)	Potestum (agif.)	Selentum (tyg/L)	tiliver [ug/L]	Sodium (up/L)			Uranium jugit.)	Vanedium (up/L)	Zinc (ug/l.)
Stundards					T	T	1			0.0325-	7	T	-		T	70.5-						T	373,000-	1	T						
CWGG Agus	riis Life (AVV) ^{6.8}		n/n	20	5	5,000	Trin .	n/a_	1,200	0.0575	pile	1 (Cr(+6))	119	11,2-19.94	1,000	184,6"	870	ntu	1619-2634	Mothyl	2,000	25-150 ^d	432,000	2	0.1-3.0	n/a	6.3	2,000	300		38.9-108
CWQG Agai	rtic Ute (30day) (AW) ^b	sh .	H/a	n/a	n/s	1,000	5.3	nhi	rate	n/a	n/s	nès	4	3.9-7.6	n/a	6,4-10.5 ⁴	14	nàs	1036-1441 ^d	enalysis in progress	7,000	nia	n/s	P/a	0.05-1.5	6/a	6/6	nle	n/a	rvie	13.1-82.5
	eng Water (DW)**		nAı	14	25	n/a	4	rvis .	5,000	n/s	nin	rpla	ryče	500	n/e	50	refer	rstm	re/m	1	280	mia	n/m	10	rife:	rs/m	2	m/a	eta	0/8	5,000
anadien Drin	king Water Quality (DI		100	6	10	1.000		r/n		5	n/o	60		1,000	300	10	NA	na	50	1	0/6	nia	n/e	10	n/m	200,000	nia	n/a	50	rulp	5,000
HAD-1	HAD-1	2014 08 15	364	€ 0,1	1.07	17	< 0.1	€0.5	20	< 0.01	31,900	< 0.5	0.24	THE PLAN	247	0.162	< 0.5	5,030	28.9	< 0.08	3.01	< 5.6	559	0.68	< 0.01	4,600	< 0.01	19	0.131	2.1	< 3
	HAD-1	2014 09 10	121	< C.1	0.68	12.0	< 0.1	<0.5		< 0.01	31,700	< 0.5	< 0.1	4.80	88	0.061	< 0.5	4,960	13.1	€ 0.08	2.94	< 0.5	489	0.61	< 0.01	4.720	< 0.01	< 10	0.106	1.6	< 3
	HAD-1	2014 08 11	76.0	< 0.1	0.56	8.68		<05		< 0.01	32,300			斯氏红斑	49	< 0.05	< 0.5	4,960	9,59	< 0.05	2.93	< 0.5		0.65	4 0.01	4,100	< 0.01	< 10	0.122	1,2	< 3
	HADH	2014 08 12	36.8	< 0,1	0,54	7,25	< 0.1	<0.5		< 0.01	31,400	< 0,5	< 0.1		< 30	< 0.05	< 0.5	4.950	5,57	< 0.05	2,72	< 0,5	346	0.62	< 0.01	3,970	< 0,01	< 10	5,122	1.1	< 3
	HAD-1	2014 08 13	26.7	0.1	0.06	7.91	< 0.1	<0.5	22	< 0.01	31,450		< 0.1		4 30	< 0.05	< 0.5	4,800	4.8	< 0.08	2.51	< 0.5	420	0,57	< 0.01	4,630	< 0.01	< 10	0.103	1.2	< 3
	HAD-1	2014 08 14	30.9	< 0.1	0,58	8.08	< 0.1	<05	23	< 0.01	25,000		< 0.1	3.29	< 30	< 0.06	<0.5	4,640	6,54	< 0.05	2.70	< 0.5	418	0.58	4 0.01	4,620	< 0,01	< 10	0,115	1.3	< 3
	HAD-1	2014 08 15	44.2	< 0.1	0.64	8.34	< 0.1	< 0.5		< 0.01	31,800	< 0.5	< 0.1	3.61	< 30	< 0.05	< 0.5	4,790	8.96	< 0.05	2.6	< 0.5	439	0.6	4 O,D1	4,530	< 0.01	< 10	D.107	1.2	< 3
	HAD-1	2014 08 10	784	* 0.1	0.64	10.6	< 0.1	< 0.5	21	< 0.01	32,000	< 0.5	0.14	145 July 1	110	0,051	< 0.5	4,910	16.9	< 0.06	2,71	40.5	511	0.58	€ 0.D1	4,530	« Q,Q1	< 10	8,112	1,4	43
	HAD-1X	2014 08 18	121	€ 0,1	0,63	9,87	< 0,1	≤ 0.5	21	< 0.01	32 300	< 0.5	0,11	推进方门建	99	< 0.05	< 0.5	4,900	16.7	< 0.05	2.68	< 0.5	518	0.57	< 0.01	4.450	< 0.05	< 10	0.198	1.4	<3
	introduction of		国政、政 群	细胞组织	The Lin	100 400	EN PLANT	世纪		acontains e						idate setti a	纽山高田	High of Ball		101125					DIN ENG				的推翻	位和海里	南四四市
	HAD-1	2014 08 17	121	< 0,1	0.64	9.62	< 0.1	< 0.5	21	< 0.01	32,600			HE OF THE		< 0.05	<0.5	4,910	12,5	< 0.08	2.67	< 0.5	910	0.57	< 0.01	4,750	< 0.01	< 10	0.107	1,4	< 3
	HAD-1	2014 08 18	64.7	< 0.1	0.65	9.22	<0.1	< 0.5	22	< 0.01	32,100	< 0.5	< 0.1	4.34	59	< 0.05	< 0.5	4,800	14.2	< 0.01	2.63	< 0.5	495	0,58	4 Q.D1	4,500	< 0.01	4 13	0,107	1.3	< 3
	HAD-1	2014 08 19	52.0	< 0.1	0.65	9.03	< 0.1	< 0.5		< 0.01	32,300		< 0.1		49	< 0.05	× 0.5	4,910	10.9	< 0.05	2.78	< 0.5	462	0.6	< 0.D1	4,680	< 0.01	4 10	0.108	1.2	< 3
	HAD-1	2014 Dit 20	342	< 0.1	0.75	13.5	< 0.1	< 0.5	22	< 0.01	32,500	< 0.5	0.28	13.0	273	0,103	0.57	4,500	19.2	< 0.05	2.07	<06	556	< 0.5	< 0,01	4,710	< 0.01	19	0,118	2	< 3
	HAD-1	2014 08 21	200	< 0.1	0.72	12.3	< 0.1	< 0.5	21	< 0.01	33,600		0.21	那杯门跳	206	0.069	0.51	5.290	13.7	< 0.05	2.75	< 0.5	672	0.68	< 0.D1	4,850	< 0.01	17	0.119	1.5	< 3
	HAD-1	2014 08 22	227	< 0.1	0,72	11,9	< 0.1	<0.5	21	< 0.01	33,500		0.17		150	0.066	< 0,5	5,040	12.5	< 0.05	2.02	< 0.6	666	0,61	< 0.01	4,700	< 0.01	13	0,121	1.8	< 3
	HAD-1	2014 08 24	392	= 0.1	0.79	15.3	< 0.1	<05	21	< 0.01	34,400		0,3		285	0.107	0.6	5,260	15.0	< 0.05	3	< 0.5	652	0.6	< 0.04	4,820	< 0.01	16	0.124	2	< 3
	HAD/1	2014 08 26	62.5	× 0.1	39.0	2.05	< 0.1	<0.5		< 0.01	32,700		< 0.1		40	< 0.05	< 0.5	4,950	7,67	< 0.05	3.34	< 0.5	511	0.66		4,880	< 0.01	< 10	0.123	1.2	< 3
	HAD-1	2014 08 28	46,8	< 0.1	0.63	9	< 0.1	< 0.5		< 0.01	33,100	< 0.5	< 0,1	3,87	< 30	< 0.05	< 0.5	4.690	5.53	< 0.01	3,13	< 0.5	504	D.65	< 0.01	4,940	< 0,01	< 10	0,12	1.3	<3
	HAD-1	2014 08 30	245	< 0.1	0.74	13.3	< 0.1	< 0.5	20	< 0.01	33,500	< 0.5	0,18	11.2	171	0.068	< 0.5	5,060	14.5	€ 0.01	3,64	< 0.5	643	0.64	< 0.01	5,240	< 0.01	13	0.135	1.7	<3
	HAD-1	2014 08 31	52	e01	0.69	10.2	< 0.1	< 0.5		< 0.01	33,600	< 0.5	- 0.1		37	< 0.05	< 0.5	5.04D	7.61	< 0.01	3.78	= 05	361	0.72	< 0.01	5,130	< 0.01	< 10	0.135	1,3	< 3
	HAD-1	2014 09 01	121	< 0.1	0.73	11.5	< 0.1	< 0.5		< 0.01	34,500		0.11	建石油	67	< 0.05	< 0.5	5,190	12.4	< 0.01	3.68	<05	603	D.68	< 0.01	4,990	< 9.01	10	0.128	1,4	< 3
	HAD-1	3014 00 02	64.7	< 0.1	0,60	9,87	4 0.1	< 0.5	21	< 0.01	33,900	< 0.5	< 0.1		46	< 0.05	< 0.5	5,040	8,45	< 0.01	3.63	< 0.5	563	0,65	< 0.01	4,980	< 0.01	< 10	0,135	1,3	< 3
1100.0	HAD-2	2014 08 30	252	< 0,1	0,77	13,6	< 0,1	< 0,5	25	< 0,01	33,000		0.19	66 57.78	182	0,074	< 0.5	5,020	14,6	< 0.01	3.68	< 0.5	681	0.63	< 0.01	5,290	< 0.01	14	0.136	1.7	<3
HAD-2	14AD-2	2014 08 31	74,3	< 0.1	0.7	10,4	< 0.1	< 0.5	24	< 0.01	33,500		< 0.1		56	< 0.05	< 0.5	5,080	8.31	4001	3.76	< 0.5	587	0.74	< 0.01	5,380	< 0.01	< 10	0,136	1,3	€3
	HAD-2	2014 00 01	77.4	<01	0.73	11.4	< 0.1	<0.5	23	<0.01	34,500	< 0.5	0.11	11	105	< 0.05	× 0.5	5,210	11.2	€ 0,01	3,68	< 0.5	614	0.7	< 0.01	6.310	< 0.01	12	0.129	1,6	43
	HAO-2	2014 09 02		< 0.1	0.68	10.2	< 0.1	< 0.5	21	< 0.01	33,700	< 0.5	< 0.1	100 m	57	< 0.05	< 0.5	5,020	9.75	< 0.01	3.68	405	57B	0.02	< 0.01	6,110	< 0.01	< 10	0.131	1.3	<3
HACD1	HAD-2 HAC01	2014 09 03	103 75,200	< 0.1	0.59	786	< 0.1	< 0.5	22	< 0.01	33,900			製作では			< 0.5	4,960	8.91	< 0.01	3.77	< 0.5	555	0,68	< 0.01	4,680	< 0.01	< 10	0.137	1,4	€3
PARCUI		2014 08 24					2.4	< 2.5	54		178,000		66.4		0.00	THE VEHICLE	2d,5	55,400	2,890	0,183	13.3	構造	10,900	11点,对		12,500		# L	4,91		112.14
	HACO1-24HRS HACD1	2014 08 24	14,400 63,499	0.18		311	1.01	< 0.5	43	70	156,000				100		12.1	19,200	144	0.193	281	42.3	4,210			11,300	0.065	62	2.8	1	84.2
	HACDI	2014 08 26	73,300	0.72	BK') R'E			< 2.8	53	5.04	145,000		111			141	laker in	51,500	12,7 (60)	0.312	8.46	33	9,200	HEX. DA	0.685		H NO IS			1111-111	HE CENT
	HACD1	2014 08 27	360,000	<2	11 7 4	4.670		< 1-3	270		757 900					Heart Project	SHIPL SHIP	57,500	116 7 1 116	2.39	9.16	ati C XI	8.710			10,700				III JR	100
	A SHOP OF A STATE OF A STATE OF A STATE OF THE STATE OF T	2014 08 26	15,400	0.2	1117		1,08	< 0.5	40	10000027	134,900		2.1	91.0		HERE A R. ALCO		232,000	1176.000		49.8	(1) 35 4 11	42,100					10,800	20.6	(A)	1,490
	HACH- SHUIS SEFTLING					200						20,0	20.0			PALL OF THE		21,400	14 Z	< 0.01	1.27	57.1	3,770		0.028	9,040	0.077	50	2.64	建红色	103
	HAC1	2014 08 28	404,000	<2	17.8	20100	17.4	< 10	75	43/11/19	738,000			22,400		ROY WHITE	146.3	259,000	2877	2.15	53,4	推江地	48,600	Mary II			0.84			1,290	14.050
	ANCE TARREST TARREST	2014 06 26	5,240	0.47			1.56	<1			523,000		26.6		11.400	1.5	11	22,700	311	0.371	9.2	34,4	10,500			28,300	0.021	92	0.552	11 X 18	12.14
	HACO1	2014 06 29	917,000	< 8		1446		< 25	< 500	開展的	******					100 1045	間心器	522,000	27,600	4.08	92	2	B6,600					17,000		2 6 20	HILL OF
	HACO- INHES SEFTLING	2014 06 29	192,000	<1	150 77.41	10		< 1·3	290	開催 を7 強止 開始 末: 同社	M-O-CHIA-O-E		160			770	100	107,000	14,000	0.237	17.8	41100	34,100	1	< 0,1	72,700	0.24	477	22.5	科里/ 公理	
	HAC-1	2014 08 31	273,000	<2					270		AFFRANCI			AND DESCRIPTION OF THE PERSON NAMED IN	488,000	10 11 11 11	1 12 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2	336,000	(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.52	37	推了人出	45,700		10%上产品		110	145 () 消	27.6	进作,用	1,890
MARAE	HAG-1	2014 09 03	318,000	1.7		2.00		< -	170		557,000			250 1 4	(0.00)	解除1/36	1011	221.000	1000年	1.79	30,8	HE X	32,200		100	37.000	HEL 138	4131421	14.9	祖母(伊藤	HUBBLE PILLS
HAC05	HAC-05	2014 08 28		0.51	10.17		DEST / MIN	< 1-3	290		767,000					机热、排 指	HILL AND	208,000	\$2.57 U	2.9	61,4	Billigh	38,000		缩差的		HILF (11)		17.8	開於江陽	開催し
MACON	MAC-bi- Jestilb MFTT1 ING	2014 08 28	374,000				2,03	413	360		577,000		III.	1200		8.2	7.0	17,500	400	0.444	15,1	tg thesant	9,600		< 0.02	23,300	< 0.02	42	2.16		
HACOS	HAC-08			<2						10 C/	#868496			26,826	440,000	131 THE	134	299,000	11.700	2.5	54.6	74	90,700	野人		54,500	0.78	5,040	24,5	41.1	1-1-1-10
	HAC-No SHINE BETTENG!	2014 08 28	1.660	0 69	2.7	391	OB	<25	57	20.2	659,000	THE PROPERTY.	parvis		11292	0.47	81	18,300	超化 (八) 開	0,407	21	23	10,200	100名 東西 100	< 0.05	23,6400	4 0.06	58	1.13	CLERK BOOK	48

Appendix ALS Shar: L1500200 1, 15001604, L1501501, L1501504, L1501504, L1502400, L15001604, L1502600, L15001604, L1502600, L15001604, L1502600, L15001604, L1502600, L15001604, L1502600, L15026000, L1502600, L1502600, L1502600, L1502600, L1502600, L15026000 L1511205, L1811213, L1811248, L1611774, L1611880, L1811905, L1812898, L1813375.

All terms defined within the body of SNC-Lavatin's rapen (available upon request).

Oemples concentration less then indicated defection limit or FPD (see then indicated value.

 Denotes analysis not conducted n/a Denotat no applicable standard.

RPDs are not normally calculated where one or more concentrations are less than five tenes MDL.

Concentration greater than BCWCO Aquetic Life (AW) guideline.

BOLD Concentration greater than BCWDG Drinking Water (DAV) guideline. SHADED Concentration greater than BCWDG Aquetic Life (Mday) (AW) guideline.

BOLG Concentration greater them or equal to Consider Drinking Water Quality (CW) guideline.

Libraristry delaction LmB wut of range.
Behay Catensha Appressed Water Quality Quidelinas 2008 Edition, usdated 2014.
A Compandium of Warking Water Guisity Guidelinas for british Columbia, updated August 2006,
Quidelina series with pict and a Tanopasatora of Mayriness.

* Hoult's Cornedo Dretting Weter Guidelines, 2012.

* Quideline for Mitrale applied.

* Hough's Cannade Direking Wester Guidelines, 2012.

** Saccandany clearwise or streams: value, not 20 day mores.

**Opidation for Milester application

**Sections 1998 and application for application from optimization from opti

Calculated based an an instribusive repis basis, not everage result bests.

* Separation is change from background of any one time. Probreach range dilenness, 2014; 0.3448.89 NTU and <3-18 mg/L TSS.

PN COCCUMENTATION PROPRIES PROPRIES TO SUPERING TO THE STATE OF THE ST

SNC-LAVALIN INC.

Page 3 ef 6

Page 1133 of 1685 FNR-2014-50085

621717/2014 00 15 Comb_89_20149914 date DAGC_SQF 2014 00 11

TABLE 4b: Summary of Analytical Results for Mount Polley, Hazaltine Creek - Blanks DRAFT

					·	Phy	exed Pare	matars		,						To	al Inorgan	lie n		and the same	A TOTAL AND THE PARTY OF THE PA	gradinian management
Sample Location	Semple ID	Sample Dets (yyyy mm dd)	Herdness (mg/L)	ph (Neld) (pH)	pH (pH)	Yemperature (field) (C)	Turbidity (NTU)	Conductivity (µS/cm)	TDS (mg/L)	T95 (n·g/L)	OOC (mg/L)	Total Nitrogen (N) (mg/L)	Ammonta Nitrogen (µg/L)	Nitrala Nitrogan (agrL)	Nitrogen (µg/L)	Nitrate+Nitrite Nitragen (Pp ^(L))	Chloride (mg/L)	Fituorida (µg/L)	Sulphale (nig/L)	Total Alkalinity (as CaCO3) (mg/L)	Ortho- phosphate (mg/L)	Total Phosphorus (mg/L)
C Standards			1		-				-													
BCWGG Aquatic LIN	(AW)		rva	6.5-9.0	6.5-9.0		Change of 8	n/a	n/a	Change of 25	m/a	n/a	700-24.5004	32,800	60 (CI<2)	32,900	600	1324-1592*	rvia .	rvin	nia	rus
BCWQG Aquelic Life	(30day) (AW)*-CN		n/a	réa	rv's	*/-1 Degree change from unibiant ⁸	Charge of 2	FUE	nis	Change of	+20% of modian background	nis	135-17,700	3,000	20 (CI<2)	3,000	150	n/s	128-309	n/a	n/a	n/a
BCWQG Drinking W			n/m	6.5-8.6	6.5-6.5	n/al	Change of 1	ruin.	n/a	rv'e	rute	rvie	n/a	10,000	1,000	10,000	250	1,000	500	n/a	0/4	0.01
Canadian Ortnking V	Veter Quality (DWV)		nfa	6.5-8.5	6.5-8.5	rv'a	rv/ar	n/s	500	n/a	nta	n/e	nta	10,000	1,000	rya	250	1,500	500	nta	n/a	nve
HAD-FIELD BLANK	FIELD BLANK	2014 08 22	4.			-	-	-						1.0			1 -					
	HACO1-FB	2014 06 27	< 0.5	- 2	6.09	*	< 0.1	42	< 10	< 3		< 0.05	×5	× 6	<1		< 0.5	4 20	₹0.5	€1	< 0.001	4 0.002°
AD-TRAVEL BLANK	TRIP BLANK	2014 08 27	< 0.5		6.65		< 0.1	<2	< 10	<3		< 0.05	< 5	< 5	<1		< 0.5	< 20	< 0.6	41	< 0.001	× 0.002*

All terms defined within the body of SNCL availing report (available upon request).

Denotes concentration jass then helicated detection finit or RMC less than indicated value.

Denotes analysis not conducted.

n's Dengtius no applitable stengant.

RPDs sie not natimally calculated where one or more cancerdistillors are less than the times MDL.

SARGO | Concentration greater than SCPGG Aquatic Life (AVr) guideline.

GOLD Concentrates greater than BOWOG Drinking Weter (DA) guideline.

BHADED Concentration greater than BCWQG Aquetic Life (50slay) AW) guideline.

EINE Concentration greater than or equal to Consultan Drawling Water Queltry (DW) guideline,
Concentration greater than SeQL.

* Lethorstory disloction that but of engine.

* Lethorstory disloction that but of engine.

* Butlant Columbia Approved Weter Quality Guidelines 2006 Edition, updated 2014.

* A Compandition of Working Weter Quality Guidelines 200 Bittain Celebration, updated 2000,

* Qualishins waters with pill, and or Temperature on Heardheas.

Secondary charge or objuric value, not \$5 day mean.
Obligation and applicable for all attustion.

* Houlth Curedo Driving Winter Guaticilium, 2012; Guatalina for Nitrote applied. * Steam criteria applies to devision from aptimien bits upocosa let essive range, in this sense, a tahrishing to emblent to made sities the biodignound range (littlewer, 2014) a -0-30 F°C (upper Historian Croeks, basis. ** based on a change from background all any one time. Probreach range (Minnen, 2014) 9,74-4.00 RYU and 43-10 mpt, 75.5.

Calculated based on an individual sample basis, not average result basis.

TABLE 4b: Summary of Analytical Results for Mount Polley, Hazeltine Creek - Blanks DRAFT

				_										Chan	olved Neta	0	r							,					-
Sample Location	Sample ID	Semple Date (yyyy mm dd)	Distaired Aluminum (pg/L)	Dissolved Calchern (mg/L)	Dissolved Iron	Dissolved Magnesium (mg/L)	Contract of the Contract of th			Antimony (µg/L)	Arsenic (µg/L)	Barlum (pg/L)	Beryllkum (pg/L)	Boron (pg/L)						Lithium (pg/L)	Molybdemum (µg/L)	Nickel (BQ/L)				Tilmium (pg/L)			
C Stendards				1												·								-					7
BCWOG Aquetic U	fe (AW) ^{E,C}		100 ^d	rva	350	n/a	ryle	n/e	rstu	ru/a	n/u	n/o	rva	rVa	n/a	27/H	rva	n/a	nia	IN	rua	na	148	nva	rije	n/a	ria	nla	n/a
ECWOG Aquatic LI	fe (30day) (AW) th		50°	rVa	nie	n/a	n/a	nlu	กโซ	rula	tsfa	n/a	nie	n/a	n/a	nyha	n/a	n/a	n/m	née	n/a	n/a	nha	nine	nie	n/a	rs/a	n/a	rs4a
BCWOG Drinking V	Vater (DW)**		200	rvis.	n/e	(VR	min	rián.	D\$0	nia	nie	na	nie	n/a	nie	TVo	nie	nvo	nie	מיח	rus	min	rie	n/a	n/e	n/a	ryla	rita	P1/48
Canadian Drinking	Water Quality (DW)		rva	n/a	n/e	10/16	nle.	n/a	n/a	ri/a	rule	n/a	n/a	n/a (n/a	Trife	nia	n/a	n/a	n/w	rve	nu	11/8	rva	r/s	rva	rela	· YVO	film.
HAD-FIELD BLANK	FIELD BLANK	2014 05 22				-		-			- 1				-					-		-							
	HACO1-FB	2014 08 27		-					×		* 1									-									
AD-TRAVEL BLANK	C TRIP BI ANK	2014 08 27		-			-	-	- G - I		1		-	-			-			-			_		-				-

At terms defined within the body of SNC-Levelin's report (examines upon reques).

4 Demples concentration less than indicated defection limit or RPD less than indicated veloce.

. Donotes energels not conducted.

n/a Denotes no applicable standers.

RPOs are not normally calculated where are or more conscritations are less than fee times MOL.
 Concentration greater than BOWOG Aquabic Life (AW) guideline.

BOLD Concentration greater than BCWGG Orinking Water (DW) guideline

Concentration greater than BOWOG Aquatic Life (30day) (AW) publishes.

BOLD Concentration greater than or equal to Consider Delinting Water Quality (DIV) guitables.

Concentration greater than ScDL

Laterstony detaction lies but of august Man Stull.

Laterstony detaction lies but of august (lies but of august 1)

Brisnan Colescibus Approved Waser Cliquity (lies august 1)

A Conspendium of Working Water Guedey Guidelines (2018 faither Columbia, updated August 2005.

Guideline yeaten with pri un of "Temperature or Hardenines."

* fearith Geneda Difehting Vireiar Cubesines, 2912.

**Gorchiden's fe Nicrose against.

RZ | 7 k 7/Z D1 4 QH QE n/rmg_pikt_pip1nD14 qir piyab 2 KGP 20+1 Diriti

TABLE 4b: Summary of Analytical Results for Mount Polley, Hazeltine Creek - Blanks DRAFT

					,								,	,			Tot	ol Metals		_			-	_							
Sample Location	Sample ID	Sample Date (1999y mm dis)	Atuminum (µg/L)	Antimony (pg/L)	Arsenic (pg/L)	Barkum (ug/L)	Berylllum (ug/L)	Bismut)	Boron (µg/L)	Cadmium (pg/L)	Calclum (ug/L)	Chromlum (jug/L)	Coball (pg/L)	Copper	tron (µg/L)	Lead	Lithium (pg/L)	Magnesham (µg/L)	Manganesa (PS/L)	Mercury (ug/L)	Molybelanum (sqrfL)	Nickal (pg/L)	Potassium (µg/L)	Selenium (µg/L)	Silver		Theillen (pg/L)	1100000	Urankum (yg/L)	Vanadium (pg/L)	Zine (µg/L)
Standards			1												-					·	,	9200		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	·				*****	
BCWQG Aquatic Life (A	AW) ^{b,r}		nia	20	5	5,000	nvis	nia	1.200	0.0325-	IVE	1 (Cr(+6))	110	11.2-19.9	1.000	79.5- 164.0*	670	n/a	1519-2634	Methy6	2,000	25-150°	373,000- 432,000	2	0.1-7.0	nía	0.3	2,000	300	6	38.9-108
BCWOG Aquetic Life (3	30dey) (AW)		nVa	n/a	n/a	1,000	6.3	rva	n/a	ryle	nia	rVs	4	3.9-7.6	nis	6.4-10.5	14'	rva.	1036-14419	mercuty analysis to progress	1,000	rva	ru'a	rva	0.05-1.5	nia	n/m	nie	rvio	n/s	13.1-82.5
BCW00 Drinking Wele	or tDWI ^{NE}		rvia	14	25	r/m	4	rvin	5,000	r/s	n/a	19/0	Na	500	arin.	50	niu	r,ta	n/a	1	250	n/a	rvin	10	(VIII	nie	2	n/e	n/a	rvin	5,000
Canadian Drinking Water			100	6	10	1.000	N6	TV4	5,000	5	rus	50	N/s	1,000	300	10	rylu	r/a	50	1	r/a	r/s	ruin.	10	N/a	200,000	n/a	rve	20	n/a	5,000
	FIELD BLANK	2014 08 22			4			1												< 0.05		-				14.					-
and the same of the same	HACO1-FB	2014 08 27	< 3	< 0.1	€ 0.1	< 0.05	< 0.1	< 0.5	< 10	< 0.01*	< 50	< 0.5	< 0.1	< 0.5	< 30	< 0.06	< 0.5	< 100	< 0.05	< 0.01	< 0.05	< 0.5	< 50	< 0.5	< 0.01	< 50	< 0.01	< 10	< 0.01	<1	e3
AC-TRAVEL BLANK		2014 08 27	< 3	< 0.1	< 0.5	< 0.05	< 0.1	40.5	<10	< 0.01*	< 50	< 0.5	<0.1	< 0.5	< 30	< 0.05	< 0.5	< 100	< 0.05	< 0.01	× 0.05	405	< 50	<0.5	< 0.01	< 50	< 0.01	< 10	< 0.01	×1.	<3

A) terms defined within the body of SNC-Lavaler's report (available upon request).
 Openius concentration lives their indicated detection their or RPPO tree their indicated value,
 Denotes entityle not conducted.

n/e Denotes no applicable standard.

APPDs are not notinelly balculated where one or more concentrations are less than the times MOL.

Concentration greater than BCWOG Aquable Life (AW) guideline.

8010 Concentration greater than BCWGG Drinking Water (CW) guideline.

Concertration greater than BCWDD Aqualia Life (Doday) (AW) guidebne.

Concentration greater than or equal to Canadian Orbiting Water Quality (DW) guideline.

Concentration greater than SeOL

Laboratory disention into our of concentration greater than SeCI.

Laboratory disention into our of college.

Billish Columbia Approved Weter Gualey, Guestieve 2008 Edition, updated 2014.

A Compensation of Working Water Gualey Guidetree for British Columbia, updated August 2006,

Guidedina series attip Ert. and or Temperatures or Hardmens.

* Health Canade Dehaling Water Guidelanes, 2012.

Guidelane for Debade application.

Guidelane for Debade application.

Guidelane for Debade application.

Guidelane for Debade application from eighthrum fish specialists from eighthrum fish specialists from eighthrum fish specialists from eighthrum fish specialists.

Guidelane for an opplication from eighthrum fish specialists fro

MITTITIZETA CIE DE PURA DE CONTROL DE DE CANDO AUPTREM DE DE

TABLE 2a: Summary of Analytical Results for Mount Polley, Quesnel Lake - Sediment

				Grain S	ize	
Sample Location	Sample ID	Sample Date (yyyy mm dd)	Gravel	Sand (%)	Silt	Clay
QUL-14	QUL-14-S	2014 08 07	3.19	50.2	39.3	7.27
QUL-15	QUL-15-S	2014 08 07	1.43	68.7	28.4	1.52
QUL-16	QUL-16-S	2014 08 07	< 0.1	68.7	30.1	1.23
QUL-23	QUL23	2014 08 10	< 0.1	52.7	44.5	2.85
QUL-24	QUL24	2014 08 10	0.61	52	37.8	9.64
QUL-25	QUL25	2014 08 10	2.09	52.7	38.2	7.05
QUL-27	QUL27-140813	2014 08 13	< 0.1	66.5	31.6	1.89
	QUL27	2014 08 13	< 0.1	66.5	31.6	1.89
QUL-30-01	QUL30-01	2014 08 12	7.12	57.9	33.8	1.13
QUL-30-02	QUL30-02	2014 08 12	0.64	81.5	17.2	0.66
QUL-30-03	QUL30-03	2014 08 12	2.86	89.3	7.32	0.49
QUL-43	QUL43-140813	2014 08 13	5.54	45.9	39.3	9.31
	QUL43	2014 08 13	5.54	45.9	39.3	9.31
QUL-44-01	QUL44-01	2014 08 12	< 0.1	26	70	3.92
QUL-44-02	QUL44-02	2014 08 12	8.81	74.9	15.1	1.25
QUL-44-03	QUL44-03	2014 08 12	8.23	56.9	32.3	2.56
QUL-45-01	QUL-45-01	2014 08 13	< 0.1	50.2	41.7	8.07
QUL-45-02	QUL-45-02	2014 08 13	5.34	45.7	38.2	10.8

All terms defined within the body of SNC-Lavalin's report (available upon request).

n/a Denotes no applicable standard.

RPD Denotes relative percent difference.

SNC-LAVALIN INC.

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

Denotes analysis not conducted.

TABLE 2b: Summary of Analytical Results for Mount Polley, Quesnel Lake - Sediment

				1	1													Total	d Motals											-			
Sample Location	Sample ID	Sample Date	pH	Atuminum	Antimony	Arsenic	Barium	Beryfillum	Cadmism	Calcium	Chromium	Cobah	Copper	- ston	Lead	Lithium	Magneslum	Manganese	Mercury	Molybdenum	Mickel	Phosphorus	Potassium	Selenium	Silver	Sodium	Stronbum	T.	Thellium	Thankum	Urankum	Variadium	Zine
And the state of t	ID ID	(yyyy nun dd)	(pH)	(h8/d)	(P9'9)	(hith 0)	(6-6-6)	(P(Q+Q)	(P0/0)	(P(B,B)	(pg/g)	(HB/B)	(µg/g)	(h0 ₁ 0)	(h8/8)	(8 ₁ 84)	(pg/g)	(µg/g)	i (pg/g)	(P484)	(µg/g)	(PEP)	(P0-97)	(felliod)	(balad)	(pg/gi)	{µg/g}	(h/B/G)	(hgrg)	(haia)	ibandi	(Brand)	{µg/g}
C Standards			- 1	1	n/a	11		1 -4-	2.2	- 4-	56	1 - 1-	470	24 2004	57			460*	0.0		16ª	7		2ª	0.5*	1		-	1 -				1
	Sediment (FW Sedimen		n/a	8/8			n/e 205	n/a	****	n/a	******	n/a	120 721		5.99	n/a	n/e	755	0.3	fu'is		nia	1.070			n/m	n/a	2.05	n/a	_	n/a	n/a	200
QUL-14	QUL-14-S-1	2014 08 07	8.82	19,000	-	AND DESCRIPTION OF THE PERSON NAMED IN		0.74	-	32,200	16.2	21.5		71,200		20	11,700		0.0793	4.31	12.5	1,840	1,670	1.16	0.375	1,050	192	-		2,040	1.35	268	70.3
	QUL-14-S-1<2MM	2014 08 07		15,800	100000		160	0.6	NOTION BEING	25,500	11.7	16.4	863	49,700	4.74	15.4	9,450	840	0.082	4.41	9.25	1,270	1,340	0.98	0.37	980	158	<2	< 0.05	DESCRIPTION OF THE PARTY OF	1.02	192	59.2
	QUL-14-5-2	2014 08 07	8,5	18,400			199	0.71		31,200	15.2	20.6	711	69,600	5.69	18.8	11,400	740	0.0761	3,95	11.8	1,770	1,620		0.333	1,030	182	1.88			1.20	260	67.8
	QUL-14-S-2<2MM	2014 08 07	*	14,900			153	0.57	0.144		12	18.1	820	49,100	5.05	15	8,980	591	0,109	4.07	9,36	1,250	1,240	0.95	0,35	880	142	< 2	< 0.05		0.949	181	55,3
	QUL-14-S-3	2014 08 07	8.78	ALTERNATION OF THE PARTY OF THE	-	The same of the same	205	0.74		31,600	15.6	21.5	736	71,100	5.6	19,9	11,900	750	9.0764	4.07	12.4	1,640	200	1.17	0.329	1,040	184	1.88	< 0.05		1,24	266	70,6
contract to a second to	QUL-14-S-3<2MM	2014 08 07		14,800			154	0.58	THE RESERVE	24,400	11.5	16.2	828	47,700	4.78	14.9	9,340	669	0.0878	4.39	11.1	1,210	1.260	1	0.37	890	147	<2	< 0.05		869.0	178	58
QUL-15	QUL-15-S-1	2014 08 07	6.62	11,800	A CHARLES		125	0.51		23,800	21.7	18.1	526	89,600	5.06	12.6	7,200	528	0.0633	2.9	12.8	1,840	1,020	0.9	0.266	620	118	1.03	< 0.05	Add to the owner of	0.892	330	54.3
	QUL-15-8-1<2MM	2014 08 07	-	10,800			120	0.44		18,800	13.6	13.2	520	48,700	3,94	11,2	6,500	487	0.0771	3.27	9.66	1,190	980	0.76	0.25	700	112	<2	< 0.05		0.673	183	44.1
	QUL-15-S-2	2014 08 07	8.75	A BANY STREET, SALES	Andrewson Property	an in-planting silve,	118	0,49	WWW. AND LABOUR	24,600	21,3	18,8	533	94,600	4.87	11,5	6,690	551	0.0636	3,11	12.2	1,950	930	0.96	0.26	600	117	1.27	< 0.05		0.979	353	54.4
	QUL-15-S-2<2MM	2014 05 07		11,500		the state of the latest	121	0,49		20,500	13.6	13.4	841	53,300	4.07	11	6,470	485	0.0719	3.25	8.97	1,240	960	0.83	0.28	740	119		< 0.05		0.789	202	44.9
	QUL-15-5-3	2014 08 07	8.74	11,600		13.5	116	0.48		22,600	29.8	21.7	539	119,000	5.86	12.1	6,510	547	0.0653	2.99	15.7	1,770	930	1,07	0.284	540	108	1.26	< 0.05		1.01	440	62.1
Seemed to a control of the control o	QUL-15-S-3<2MM	2014 08 07	-	10,200			76.3	0.38		15,000	17.2	11.2	524	37,700	5.9	10.3	6,260	483	0.0791	2,06	11.4	909	730	0.57	0.27	550	83.7	< 2	< 0.05	870	0.597	134	44.2
QUL-16	QUL-16-S-1	2014 08 07	8.8	12,200		11.6	124	0.5		25,000	20.8	38	504	95,200	4.7	11.8	6,530	545	0.0562	2.78	12.1	1,740	990	0.86	0.266	640	127	1.42	< 0.05	1,450	0.894	355	55.6
	QUL-16-S-1<2MM	2014 08 07	-	12,000		9,28	129	0.47		20,700	13	12.6	526	49,200	3.94	11.1	6,370	472	0.0626	3,88	8.67	1,000	980	0.0	0.28	81G	132	<2	< 0.0\$	1,120	0.733	184	44
	OUL-16-S-2	2014 08 07	8.79	11,500		11.5	118	0.49		24,200	22	17.9	496	32,100	4.73	11.1	6,260	537	0.0551	3,56	11,8	1,700	910	0,94	0.266	630	121	1.27	< 0.05	1,380	0.958	343	55,9
	DUL-16-S-2<2MM	2014 08 07	-	111,500			116	0.47	0.122	20,500	14	12.5	504	50,500	4.1	10.7	6,120	475	0.0819	3.22	8.78	1.050	940	0.79	0.3	730	127	< 2	< 0.05	1,110	0.769	188	44
	QUL-16-9-3	2014 08 07	0.64	11,700	0.38	11.6	121	0.46	0.249	23,800	24.3	19.1	532	102,000	11.7	11.6	6,470	547	0.0519	3.22	13.4	1,760	920	0.96	0.263	630	118	1.77	< 0.05	1,340	0.974	378	63.3
	QUL-18-S-3<2MM	2014 08 07		11,800	0.32	8.53	125	0.44	0.112	19,400	11.7	11,4	678	39,800	3,77	10,8	6,220	452	0.0766	3,47	8.19	905	950	0.78	0.31	830	134	< 2	< 0.05	1,090	0,681	151	41.7
QUL-23	OUL23<2MM	2014 08 10		12,600	0.36	9.63	138	0.52	0.145	20,400	15.4	13.8	577	53,200	4.46	12.2	0.950	513	0.0766	3,48	10.3	1.080	1,120	0.76	0.28	810	137	<2	< 0.05	1,130	0.781	197	46.7
	QUL23	2014 08 10	8.24	13,100	0.39	11.6	139	0.51	0.142	23,200	23.5	19	518	93,400	5.41	13.2	7,600	578	0.0822	3.02	13.5	1.770	1,160	0.67	0.273	720	125	1.29	< 0.05	Addition of the second	0.948	348	55.5
QUL-24	QUL24<2MM	2014 08 10		15,600	0.37	11.6	144	0.59	0.126	24,600	12.5	16	733	43,800	4,57	15.3	9,620	601	0.0842	3,49	9.6	1,150	1,340	0.95	0,35	960	160	< 2	< 0.05	CHES MITTER WALL	0.898	168	54.4
	QUL24	2014 08 10	8.67	19,500	0.47	13.8	195	0.74	0,129	29,300	15,2	21	628	59,900	5,44	18,6	12,400	708	0,0908	3.4	11.6	1.780	1,930	1,04	0.309	1,210	208	1,87	< 0.05		1,28	229	62,6
QUL-25	QUL25<2MM	2014 08 10	-	13,400	0.32	10.6	146	0.54	0.128	21,800	12	14.8	732	44,800	4,31	14.2	8,620	532	0.0849	3.58	9.97	1,110	1,170	0.94	0,33	890	143	<2	< 0.05		0.765	167	51.6
	QUL25	2014 08 10	8.76	17,400	0.43	13.3	161	0.68	0.137	27,600	16.1	19.9	627	68,900	5	16.7	10,600	662	0.0801	3.72	11.6	1.750	1.580	0.94	0.298	1.030	177	1.8	< 0.05		1,13	262	60.6
QUL-27	QUL27-140813	2014 OB 13	8.46	12,400	0.44	12.4	142	0.58	0.149	21,700	20.2	20.2	804	92,300	6.01	13	7.680	572	0.0704	3.58	12.4	1,820	1.150	0.95	0.414	780	118	1.03	0.136	Charles Street Street	0.976	349	58.5
	QUL27 <2MM	2014 08 13		12,100	0.36		124	0.5		20,000	12.6	13.3	725	47,000	4,15	11,8	8,970	484		5.25	8,93		1,040	0.87	0.32	840	127	< 2	< 0.05	STREET, SQUARE,	0.725	179	45,2
	QUL27	2014 08 13	8,46	12,400	0.44	12.4	142	0.58	0.149	21,700		20.2	804	92,300	5.01	13	7,680	572	0.0704	3.56	12.4	1,820		0,95	0.414	780	118	1.03		1.000	0,976	349	58.5
	QUL27<2MM	2014 08 13		12,100			124	0.5		20,000	12.6	13.3	725	47,000	4,15	11.8	6,970	484	0.117	5.25	8.93	1,010	1,040	0.87	0.32	840	127	<2	< 0.05	- re la recent	0.725	178	46.2
QUL-30-01	QUL30-01	2014 08 12	8.28	7,490		3.74	19	0.19		59,300	14.5	7.61	10.7	19,200	6.88	17.9	6.220	355	< 0.005	0.26	18,7	1,120	530	< 0.1	< 0.05	< 100	350	< 0.2	the state of the s	500 CONTENT	0.877	12.5	34.9
	QUL30-01<2MM	2014 98 12	PH (1) 70 mm	8,990			25.3	< 0.2		41,800	19.1	19.7	12.2	22,800	6.85	22.1	6,940	377	< 0.005	< 0.5	24.6	458	1,160	40.2	< 0.1	< 100	234	<2	0.081	415	0.49	16.5	42,2
QUL-30-02	QUL30-02	2014 08 12	8.44	7,680			21,1	0.22		45,400	16.2	8.27	11.5	20,300	7.42	17.5	5,860	369	0.0065	0.46	20.3	1,450	540	D.31	< C.06	< 100	263	0.28	< 0.05	ACCUPATION AND DESCRIPTION AND	1.11	14.9	36.8
	QUL30-02<2MM	2014 98 12	-	5,920		3,64	18,4	< 0.2	< 0.05	26,500	14.4	7.65	B.12	17,600	5.24	15.8	5.020	347	< 0.005	< 0.5	19.5	724	730	< 0.2	< 0.1	< 100	157	<2	0,052		0.605	13.4	
QUIL-30-03	QUL30-03	2014 08 12	8.47	8,050	and the same of the same	4,4	24.7	0.22	NAME OF STREET	38,400	19	9.05	13	21,700	7.84	17.5	5,930	429	0.0119	0.87	24.4	1,360	600	0.2	0.061	< 100	221	0.68	< 0.05	-	1.08	16.0	41
	QUL30-03<2MM	2014 08 12	- 2000	5,300	er and the same	1,63	14.5	< 0.2	0.056	17,100	10.3	5,13	5.63	12,800	3.89	11.8	3,600	231	0.0134	0.61	16,1	353	550	< 0.2	< 0.1	< 100	101	<2	< 0.05		0.388	9.82	24.1
QUL-43	QUL43-140813	2014 06 13	8.64	20,000			205	0.73		29,100	14.8	21.5	862	60,000	5,84	19,5	12,300	735	0.0754	3.83	12.6	1,660	2,230	1,02	0.331	1,340	214	1.62	< 0.05	***********	1.27	224	64.6
	QUL43 <2MM	2014 08 13	-	15,900	CONTRACTOR STATE		149	0.6	APPRICATE STATE	23,800	13.3	16.5	760	43,900	5.62	16.3	9,950	613		3.58	11	1,220	1,370	0.98	0.33	950	159	<2	< 0.05		0.911	165	56.9
	QUL43	2014 08 13	8.64	20,000			206	0,73		29,100	14.8	21.5	662	80,000	5.84	19.5	12,300	735	0.0764	3,63	12.6	1,650	2.230	1,02	0.331	1,340	214	1.62	< 0.05		1.27	224	64.6
	QUL43 QMM	2014 08 13		15,900	-	appears that	149	0.6		23,800	13.3	16,5	760	43,900	5.82	15.3	9,950	613	0.0946	3.58	11	1,220	1,370	0.98	0.33	950	159	<2	< 0.05	german or a second	0.911	165	56.9
QUL-44-01	QUL44-01	2014 08 12	6.1	16,500		106	49.8	0,34	0,353	8,500	53.9	15.5	56.9	28,600	6.93	15.3	11,200	328	0.058	0,64	32.1	851	850	0.000,000.0	0.181	270	49.6	0.66	0.067	1.200	0.559	81.8	80.7
402.4.01	QUL44-01<2MM	2014 08 12	-	17,100	4		50.9	0.41	0.396	8,140	56.8	17.4	74.6	31,600	9.94	17.5	11,900	353	0.069	0.81	34.3	778	900	0.61	0,2	240	46.8	< 2	0.09				
QUL-44-02	QUL44-02	2014 98 12	7.41	18,000			64.8	0,38	0.508	9,310	85.1	20.7	80.8	34,300	8.61	16.7	12,100	760	0.072	1.24	39	802	830	0.54	0.237	210	N	Section Control	De l'annier de	1,100	0.556	83,3	63.3
201-11-02	QUL44-02<2MM	2014 08 12	7.41	18,000	-	-	41.1	0.35	0.339	7,620	56.5	16.3	59.2	39,200	6.89	18	14,300	790	0.0483	1.08		871		-			52.3	0.52			0.601	95.4	83.4
QUL-44-03	QUL44-03	2014 08 12	7.58	17,700	and some property in		60.2	0.35	0.379	9,560	57.9	15.2	74.2	30,000	7.48	14.7	10,700		SCHOOL SELECT	PROMPTY CALL	33	NY AR P	520	0.41	0.2	110	31.1	e2	0.055	1,020	0.489	105	70.9
40C-44-77	QUL44-03<2MM	2014 08 12	7.38	16,800			189	CONTRACTOR SERVICE	market grant of	Against the sales		Service Property		33,100	5.49	m.m b else-		558	0.0641	0.79	33.2	802	740	0.55	0.328	200	52	0.62	0.061		0.627	85.6	65.4
019 46 04	QUL-45-01	2014 98 12				13.3		0.31	0.198	7,280	50.3	14.1	48.9			16	12,400		0.0299	0.91	30.1	555	440	0.29	0.12	130	30	<2	< 0.05	Section 201	0.392	92.6	55.8
QUL-45-01			8.72				186	0.65		27,100	16,7	20.9	630	06,600	6,09	16.8	10,900	676	0.0747	4	12.7	1,740	1,720	0.99	0.312	1,150	190	1.55	< 0.05		-	253	60.2
Oth 46.05	OUL-45-01<2MM	2014 95 13	0.05	15,100		109	144	0.64		23.300	15.7	15.3	677	44,500	4.71	15,3	9,190	574	0.0844	4.01	10.7	1,180	1,340	0.84	0.32	920	157	<2	< 0.05		0.924	169	52.8
QUL-45-02	QUL-45-02	2014 08 13	8.85			12.4	199	0.68		26,800	13	20.3	707	\$1,000	5.68	18.5	11,900	691	3,0745	3.6	11.7	1,430	1,850	1	0.321	1,220	208	1.52	< 0.05		1.14	193	60.3
	QUL-45-02<2MM	2014 08 13		15,800	0.41	12	147	0.64	0.145	23,400	20.6	16.4	719	43,000	4.98	16	9,790	633	0.0851	3.53	10.3	1,240	1.370	1.03	0.34	920	160	<2	< 0.05	1.280	0.934	160	56.4

Associated ALS Sies: L1499703, L1502632, L1502319, L1503198, L1503207.

All terms defined within the body of SNC-Lavalin's report (available upon request).

rule Denotes no applicable standard.

RPD Denotes relative percent difference.

BOLD Concentration greater than CSR Frosh Water Sediment (FW Sediment) standard.

SNC-LAVALIN INC.

Page 2 of 4

621717/2/314 09 28

Connected concentration less than indicated detection limit or RPD less than indicated value.

⁻ Denotes analysis not conducted.

[&]quot; No CSR Sedment Criteria, BCWOG guideline Nicom.

TABLE 2: Summary of Analytical Results for Mount Polley, Quesnel Lake - Sediment

Sample Location	Sample ID	Sample Date (yyyy mm dd)	TOC (%)
QUL-14	QUL-14-S-1	2014 08 07	0.18
	QUL-14-S-163UM	2014 08 07	0.12
	QUL-14-S-2	2014 08 07	0.12
	QUL-14-S-263UM	2014 08 07	0.16
	QUL-14-S-3	2014 08 07	0.1
	QUL-14-S-363UM	2014 08 07	0.12
QUL-15	QUL-15-S-1	2014 08 07	< 0.1
	QUL-15-S-163UM	2014 08 07	0.1
	QUL-15-S-2	2014 08 07	0.11
	QUL-15-S-263UM	2014 08 07	< 0.1
	QUL-15-S-3	2014 08 07	0.12
	QUL-15-S-363UM	2014 08 07	0.15
QUL-16	QUL-16-S-1	2014 08 07	0.11
	QUL-16-S-163UM	2014 08 07	< 0.1
	QUL-16-S-2	2014 08 07	0.11
	QUL-16-S-263UM	2014 08 07	0.12
	QUL-16-S-3	2014 08 07	0.1
	QUL-16-S-363UM	2014 08 07	0.13
QUL-23	QUL23	2014 08 10	0.27
	QUL2363UM	2014 08 10	0.22
QUL-24	QUL24	2014 08 10	0.25
	QUL2463UM	2014 08 10	0.28
QUL-25	QUL25	2014 08 10	0.22
	QUL2563UM	2014 08 10	0.18
QUL-27	QUL27	2014 08 13	0.17
	QUL27 63UM TOC	2014 08 13	0.15
	QUL27	2014 08 13	0.17
	QUL2763UMTOC	2014 08 13	0.15
QUL-30-01	QUL30-01	2014 08 12	0.51
	QUL30-0163UMTOC	2014 08 12	0.61
QUL-30-02	QUL30-02	2014 08 12	0.37
	QUL30-0263UMTOC	2014 08 12	0.58
QUL-30-03	QUL30-03	2014 08 12	0.25
	QUL30-0363UMTOC	2014 08 12	0.63
QUL-43	QUL43	2014 08 13	0.24
	QUL43 63UM TOC	2014 08 13	0.12
	QUL43	2014 08 13	0.24
	QUL4363UMTOC	2014 08 13	0.12
QUL-44-01	QUL44-01	2014 08 12	3.59
	QUL44-0163UMTOC	2014 08 12	2.69
QUL-44-02	QUL44-02	2014 08 12	0.69
	QUL44-0263UMTOC	2014 08 12	1.39
QUL-44-03	QUL44-03	2014 08 12	1.79
	QUL44-0363UMTOC	2014 08 12	1.97
QUL-45-01	QUL-45-01	2014 08 13	0.25
	QUL-45-0163UMTOC	2014 08 13	0.23
QUL-45-02	QUL-45-02	2014 08 13	0.3
400	QUL-45-0263UMTOC	2014 08 13	0.26

Associated ALS files: L1499703, L1500632, L1502319, L1503198, L1503207.

All terms defined within the body of SNC-Lavalin's report (available upon request).

RPD Denotes relative percent difference.

Denotes concentration less than indicated detection limit or RPD less than indicated value.

⁻ Denotes analysis not conducted.

n/a Denotes no applicable standard.

TABLE 2d: Summary of Analytical Results for Mount Polley, Quesnel Lake - Sediment Leachate

				1	, Concern										Y			Leac	hate Mo	tals			,		0				-					4
Sample	Sample	Sample Date	рH	Aluminum Leachable	Antimony Leachable	Arsenic Leachable	Barium Leachable	Beryllium Leachable	Bismuth Leachable	Cadmium Leachable	Calcium Leachable	Chromium Leachable	Cobalt Leachable	Copper Leachable	Iron Leachable	Lead Leachable	Magnesium Leachable	Manganese Leachable	Mercury Leachable	Molybdenum Leachable	Nickel Leachable	Phospharus Leachable	Potassium Leachable	Selenium Leachable	Silicon Leachable	Silver Leachable	Sodium Leachable	Strontium Leachable	Thailium Leachable	Fin Leachable	Titanium Leachable	Uranium Leachable	Vanadium Leachable	Zinc Leachable
Location	ID	(yyyy mm dd)	(pH)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(pgfL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ug/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ug/L)	(ug/L)	(µg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(µg/L)
BC Standards																																	111111111111111111111111111111111111111	
HWR Leachate Qu	ality (HWLQ)		n/a	n/a	n/e	2,500	100,000	n/a	n/a	500	n/a	5,000	n/a	100,000	n/a	5,000	n/a	n/a	100	n/a	n/e	n/a	n/a	1,000	n/e	5,000	n/a	n/a	n/a	n/a	n/a	10,000	n/a	500,000
QUL-45-01	QUL-45-01	2014 08 13	8.47	270	< 50	< 50	27	< 5	< 100	< 10	20,100	< 10	< 10	25	167	< 50	2,860	38	< 0.05	44	< 50	< 300	3,500	< 50	4,920	< 10	14,400	225	< 200	< 30	11	< 500	< 30	< 20
QUL-45-02	QUL-45-02	2014 08 13	8.46	270	< 50	< 50	31	< 5	< 100	< 10	23,900	< 10	< 10	14	189	< 50	3.470	37.7	< 0.05	51	< 50	< 300	4 500	< 50	5 670	< 10	20,600	269	€ 200	< 30	11	< 500	< 30	< 20

Page 4 of 4

Associated ALS file L1503198.

All terms defined within the body of SNC-Lavalin's report (available upon request).

< Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Danotes analysis not conducted.

n/a Denotes no applicable standard.

RPD Denotes relative percent difference.

Concentration greater than HWR Leachete Quality (HWLQ) standard.

621717/2014 08 29

TABLE Ja: Summary of Analytical Results for Mount Polley, Polley Lake - Surface Water DRAFT

			1			Ph	ysical Para	mesers				Misrobiok	ogical Tests								***************************************			
Sample	Bample OI	Sample Date	Hardness	pH (fleid)	рн	Temperatura (field)		Conductivity		TSS	DOC	Total Coliform	E. Coli	Total Nikrogan (N)	Ammonia Nitrogen	Mitrale	Nitrice Nitrogen	Nitrate+Nitrite Nitrogen	Chloride	Fluoride	Sulphete	Total Alkelinity (as CuCO3)	Ortho- phosphate	
Location	10	(yyyy mm dd)	(mg/L)	(pH)	{pH}	(C)	(NYU)	(µ8/em)	(mg/L)	(mg/L)	(mg/L)	(MPN/0,11)	(MPNIO, IL)	(mg/L)	(Jig/L)	(µg/L)	(µg/L)	{ug/L}	(mgrL)	(part)	(regs.)	(mg/L)	(mg/L)	(mg/L)
C Standards	and the same				1		Change of			Change		or relate				,			-				- teruta	
BCWOO Aquatio	Life (AVV)"		170	8,5-9.0	6.5-9.0		8,	n/a	ten	64.52	n/a	n/e	niu	n/u	700-5,680°	32,800	86 (OKS)	32,600	900	1294-1361	rva	nia	nia	0.005-0.01
BOYYOG Aquato	Life (30dey) (AW)	1,34	0/8	Na	nie	e/-1 Degree change from embient	Change of	n/e	n/e	Creange of 5 ^h	+20% of median background	nAs	n/a	rJa	135-1,050	3,050	20 (CI<2)	3,000	150	n/s	3084	n/e	n/a	nh
BCWOG Drinking	Wuter (DW) L		cria	0.5-8.5	6,5-8.5	ntal	1	n/e	n/a	nie	rsin	n/a	02100mi	rva	n's	10,000	1,000	10,000	250	1.500	500	n/a	n/a	0.01
	g Water Quality (DV	vi*	nia	65-85	6,5-8.5	nte	n/a	n/a	500	n/s	rein .	rva*	0/100ml	n/a	rein	10.000	1.000	r/a	250	1.500	500	nie	N/a	n/a
POL-1	POL-1	2014 08 07	97.1	-	9.06		2.52	187	127	< 3	6.09	-	-	0.389	< 5.	6.6	41		< 0.5	90	26.3	75.4	< 0.001	0.0044
POL-2	POL-2	2014 OH 07	95.2		9.07	-	3.66	184	126	<3	6.61	> 201	> 201	0.402	< 5	< 5	41		< 0.5	61	27.6	70,8	< 0.001	0.005
	POL-2(13:18)	2014 08 05	96.7	9.02		20.4	4.04	192	139	8	6.86	> 2.420	205	0.376	5.8	× 5	1 41		< 0.5	61	27.2	72.8	0.0011	0.0058
	POL-2(18:54)	2014 08 05	96,1	8.87	88,8	21	3.4	193	142	< 3	7.44	-		0.45	4.5	4.5	1 <1		40.5	84	27.2	70.5	9.0017	0.0077
	POL-2	2014 08 09	96.7	-	8.87		4.62	194	145	4.3	7.01			0.381	< 5	65	<1		×0.5	61	27.8	71.2	< 0.001	0.0057
	POL-2X	2014 08 09	87.2		8.88		4,13	195	144	5.9	8.97			0.372	< 5	< 5	41		< 0.5	64	28	71.6	< 0.001	0.0053
	QAIQC	RPD %	1.00	100 miles	DES 300		16	(6:di 4:1 /16)	<1	BEHANDE	MARTINE A STREET	THURSDIES.	PERSONAL PROPERTY.	871000200000	TO LEARN SHAPE	10250 (GP#101616)	THE REPORTED	DESCRIPTION OF	(CONTRACTO	HISTORIAN PROPERTY.	Mark Till	10000000000000000000000000000000000000	Barrier and Alberta	EDITED SERVICE
	PCL-2	2014 08 11	99.6	8.55	8,16	23.0	3.59	203	143	< 3	7.57	1	-	0.56	< 6	< 5	×1	-	< 0.5	68	27.6	75.3	0.0011	0.0079
	POL-2	2014 08 12	94.5	8.99	8.58	20.6	1.58	198	135	< 3	8.29	-	-	0.355	<5	< 5	×1		× 0.5	60	27.1	73.4	< 0.001	8,0081
	POL-2	2014 08 13	98,4	8.48	8.65	21,4	1,16	194	132	×3	6.3			0.512	7.6	45	61		« Q.5	éa	27.2	73.7	< 0.001	0.0063
	POL-2	2014 06 14	99.8	8,87	₹,53	22.5	1.68	200	130	< 3	6.69			0.373	5	*5	<1		< 0.5	83	27.4	75.7	< 0.001	0,0048
	POL-2	2014 08 15	99.9	8.76	8.26	21,8	1.07	202	137	<3	6.6			0.345	45	< 5	41	< 5.1	< 0.5	81	27.4	75.6	< 0.001	0.0064
	POL-2	2014 08 18	100		8.28		1.7	203	142	< 3	6.57	1	-	0.339	< 5	< 5	<1	< 5,1	< 0.5	68	27.3	76	< 0.001	0.0058
	POL-2	2014 08 17	95.9	8.83	8.18	20.1	3.05	203	93	4.8	6,48			0.328	< 5	45	51		< 0.5	68	27.5	74.9	< 0.001	0.0061
	POL-2	2014 08 18	97.5	\$,66	8.33	20.7	1,38	200	139	< 3	7.38	1 .	-	0.389	6.1	< 5	<1		< 0.5	67	27.4	75.7	< 0.001	0.008
	POL-2	2014 08 19	102	8.24	8.09	20.4	3,02	198	133	5.2	6.94			0.505	5.4	< 5	<1	-	< 0.5	74	26.7	74.5	< 0.001	0.0086
	POL-2	2014 08 20	102	8.39	8,17	20.4	4,8	201	110	5.6	5.43		-	0.345	<5	4.5	<1		< 0.5	67	27	76.7	0.0011	0.0063
	POL-2	2014 08 21	100	-	8,17		7.8	200	141	5.8	6.39			0.353	<5	<5	<1		< 0.5	67	27.3	74	× 0.001	0.0052
POL-3	FOL-3(12.15)	2014 08 08	5.99	3.02	8.93	19	1,66	104	134	3,1	6	× 2,420	10	0,352	5.2	<.5	<1	-	< 0.5	81	26.5	76.5	0.0011	0,0048
	POL-3(12:34)	2014 08 08	100	8,85	8.79	18.8	3.03	198	131	7,5	6.06			0.353	<5	<5	<1		< 0.5	80	26.3	77.1	0.001	0.0084
	POL-3	2014 08 09	97.8		8.7		2.68	199	139	5.5	6.49	-	-	0.404	< 5	< 5	<1		< 0.5	80	26.5	73.6	0.0056	0.9117
	POL-3	2014 08 11	107	-	7.89		2.91	224	162	5.9	8.27			0.835	15	4.5	e1		< 0.5	64	25.9	67.6	0.0476	0.08
	POL-3	2014 08 12	96.3	3.85	6.39	21.7	1,15	200	142	< 3	6.3		-	2.406	0.4	< 5	41		€ 0.5	03	27.2	73.7	< 0.001	0.0068
	POL-3	2014 08 13	97.0	3.94	8.56	21.7	1,60	197	136	3.5	6.65			0.402	10.7	× 5	<1		€ 0.5	66	27	76.2	0.0021	0.0069
	POL-3	2014 08 14	96.3	2.85	8.57	22,5	3,36	200	130	<3	6.77			0.383	7.2	5.5	<1		< 0.5	64	27.2	74,6	< 0.001	0.005
	POL-3	2014 08 15	98,5	9.12	8,38	25.7	3.68	199	133	< 3	€,31			0,359	< 5	< 5	<1	< 5,1	40.5	8C	27.1	74.1	< 0,001	0.0056
	POL-3	2014 08 16	99.7		5.64		0.62	200	139	3.7	6.25			0.333	< 5	4.5	< \$	< 5.1	< 0.5	68	27.1	73.3	< 0,001	0.006
	POL-3	2014 08 17	89.6	8.932	8.27	19.7	1.04	202	135	3.5	6.38		*	0.365	< 5	< 6	<1		< 0.5	68	27,4	74,7	< 0.001	0.0052
	POL-3	2014 08 18	99.6	8,843		19.8	D.89	200	117	×3	7,15	-	-	0.389	7.3	< 5	<1		< 0.5	YG	27.5	74.5	< 0,001	0.0051
	POL-3X	2014 06 18	99.1		8.49	19.8	0.65	201	96	<3	7,08	-		0.381	7	< 5	· 1	-	40.5	67	27.5	75.3	× 0.001	0.008
	QA/QC	RPD %			相区加	0	超級6篇	编辑的明确	20		细胞的细胞	自然相似的解			HERILIEU.	研究的思想的	计数据计划机		1111	RECEIPTION OF	翻起引伸	斯坦斯坦加坡自由 的	調性機能	a parindicipal
	FOL-3	2014 08 19	101	8.53	6.32	20.4	0.82	199	138	<3	5.4	-	The state of the last	0.42	5.3	< 5	<1	arrange that to	< 0.5	77	26.9	74.7	< 0.001	0.006
	POL-3	2014 08 20	102	8.63	8.23	20.5	0.75	201	110	<3	6.38	-	-	0.351	5.3	< 5	<1		< 0,5	66	27.3	75.9	0.0012	0.0067
	POL-3X	2014 08 20	100	8.53	8.23	20.5	0.68	204	145	c3	6.29			0.347	0	< 5	<1		< 0.5	64	27,1	77.2	0,0011	0,0069
		RPD %	1 1 2 3	0		S STREET DESTRU	18	253	20	相談為借	部份值2個用			STREET, RECEIP	超地域不能跨	副籍籍的 的	有表面。100 0		建和原理制	提出的。 据说	4.1	群面號 別指的	国的出版证明	常物質的原理性
	POL-3	2014 08 21	100	-	8.43		0.85	202	135	<3	5.09			0.384	8.2	× 5	<1		€0.5	66	27.9	78	< 0.001	0.0045
	POL-3	2014 08 27	105	8.74	8.3	19.4	0.93	209	135	< 3	6.92			0.376	< 5	<5	<1		< 0.5	70	28.5	77.2	0.0013	0.0059
	POL-3	2014 09 03	103	8.76	8.3	15.0	0.50	210	151	c3	6.64			0.331	6.4	< 5	<1		< 0.5	87	30.1	76.7	< 0,001	0.0052

Aspeciately ALG Ries* 1, 480194, L1409709, L1409709, L1409005, L1409709, L1501501, L1501501, L1501541, L1502406, L1502046, L1502026, L1502024, L1502943, L1504201, L1504201, L1504007, L1505003, L1505003, L1505007, L1505003, L1505007, L1505003, L1505007, L1505003, L1504007, L15

- Denotes analysis not conducted.

nie Denetas sio applicable standard. RPDs are not normally calculated where one or more concentrations are tess than five times MDL.

SHADED Concentration greater than BCWCG Aquatic Life (AW) guideline

POLO Concentration greater than BCWQG Dalrising Water (DWI guideline

BHADED Concentration greater than BCWQG Aquetic Life (30dey) (AW) guideline.

ROLD | Concentration greater than or equal to Carecian Diriking Water Quality (DW) guideline

* Laboratory delection Ernit and of range.

* British Columbia Approved Water Quality Quisinfron 2000 Edition, updated 2014.

* A Compandous of Working Water Quality Outlinines for British Columbia, septemble August 2006.

* Quidaline varies with pH, and or Temperature or Handness.

* Heelth Canada Denking Witner Guidelines 2012. * Quideline for hitrate applied

* Becombary chronic or chronic value, not 50 day mean.

Outbloke for throtal organisation and an anomalian ano

021717/2014 08 02

TABLE 3a: Summary of Analytical Results for Mount Polley, Polley Lake - Surface Water DRAFT

						Pin	ysteal Parar	netero				Microsole	gical Tusts											
Sample	Sample	Sample Date (vyyy mm dd)	Hardness (mg/L)	Hug (binit) (Ha)	рн	Temperature (Reid) (C)	Turbidity (NTU)	Conductivity	TOS (mg/L)	TSS	DOC (mg/L)	Total Coliforn (MPN/0.1L)	E. Call (MPN/8.1L)	Yotal Mitrogen (N)	Ammonta Nitrogen	Nitrate Nitrogen	Mirite Nitrogen	Nitrate-Nitrite Nitrogan	Chloride	Fluoride	Sulphate	Total Alkalinity (as CuCO3)	Ortho- phosphale	
	1 10	MANA west gol	(mg/L)	(pre)	(pri)	[6]	(850)	finascuri	(mg/L)	(mg/L)	(mg/L)	(was told ar	(S8PN/8,1L)	(mg/l.)	(pgd.)	(htl/r)	(µg/L)	(µg/L)	(mg/L)	(ugrL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Standards	and a find the state of the state of the state of	Per Committee		1 1111		I marmere	Charge of	AND DESCRIPTION OF THE PARTY OF	******	-	principal de la constitución de		CONTRACTOR				-							
SCWOG Aqueti	Life (AVV)*4		milas	6.5-0.0	6.5-9.0	1	6k	n/a	nia	Change of 25	nia	n/e	nta	nja	700-6.680*	32,600	80 (CI<2)	32,900	600	1264-1361"	n/s	rvu	ri/a	0.005-0.0
SCVVOG Aqueti	the (30day) (AW)	4	nia	nia	n/a.	t/-1 Degree change from emblent	Change of 2 ^h	rele	nia	change of 5 ^h	+20% of insidian background	n/s	n/u	n/a	135-1,090*	3,000	20 (CIs2)	3,000	150	niu	3007	1946	n/a	n/a
							Change of		-	-							1					1		
CWQG Drinkin			i n/a	6,5-8.5	6,5-3.5	rite		n/a	nia	nia	n/a	n/a	D/10Dmil	ria	m/s	10,000	1,000	10.000	250	1,500	500	n/a	co/m	0,01
Canadian Drinki	og Water Quelty (DV	VI.	nzu	5.5-8.5	6.5-8,5	nto	n/a	rvo	500	n/a	tita	n/a	0/100ml	n/a	n/a	10,000	1,000	rva.	250	1,500	500	n/a	0/6	17/0
POL-4	POL-4(11:03)	2014 (28 (38	100	9.49	8.91	18.2	2.39	194	136	4.6	6.58			0.337	€5	4.5	< 1	-	< 0.5	61	26.4	75.6	0.001	0.005
	POL-4(11:23)	2014 08 09	100	9.06	8.89	18.2	2.53	192	132	5.5	6.14	> 2,420	28	0,33	< 5	× 5	1 <1	-	₹ 0.5	60	28.3	75.0	0.0021	0.005
	POL-4	2014 08 09	99.2		8.78		2.7	199	139	3.1	7.29			0.44	4.5	4.5	<1		< 0.5	60	26.8	75	< 0.001	0.005
	POL-4	2014 08 11	83,8		8,78	*	2.25	198	116	< 3	6.48		-	0.404	45	6.1	51		< 0.5	72	28.9	73.6	< 0.001	0.008
	POL-4	2014 08 12	94.6	8,90	8,52	22.0	1.4	199	140	<3	6.24			0.397	4.5	< 5	41	-	< 0.5	67	27.1	73.4	< 0.001	0.005
	POL-4X	2014 08 12	98.7	8,90	8.52	22.0	1.08	200	141	= 3	8.17	-	-	0.393	× 5	× 5	1 <1		< 0.5	64	27.2	74.8	< 0.001	0.005
	HITTISHINI QAVOC	RPS) VG	计数据 计图像数	HARRIS PART	原银门轴	140 流移電流数1	26	SPECIAL PROPERTY.	SISSEATE	STREET, STREET,	TARSAL RUBBLE	and a state	Bridge Military	DECEMBER OF THE PERSON	HERETER PROFESSION	HARRING STREET	CHILD COURSE	TRESTANTANTAS	DUMBAL DE COM	BANKER BURNEYER	STORE STORE	HAR OF BEINGER	HIDING BUILDING	S NEEDS AND
	POL-4	2014 08 13	98.1	0.831	8.62	21.1	1.09	198	137	< 3	6.4	-	-	0.373	5.4	- 6	<1	*	< 0.5	72	27.2	75.5	< 0.001	0.008
	POL-4	2014 06 14	97.8	8.993	8.69	22.4	1.09	160	134	< 3	6.53			0.34	6	45	<1	American Control in the	< 0.5	64	27.2	75	< 0.001	0.004
	PO1,-4	2014 08 15	97.8	7.724	6,41	20.7	3.37	200	122	< 3	8.26	-	14	Q.468	< 6	45	41	< 5.1	< 2.5	85	27.2	75.4	< 0.001	0.005
	POL-4	2014 08 18	99.5		8.28	-	0.66	201	137	< 3	8.44	-	-	0.345	8.6	< 5	<1	<5.1	< 0.5	65	28.9	75.2	< 0.001	0.005
	POL-4	2014 08 17	101	8,843	5.26	19.4	0,87	204	80	< 3	6.5		-	0.342	6.1	× 5	< 1		< 0.5	88	27.4	76.5	< 0.001	0.000
	POL-4	2014 00 18	99.6	8.815		10.5	5.02	200	139	< 3	6,77	-		0.404	< 5	15.4	K1		< 0.5	76	27.6	70	< 0.001	0.004
	PCL-4	2014 00 19	103	8.4	8.23	20	1,11	201	134	< 3	6.83	2	-	0.472	10.3	5.0	41	+	< 0.5	76	27.1	76.1	< 0.001	0.006
	POL-4	2014 08 20	103	8.59	0.26	20.4	0,66	204	140	< 3	8.44		-	0.330	5.2	× 5	41		< 0.5	67	27,3	77,5	0,0012	0.008
	POL-4	2014 06 21	101		8.5		0,71	204	161	43	6.05			0.335	6	7,8	41		< 0.5	67	26	76	< 0.001	0.004
	POL-4	2014 08 27	106	8.67	8.21	19.2	1.01	209	131	< 3	d.94			0.349	< 5	< 5	<1		< 0.5	73	28.4	76.4	0.0022	0.007
	POLA	2014 09 03	107	8,67	6.36	15.7	0.73	215	151	< 3	6.49		-	0.342	9.7	23.6	2.1		<0.5	66	31.1	60.3	< 0.001	0.005

Amocidand ALG flav: £459794, £1496730, £1466933, £1466938, £1501501, £1501501, £1501541, £1502406, £1503040, £15130204, £1503043, £1503043, £1504201, £1504007, £1504007, £1505033, £1500502, £1503076, £1513384,

All terms defined within the budy of SNC-Lave in a report (available upon request).

Denetes concentration less than included detection limit or RPD less than indicated value.

- Denotes unalysis not conducted. n/s Denotes no applicable standard.

RPDs are not normally calculated where one or more concentrations are less than five times MDL.

SMADED Concentration greater than BCWDG Aquetic Life (AW) guideline.

ACLD | Concentration greater than SCINGS Drinking Water (DW) guideline.

STADED Concentration proofer then BCWGG Aquatic Life (SCday) (AW) guidoline.

SDLD Concentration greater than or equal to Canadian Drinking Water Quality (DW) guideline.

* Laboratory detection first out of range.

Billish Columbia Approved Weers Quelly Guidelines 2008 Ealitim, updated 2014,

A Comprehens of Yhtishing Water Quelly Guidelines 1018 Ealitim, updated 2014,

A Comprehens of Yhtishing Water Quelly Guidelines for Selland

* Hars In Canado Drinking Water Guidelines, 2012 Guideline for Nitcoln applied.

Secondary absonic or channin walker, not 30 day mean.

Guigoline not applicable for site plaquen, The trial phesoherus guildeline is a measure of bits productivity and is leased on spring everifun or six sverage of summar samplar and is not explicable to single sample netwits of this point in time.

Calculated desire on an interfedural cample bests, not overage of 20 day results.

TABLE Ja: Summary of Analytical Results for Mount Pollay, Policy Lake - Surface Water DRAFT

															Dissolved	Metals					-			-						vi-til-
Sample Location	Sample	Semple Date (yyyy mm dd)	Dissolved Aluminum (Up/L)	Calcium (mg/L)	Disealved Iron (ug/L)	Oissolved Magnesium (mgfL)	Dispulved Manganese (µg/L)	Dissulved Potassium (reg/L)	Dissolved Sodium (mg/L)		Arsenic (pg/L)					Chromium (pg/L)		Copper (µg/L)				Molybdenum (µg/L)	Nickel (µg/L)		Silver (µg/L)			Uranium (µg/L)		Zinc
Standards	- 15	(1)))) (1)		Dec a-set	17-17	(44-1					W-1-7	4-1																	
CWGG Aquatio	Life (AW)		100°	n/a	350	nie	n/a	rite	n/a	n/a	ntu	esha	ri/m	nia	rulu	nia	ev/a	n/a	n/u	nia	n/a	n/a	n/a	n/a	nia	n/a	n/a	nia	rvio	r/a
CINOS eE-	Ufa (30day) (AW)	4	504	n/a	nia	mla	rv'q	rs/m	nfs	n/a	nie	n/s	n/a	n/a	rvie	rva	rt/e	nh	n/a	n/s	n/a	rule	ntu	n/e	nra	1940	n/u	nie	n/a	n/a
CHICO PALLED	Can (accept) (earl	-			- 114	744			the distance of			1					1		1		Sund Street		1	- Seriamo	See 14 /5	and Tone		1.00		100
CWGG Drinking	Water (DW)		200	nie	1/2	rila	rela	re'a	nta	rva .	n/s	11/4	nig	n/s	n/e	n/a	nia	51/A	nía	n/e	Livia	Na	rile	nfa	n/a	nie	n/a	n/s	nfa	n/a
Sanadian Drinkin	g Water Quality (D)	M)	nya	nia	nia	N/a	n/a	n/a	nita	rva	nia	n/u	n/a	n/a	n/g	n/a	n/a	sva	Oila	avr.	nza	Ne	ritia	10/4	nta	FINE	rr/u	11/0	1Va.	1Va
POL-1	POL-1	2014 08 07	5.3	31.1	4 30	4.72	0.377	0,341	4,24	< 0.1	0.55	6.36	< 0.1	19	< 0.01	< 0.5	< 0.1		< 0.05	< 0.5	< 0.05	2.2	< 0.5	0.56	< 0.01	< 0.01	< 10	0.102	1.1	< 3
POL-2	POL-2	2014 08 07	12.5	30.2	< 30	4,78	3.86	0,483	4,44	< 0.1	0.61	7.72	< 0,1	20	< 0,01	€ 0.5	€ 0.1	2.77	€ 0,05	< 0.6	€ 0.05	2,58	< 0.5	0.55	< 5.01	< 0.01	< 10	0.101	1,1	€3
	POL-2(13:18)	2014 08 06	13.9	30.7	< 30	4.87	11.7	0,627	4.77	€0.1	0.65	8.11	× 0.1	20	< 0.01	< 0.5	< 0.1	3.08	< 0.05	< 0.5	-	7.45	< 0.5	0.59	< 0.01	< 0.01	< 10	0,1	1.1	1 43
	POL-2(16:54)	2014 08 08	11.4	31.3	< 30	4,83	7.95	0,531	4.93	≪ 0.1	0.63	9.28	< 0.1	18	< 0.01	< 0.5	< 0.1	2.85	< 0.05	< 0.5		2.46	€ 0.5	0.57	< 0.01		< 10	D.115	1.2	€3
	POL-2	2014 98 99	14.8	90.0	< 30	4.76	0,815	0.456	4,52	< 0.1	0.61	9,3	×01	20	< 0.01	< 0.5		3.19	< 0.05			2.07	< 0.5	0.55	< 0.01	< 0.01	× 10	0.143	1.2	<3
	POL-2X	2014 08 09	152	34	< 30	4.8	0,728	0.474	4.63	< 0.1	0.5	8.25	< 0.1	20	< 0.01	< 0.5		3.21	< 0.05		econtrivities.	2.77	< 0.5	0.56	< 0.01	< 0.01	< 10	0.144	1.2	< 3
		RPO %	A STATE OF THE STA		REMUSE STATE	10 15 × 10 10 1		0.708	4.56	4 D.1	0.66	962	< 0.1	20	< 0.01	< 0.5	< 0.1	3.18	< 0.06		SEED AND CO	2.49	< 0.5	D.57	< 0.01	< 0.01	< 10	0.091	1.1	€3
	POL-2	2014 08 11	12.1	31.9	< 30	4.85	22.4 0.361	0.708	4.54	<0.1	0.58	7.3	< 0.1	19	< 0.01	< 0.5	< 0.1	2.16	< 0.05		(- 1 de s	2.38	< 0.5	D.55	< 0.01	< 0.01	< 10	D.098	1.2	< 3
	POL-2	2014 08 12	10.5	30.7	< 30	4.8	0.307	0.422	4,43	< 0.5	0.54	8.04	< 0.1	21	< 0.01	< 0.5	< 0.1	2.3	< 0.05	< 0.5	-	2.53	< 0.5	D.55	< 0.01	< 0.01	× 10	D.102	1.1	<3
	POL-2	2014 08 13	9.5	32.1	< 30	4.5	0,501	0.41	4,48	40.1	0.61	7.48	<0.1	21	< 0.01	× 0,5	₹ 0,1	2,25	< 0.05	< 0.5	-	2.57	× 0.5	0.53	< 0.01	< 0.01	< 10	0.109	1.1	-3
	POL-2	2014 08 15	10.2	32	< 30	4.87	3,41	0.435	4.47	403	0.58	7.58	< 0.1	15	< 0.01	< 0.5	< 0.1	2.34	< 0.05	< 0.5		2.53	- D.S	0.57	5 0.01	< 0.01	4 10	0.099	1.1	<3
	POL-2	2014 08 18	8	32.2	< 30	4.8	2.87	D.45	4,51	<0.1	0.61	7.66	< 0.1	18	< 0.01	< 0.5	< 0.1		< 0.05	< 0.5		2.51	< D.5	0.6	< 0.01	< 0.01	4 10	0.097	1,1	43
	POL-2	2014 08 17	11.9	30.6	< 30	4,63	C.815	3.468	4.68	×0.1	0,61	7.75	<0.1	20	< 0.01	< 0.5	< 0.1		< 0.05	< 0.5	-	2.65	< 0.5	0.55	< 0.01	5 0.D1	< 10	0.118	1.2	< 3
	POL-2	2014 GB 18	11.7	31.3	< 30	4,69	4,93	0.46	4.48	< 0.1	0.55	8.1	< 0.1	19	< 0.01	< 0.5	< 0.1		< 0.05	<0.5	-	2.58	< 0.5	0.54	= 0.01		< 10	0,105	1.1	- 3
	POL-2	2014 08 19	10	92.8	< 30	4.66	31.2	0.529	4.38	< 0.1	0.61	9.63	< 0.1	20	< 0.01	< 0.5	< 0.1	2.34	< 0.05	< 0.5		2.58	< 0.5	0.57	< 0.01		< 10	0.1	1.1	- 3
	POL-2	2014 08 20	12.5	32.7	€ 30	4.92	8.18	0,602	4.6	< 0.1	0.62	8.88	< 0.1	21	< 0.01	< 0.5	< 0.1	2.09	< 0.05	× 0.5	1	2.72	< 0.5	0.62	< 0.01	< 0.01	< 10	0.105	5.7	43
	POL-2	2014 0d 21	16,6	32.1	< 30	4.68	1,44	0,482	4.61	4.0,1	0,58	8.59	< 0.1	19	< 0.01	< 0.6	< 0.1	3.41	< 0.05	< 0.5	-	2.64	< 0.5	₹0.5	< 0.01	< 0.01	< 10	0,106	1.1	<3
POL-3	PCL-3(12.15)	2014 06 06	7.5	32	< 30	4.82	3.02	0.404	4.53	< 0.1	0,6	6,96	< 0.1	16	< 0,01	< 0.5	< 0.1	2.12	< 0.05	< 0.5		2.23	× U.5	0.58	< 0.01	< 0.01	< 10	0.005	1,1	=3
1000	POL-3(12:34)	2014 08 09	7.1	32.2	< 30	4.52	6,32	0.505	4.51	« 0,1	0.61	7,12	< 0.1	19	< 0.01	€ 0.5	< 0.1	2.17	< 0.05	< 0.5		2,19	€ 0.5	0.52	× 0.01	< 0.01	< 10	0.094	1.7	43
	POL-3	2014 08 09	7.4	31.4	< 30	4.71	0.583	0.419	4.37	< 0.1	0.65	6.84	< 0.1	20	< 0.01	× 0.5	< 0.1		< 0.05	< 0.5	-	2.36	< 0.5	0.51	< 0.01	< 0.01	< 10	0.097	1,1	₹3
	POL-3	2014 08 11	5,0	34.6	< 30	5.04	73	1.45	4,61	< 0.1	0.78	10.7	<0.1	21	0.015	< 0,5	< 0.5	2.74	< 0.05	0.52		2.13	< 0.5	0.52	< 0.01	< 0.01	< 10	0.033	< 1	< 3
	POL-3	2014 08 12	8.8	30.9	₹ 30	4.57	0.327	0.481	4.59	<0.1	0.63	7.03	< 0.1	19	< D.01	< 0.5	< 0.1	2.15	< 0.05	0.51		24	₹ 0.5	0.53	< 0.01	< 0.01	× 10	0.096	1.1	€3
	POL-3	2014 09 13	10.3	31,3	₹ 30	4.79	0.40€	0.451	4,48	< 0.1	0.58	7.42	< 0.1	20	< 0.01	< 0.5	4 0,1	2,25	< 0.05	< 0.5		2.48	₹ 0,5	0,55	€ 0.01	€ 0.01	< 10	0,104	1.1	₹3
	POL-3	2014 08 14	0.3	31.5	< 30	4.78	0.448	0.428	4.45	< 0.1	0.65	7.2	<0,1	21	< 0.01	< 0,5	< 0.1	2.16	< 0.05	< 0,5		2.5	* 0.5	9,57	< 0.01	< 0.01	< 10	0,107	1,2	€3
	POL-3	2014 08 15	9.8	31.5	< 30	4.83	2.08	0,415	4.52	< 0.1	0.59	7.21	< 0.1	19	< 0.01	< 0.5	< 0.1	2.21	< 0.05	< 0.5		2.6	< 0.5	0.58	< 0,01	< 0.01	< 10	0,093	1,1	< 3
	POL-3	2014 08 16	8.4	31.9	< 30	4.85	1,77	0,419	4.27	< 0.1	0.61	7.58	40.1	18	< 0.01	€ 0.5	€ 0,1	2.15	< 0.05	< 0.5		2.44	€ 0.5	0.57	< 0.01	< 0.01	< 10	0.094	1.1	< 3
	POL-3	2014 08 17	8.9	31.9	< 30	4.82	0.345	0.447	4.73	40.1	0.6	7.21	< 0.1	20	< 0.01	< 0.5	< 0.1	2.12	< 0.05	< 0.5		2.65	< 0,5	0.57	< 0.01	< 0,01	× 10	0,102	1.1	× 3
	POL-3	2014 08 18	9.5	32	< 30	4.79	0,527	0.443	4.52	< 0.1	0,61	7,46	< 0.1	20	< 0.01	€ 0.5	<0.1	2.06	< 0.05	≈ 0.5	-	2.65	< U.5	0.55	< 0.01	× 0.01	< 10	0.111	1.1	43
	POL-3K	2014 08 18	9	31.9	< 30	4.71	0.79	0.441	4.44	< 0.1	0,57	7.37	< 0.1	21	< 0.01	€ 0.5	< 0.1	2.08		< 0.5		2.6	€ 0.5		< 0.0T		* 10		1.1	< 3
		C NPO W			開始的組織	型 (1951) 建筑线	40 010	BOTH HITE	問題類別	THE REAL PROPERTY.	7	THE PARTY	WHEN SHE	1074462811	用2的方面	CONTRACTOR	in the state of	特别的		Maria (III)	50741450145	2	17 6 44 5	HIGH THE	和紹介	and the second	THE REAL	BERT SHIP	al account	11111
	POL-5	2014 08 19	10.8	32.4	< 30	4.63	2.62	0.452	4.43	< 0.1	0.58	7,49	×6.1	21	< 0.01	< 0.5	< 0.1	2.25	< 0.05	< 0.5		2.57	< 0.5	0.61	< 0.01		< 10	0.009	1.1	* 3
	POL-3	2014 06 20	9.4	32.9	< 30	4.82	3.96	0.53	4.50	< D,1	0.65	7.61	< 0.1	20	10.0	€ 0.5	€ 0.1	232	< 0.05	< 0.6		2.62	< 0.5	0.64	< 0.01		* 10	0.100	1.1	€3
	POLAX	2014 08 20	6.7	32.2	< 30	4.61	3,71	0.506	4,47	< 0,1	0.61	7.84	< 0.1	19	< 0.01	4 0.5	< 0.1	2.17		< 0.5	-	2.76	< 0.5	0.63		< 0.01	< 10	0.11	1.1	<3
		CRPD'A	ordina a fala		nertania)	A 188	US RECEIVED	Barry Helli	18 HE 11/4	Ballyessu	DOMESTICS.	11/11/16	国际的	HURUM	Mariada	and the state of	THE RESIDENCE PROPERTY.	THE RESERVE AND ADDRESS.	155,631	auto kini	HERE'S LEE	2	16.00	PREMISED.	DEST	CONTRACTOR AND A	HERMAN	1	His Market	
	POL-3	2014 08 21	6.7	32.1	< 30	4,63	2,35	0.497	4.68	< 0.1	0.50	7.88	< 0.1	23	< 0.01	< 0.5	< 0.1	2.21	< 0.05	< 0.5	-	2,92	< 0,5	0,57	< 0.01		< 10	0,096	1.1	< 3
	POL-3	2014 08 27	9.6	33.6	< 30	5,02	8.29	0.567	4.84	< 0.1	0.59	8.35	× 0.1	16	< 0.01	< 0.5	< 0.1	2.49	< 0.05	< 0.5		2.86	< 0.5	0.81	< 0.01	< 0.01	< 10	0.112	Li	- 53
	POLS	2014 09 03	11	33.2	< 30	4.96	3.68	0.526	5.04	× 0.1	0.64	9.13	< 0.1	19	< 0.01	< C.5	€ 0.1	2.74	< 0.05	4 0.5		3,6	< 0.5	0.73	< 0.01	< 0.01	< 10	0.124	1.1	1 63

ASSOCIATED ALS SHAX: L1499730. L1499730. L1499730. L1499730. L1499730. L1499730. L1501501, L1501501, L1501541, L1502480, L1503046, L1503522. L1503522. L1503542. L1503543. L1504281, L1504987. L1505933, L1506582, L1503543. All terms defined within the body of SNC-Lavalin's report (available upon request).

Denotes concentration less than indicated detection limit or RPD less than indicated value.

- Denotes analysis not canducted,

n's Denotes no applicable standard.

RPDe ers not normally calculated where one or more concentrations are less than fire times ABD.

EHEDED Concentration proster than BCWQO Aquatio Life (AW) guidaline.

GOLO Concentration greater than BCWQG Crinking Water (DW) guideline.

Concernation prester than SCHAGS Aqueto Life (Siday) (AW) guidaline BOLD Concentration greater than or equal to Canadian Drinking Water Quality (DW) guideline.

* Laboratory describes Revit out of range.

Striben Calumide Approved Water Quality Qualitatives 2006 Edition, upsteed 2014.
 A Compandium of Working Water Quality Guidelines for Smitch Calumbia, upsteed August 2506.

* Quideline varies with pirt, and or Temperature or Herdress.

* Health Careas Drinking Wester Guidelmae, 2012.

" Secondary cheeric to change value, not 30 day mean. Quidette net applicable for elle situation

Outsigne for Nitrate appress.

* The table prospherus guide the is a procedure of late productively and is located on expering evolution or on everage of cultures complete and in this applicable to single exemple results of this price in time.

**Calculated based on an indivinual as explored to each, not everage of 30 day results.

**Calculated based on an indivinual as explored to each, not everage of 30 day results.

**Calculated based on an indivinual as explored to each, not everage of 30 day results.

**Calculated based on an indivinual as explored to each, not everage of 30 day results.

**Calculated based on an indivinual as explored to each, not everage of 30 day results.

#25712/2014 OH CD

TABLE Ja: Summary of Analytical Results for Mount Polley, Polley Lake - Surface Water DRAFT

			To relable	and the second of the			114						Assessed to serve		Dissolved	Metals.														
Sample Location	Sample	Sample Date (yvyy mm dd)	Dissolved Aluminum (up/L)	Calcium (mg/L)	Dissolved (Iron (Iron)	Dissolved Magnesium (mp/L)	Dissolved Manganese (pg/L)	Potessium (mg/t.)	4	Antimony		Barlem (pd/L)	Beryllium (vg/L)	Baron (ug/L)		Chromlum (up/L)	Cohalt (HO/L)				Mercury (ug/L)	Molybdenum	Nickel (pg/L)	Setentum (pg/L)	Silver	Thaillum	Titanium (vg/L)	Uranium (µg/L)		n Zia
Standards													- Jan - 1			11.0		1-0 -1	17-7-11					17.77	10.00-01	N-S-eri	APR1		1	UPSP
BCWQG Aquetic	Life (AW)hx		100°	rya	350	n/a	nla	nia	nia	n/a	nda	nte	nte	n/u	n/a	140	n/s	n/a	N/S	nte	n/a	ry/m	n/s	n/u	n/s	rda	rva	nyle	n/a	nda
BCVVQG Aquello	tile (30day) (AW)	ic	504	rva	n/a.	rule	n/u	r/a	nia	n/s	ryia	rula	nes	n/a	née	ru'u	nie	nia	n/e	n/a	nta	Ne	n/s	n/a	nia	nle	n/e	n/s	n/a	rva
BCWDB Drinkle	www.com		200	n/a	n/u	nte	nia	rula	n/a	n/a	nte	n/e	nfe	n/a	nfa	No	n/a	niles	Na	nie	rifa	n/a	n/e	n/a	n/a	nta	n/a	n/e	n/a	n/a
	ng Weter Quality (D)	W	rufa	Na	rVa .	NA	tvo	rue .	n/a	tVA	N/8	n/a	n/e	nia	0/4	twin.	rvia	n/a	n/u	n/a	nia	n/a	rula	nie	rva.	rup	nia	n/a	0/0	nie
POL-4	POL-4(11:03)	2014 DB 08	7.9	32.2	< 30	4.84	2.3	0.398	4.52	< 0.1	0.6	6.85	< 0.1	19	< 0.01	< 0.4	< 0.1		< 0.05		1,04	2.27	< 0.5	0.58	< 0.01		< 10	0.101	1.1	
	FOL-4(11:23)	2014 06 08	8.5	32.2	< 30	4,85	3.36	0,404	4,46	< 0.1	0.6	€,58	< 0.1	19	< 0.01	< 0.5	<0.1		< 0.05		mercumanus and or	2.25	< 0.5	0.58	< 0.01	< D.01	< 10	0.098	1.1	€;
	POLM	2014 De 08	B.4	31.9	< 30	4,72	0.481	0.413	4,31	e 0.1	0.57	6.88	< 0.1	30	< 0.01	< 0.5	< 0.1		< 0.05	-	-	2.34	< 0.5	0.54	< 0.01	< 0.01	< 10	0.112	1,1	<
	POL-4	2014 08 11	10.1	20.9	× 30	4,05	2.74	0.429	4.74	K 0.1	0.59	7,41	< 0.1	19	< 0.01	< 0.5	< 5.1		< 0.05			2.35	< 0.5	0.61	= 0.01	4 D.01	< 10	0.092	1.2	6
	POL-4	2014 D8 12	10.2	30.3	< 30	4.56	0.324	0.448	4.78	< 0.5	0.7	7.54	< 0.1	1 19	< 0.01	< 0.5	40.1		< 0.05			2.34	< 5.5	0.65	< 0.01	< 0.01	< 1D	0.039	1.3	*
	POL-4X	2014 08 12	9.7	30.9	< 30	4.71	0.329	0.383	4.54	< 0.3	0.58	7.06	< 0.1	21	< 0.01	< C.5	< 0.1		< 0.05			2.52	< 0.6	0.57	< 0.01		< 1D	0.106	11	× :
	WHITE GAID	CAPD %	calonamines.	Marian Company	auto in its	BEREITHERE	DECEMBER MARKET	BEREAR CARLE	6 110	10:00:01	10	Bill Mills	DESCRIPTION OF THE PERSON OF T	THE REAL PROPERTY.	ABRIDADES	Made again	MINE BY	OHE SHIP	2017/22	MILE DE	maran.	STREET, STREET	SHAME!	DEBUG TO SEE	11110201		SCHOOL STREET	10000231131	HUSSWEE	O ISLE
	POL-4	2014 08 13	124	31	< 30	4.99	2.76	0.44	4.41	× 0.1	0.6	7.58	< 0.1	22	< 0.01	× 0.5	< 0.1	2.19	< 0.05	< 0.5	-	2.51	< 0.5	0.59	< 0.01	× 0.01	× 10	0.105	1.1	< 3
	POL-4	2014 00 14	11	31.4	< 30	4.74	0.653	0.393	4.40	< 0.1	0.62	7.11	< 0.1	22	< 0.01	< 0.5	< 0.1	2.19	< 0.05	< 0.5		2.52	< 0.5	0.53	< 0.01	< 0.01	< 10	0,100	1.2	43
	POL-4	2014 DB 15	8,8	31,3	< 30	4.77	2.03	0.413	4,48	< 0.1	0.8	0,85	< 0.1	19	< 0.01	< 0.5	< 0.1	2.2	< 0.05	₹0.5	-	2.53	< 0.5	0.62	. 0.01	< 0.01	< 10	0.097	1.1	4
	POL-4	2014 08 16	8.5	31.9	× 30	4.85	2.94	0.435	4.32	< 0.1	3.58	7,13	< 0.1	17	< 0.01	< 0.5	< 0.1	2.13	< 0.05	< 05		2.4	< 0.5	0.56	< 0.01	4 0.01	« 1D	0.094	1.1	45
	POL-4	2014 08 17	8.9	32.5	< 30	4.84	2.59	0.453	4.58	< 0.1	9.61	7.2	< 0.1	21	< 0.01	< 0.5	< 0.1	2.78	< 0.05	< 0.5		2.87	< 0.5	0.57	< 0.01	< 0.01	< 10	0.102	1.1	< 3
	POL-4	2014 08 18	10,3	32	< 30	4.74	0.493	0.441	4,59	< 0,1	0,61	7.45	< 0.1	20	< 0.01	< C.5	< 0.1	212	< 0.05	< 0.5		2.64	< 0.5	0.58	< 0.01	€ 0.01	< 10	0,107	1.2	
	POL-4	2014 08 19	8.7	33.2	4 30	4.94	22.4	0.576	4.57	< 0.1	0.63	7.76	< 0.1	21	< 0.01	< 0.5	< 0.1	2.19	< 0.05	< 0.5		2.87	< 0.5	0.62	< 0.01	< 0.01	< 10	0.104	1.1	4.
	POL	2014 09 20	8.7	33.3	< 30	4.89	6.36	0.53	4.67	< 0.1	0.58	7.86	< 0.1	18	< 0.01	< 0.5	< 0.1		< 0.05			2.76	< 0.6	0.63	≠ 0.01	< 0.01	< 10	0,105	1.1	€ 5
	FOL-4	2014 08 21	8.8	32.4	< 30	4.62	1.84	D.430	4.67	< 0.1	0.52	7.38	< 0.1	20	< 0.01	< 0.5	< 0.1		< 0.05	Department of the		2.67	< 0.5	0.56	< 0.01	< 0.01	< 10	660.0	1.1	6.2
	POL-4	2014 08 27	9,3	34	< 90	5.01	7.05	0.526	4.74	* 0.7	0.02	7.96	< 0.1	18	< 3,01	< 0.5	< 0.1		€ 0.05			2.83	< 0.5	0.62	0.013		<10	0.111	1.1	< 3
	90L-4	2014 09 03	10.4	34.5	< 30	5.08	5.75	0.581	5.34	< 0.1	0.67	0.61	< 0.1	20	< 0.01	< 0.5	< 0.1	2.82	< 0.05	< 0.5	1.0	4.16	< 0.5	0.77	< 0.01	< 0.01	< 10	0.144	1.2	< 3

Avoudabled ALS (Not. 11400104, 11400700, 11400035, 11400035, 11400035, 11501501, 11501501, 11501501, 11501501, 11501504, 11503028, 11503

All terms defined within the body of SNC-Lavalinia report cavaliable upon request).

Leading the second of the sec

Donoles analysis net conducted. n/a Denotes no applicable slanders.

RPDs are not normally calculated where one or more concentrations are tess than the times MDL stranged Concentration greater than BCWQO Aquatic Ltd (AW) guideline.

2012 Concentration greater than ECWDG Drinking Water (DW) guideline.

Cancentration greater than BCWGG Aquatic Life (30day) (AW) guideline.

8000 Concentration greater then or equal to Canadian Urinking Water Quality (DW) guideline.

" Laborately detection tirelt out of range.

British Columbia Approved Witter Ovalley Guidelines 2006 Estiten, updates 2014,
 A Campendhin of Working Wales Caselly Guidelines for British Columbia, updated August 2009,
 Caddeline verse with ph, and or Tamperature or Hardiness.

* Health Cansala Dioniting Water Guadalness, 2013.

Guadalne for Nikola suplies.

The foliaghment of planting guadant for guadant

TABLE 3a: Summary of Analytical Results for Mount Polley, Polley Lake - Surface Water DRAFT

				1	1	-			-		1		-		7		Total Met	als		ре-	1 1		-	-	¥111				·		1
Sample Location	Sample	Sample Date (yyyy mm dd)	Aluminum (pg/L)	Antimony (µg/L)		Barjum (jigfL)	Beryllum (µg/L)		Boron (ygrl.)		Calcium (µg/L)	Chromkum (pg/L)			lros (jeg/L)	(and	Lithium (ug/L)	Manganese (µg/L)	Mercury (pgfL)	Molybdenum (µg/L)	Nickel (pg/L)		Selenturs (µg/L)			Yhallium		Titenium (ug/L)		Venedlum (pg/L)	
Standards		19999 11011 044	(March	(pure)	Billion	(Ballac)	- Applied	1	1 opuicy	(billin)	(hb)c)	(pg.c/	(Para)	70 1-11	Unper	(legar)	1 Appril	(parc)	i (paci	/PARTY	· Indee	99()	Interior	[pg-1	I MARTI	the district	(base)	(ME)C)	(Sept.)	(falls,r1	(pgil.)
CWQG Ame	untic Life (AIV)5.5	#1414-4-22-22-14-4-1-2-2-2-2-2-2-2-2-2-2-	Ne	20	5	5,000	n/e	rVe	1,200	0.0285- 0.0351 ^d	n/a	1 (Cr(+6))	110	0.9-12.1*	1.000	e5.3-80°	87c	1465-1710	Mathyl	2.000	25-85°	373,000- 432,000	2	0.1-3.04	n/e	0.3	rsia	2,000	300	6	33-45.8 ^d
ECWCIG Aqui	etic Life (30day) (A	W) ^{ks}	rda	ne	nte	1,000	5.3	Ne	rofa	th/m	n/a	n/a	4	3.4-4.3	nde	5.9-2.6"	14	974-1076*	eveltess augitor in	1,000	n/u	nAu	FUM	0.06-1.5	nia	nia	n/a	n/a	n/h	rulas	7,5-20.3
EWOS Drin	king Water (DW)		n/a	14	25	rvia	4	nia	5,000	nts	n/a	n/a	ntu	500	nia	50	nte	nta	1	250	n/a	n/a	10	n/a	nta	2	n/a	n/e	nia	nte	5,000
	nking Water Quality	(DM)	100	6	10	1 000	eve.	nfa	5.000	5	nía	50	nie	1,000	300	10	n/a	50	1	n/a	rs/ss	n/a	10	nia	200,000	n/a	n/e	rule	20	ruta	5.000
POL-1	PGL-1	2014 08 07	53.7	< 0.1	0.57	E 91	< 0.1	< 0.5	10	< 0.01	30,900	< 0.6	< 0.1	3.16	34	< 0.05	€ 0.5	8.21	< 0.05	2.17	1 < 0.5		0.53	< 0.01	4.060	< 0.01	< D.1	< 10	0.006	1.2	< 3
POL-2	POL-2	2014 08 07	139	€0.1	0.63	0.62	< 0.1	< 0.5	10	< 0.01	29,600	< 0.5	0,1	9.31	88	0.054	< 0.5	11.7	< 0.05	2.51	< 0.5	519	0.50	< 0.01	4.360	< 0.01	× 0,1	F 10	0.107	1.5	€3
. 50.4	POL-2(13:18)	2014 08 09	176	< 0.1	0.72	11.5	< 0.1	< 0.5	23	< 0.01	31,500	< 0.5	0.14	4.88	127	0.063	€ 0.5	19.6	< 0.05	2.89	< 0.5	570	0.64	< 0.01	4.770	€ 0,01	< 0,1	11	0.114	1.6	×3
	POL-2(16:54)	2014 08 08	714	< 0.1	0.65	11	< 0.1	< 0.5	20	< 0.01	28,600	<0.5	< 0.1	1.28	as I	≤ 0.05	€ 0.5	15.3	< 0.05	2.5	4 0.5	582	0.65	< 0.01	4.350	< 0.01	< 0.1	< 10	0.124	1.4	53
	POL-2	2014 08 09	237	< 0.1	0.72	11.4	< 0.1	₹ 0.5	21	< 0.01	31.000	< 0.5	0.18	9.6	160	0,068	< 0.5	13.7	< 0.05	2.91	< 0.5		0.50		4.730	< 0.01		13	0.163	1.9	<3
	POL-2X	2014 08 09	241	e 0.1	0.72	11.7	< 0.1	× 0.5		< 0.01	31,700	< 0.5	0,18	9.24	175	0.083	₹ 0.5	14.5	< 0.06	2.78	< 0.5		0.50	< 0.01		< 0.01	< 0.1	13	0.157	1.6	43
	DAVOC	RPD %	销国的 数据	DESCRIPTION OF THE PERSON OF T	0		HEN THE SHALL	THE STE	建筑器建	湖南區市協	B185126	SSECOUNT	(10.516)	MISSE, MER	9	QUINNAMED		网络南非洲	dens con	指指接到的	S STEELING	Barbara III	111111111111111111111111111111111111111	Sept. Com	MAR STATE	1000453400	mam	000000000	THE THE	A DESCRIPTION OF THE PARTY OF T	BRUINES
	PCL-2	2014 08 11	67.5	< 0.1	9.68	10	≤ 0.1	< 0.5	19	< 0.01	30,400	< 0.5	< 0.1	4.8	47	< 0.05	< 0.5	24.3	< 0.05	2.64	< 0.5	696	0.52	1 < 0.01	4,550	< 0.01	< 0.1	< 10	0.1	1.3	< 3
	POL-2	2014 08 13	36.7	< 0.1	0.69	7.73	< 0.1	< 0.5	10	< 0.01	31,000	< 0.5	€ 0.1	3.15	× 30	× 0.05	< 0.5	7.99	< 0.05	2.57	< 0.5	440	0.56	€ 0,01	4,610	< 0.01	< 0.1	< 10	0.104	1.3	< 3
	POL-2	2014 08 13	35.3	< 0.1	0.62	7,63	< 0,1	< 0.5	21	< 0.01	31,100	< 0.5	< 0,1	3,38	< 30	< 0.05	< 0.5	6,64	< 0.05	2,48	< 0.5	448	0.8	× 0.01	4.430	× 0.01	< 0.1	< 10	0.107	1.3	3.1
	PCL-2	2014 08 14	35.4	< 0.1	0.66	7.97	< 0.1	× 0.5		× 0.01	32,400	< 0.5	× 0.1	3.26	< 30	~ p.05	< 0.5	6.84	< 0.05	2.8	< 0.5	458	0.50	< 0.01	4.590	< 0.01	< 0.1	< 10	0.112	1.4	<3
	POL-2	2014 08 15	57.9	< 0.1	0,64	7.98	< 0.1	< 0.5	30	< 0.01	31,600	< 0.5	40.1	3.73	38	< 0.05	< 0.5	7.94	*	2.64	< 0.5	453	0.59	< 0,01	4,500	< 0.01	< 0.1	<10	0.104	1.3	< 3
	POL-2	2014 08 16	50.8	< 0.1	0.63	8.32	< 0.1	< 0.5		< 0.01	32,000	< 0.5	× 0,1	3,57	37	< 0.05	< 0.5	9,47		2.57	< 0.5	470	0.57	< 0.01	4,550	< 0.01	<0.1	< 10	0.106	1.2	1 43
	POU-2	2014 08 17	99,7	< 0.1	0.68	9.09	€0.3	< 0.5		< 0.01	31,600	< 0.6	× 0.1	5.28	B3	< 0.05	< 0.5	9.30	-	2.79	< 0.5	495	0.58	€ 0.01	4,700	≤ 0.D1	< 9.1	< 10	0.127	1.4	< 3
	POL-2	2014 06 18	58.3	< 0.1	0.61	8.67	<0.1	< 0.5		< 0.01	31,700	< 0.6	< 0.1	3.97	54	< 0.05	< 0.5	11.6		2.63	< 0.5		0.58	< 0.01	4,560	< 0.01	<0.1	€ 10	0.108	1.2	< 3
	PO12	2014 08 19	164	< 0.1	0.71	12.1	< 0.1	< 0.5	23	< 0.01	33,600	< 0.5	0,18	6,9D	148	0.074	< 0.5	50		2.74	< 0.5	599	0.6	0.022	4,770	< 0.01	< 0.1	11	0.108	1.5	< 3
	PO1-2	2014 06 20	286	< 0.1	0.72	13.3	<0.1	< 0.5		< 0.01	33,800	< 0.5	0.2	10.5	187	0.079	< 0.5	18.2		2.88	< 0.5	615	0.57	< 0.01	4,930	< 0.01	< 0.1	15	0.122	1.8	€3
	POL-2	2014 08 21	435	< 0.1	0.74	14.6	< 0.1	< 0.5		< 0,01	32,500	< 0.5	0,31	16.5	302	0,102	0.62	16,5		2,71	< 0.5	612	0.58	= C.01	4,730	< 0.01	< 0.1	24	0.12	2.1	<3
POL-3	POL-3(12:15)	2014 98 08	45.6	< 0.1	0.64	7.41	< 0.1	< 0.5	52	- 0.01	31,300	< 0.5	< 0.1	2.94	< 30	< 0.05	< 0.5	7.89	< 0.05	2,29	< 0.5	390	0.58	< 0.01	4,450	< 0.01	< 0.1	< 10	0.1	1.2	4.3
	POL-3(12/34)	2014 06 08	120	< 0.1	0.69	3.5	< 0.1	< 0.5	22	< 0.01	31,900	< 0.5	<0.1	8.01	07	0.059	< 0,5	18,1	< 0.05	2.31	< 0.5	561	0.57	< 0.01	4,390	< 0.01	< 0.1	< 10	0.102	1.5	<3
	POL-3	2014 08 09	40	< 0.1	0.71	7.57	< 0.1	₹ 0.5	20	< 0.01	31,200	< 0.5	< 0.1	3,18	30	< 0.05	< 0.5	11,3	< 0.05	2.31	< 0.5	437	0.52	< 0.01	4.280	0.01	< 0.1	< 10	0.098	1.3	<3
	POL-3	2014 08 11	37	< 0.1	0.81	10.7	< 0.1	< 0.6	20	0.022	33,400	< 0.5	< 0.1	4.5	< 30	< 0.05	< 0.5	82.5	< 0.06	2.48	< 0.5	1,580	+ 0.5	< 0.01	4,370	< 0.01	< 0.1	< 10	0.041	<1	<3
	POL-3	2014 08 12	41.9	< 0.1	0.67	8.02	< 0.1	< 0.6	18	< 0.01	31,100	× 0.5	<01	3,35	< 30	< 0.05	0.58	6.03	< 0.05	2.25	< 0.5	507	0,59	< 0.01	4,650	< 0.01	<01	< 10	0.095	1.3	<3
	POLS	2014 98 13	36	< 0.1	0.63	7.6	< 0.1	< 0.5	21	< 0.01	32,700	< 0.5	« 0,1	3,37	< 30	< 0.05	< 0.5	10.6	< 0.05	2.49	< 0.5	450	0.57	< 0.01	4,390	< 0.01	< 0,1	< 10	0,101	1,3	<3
	POL-3	2014 08 14	22.6	< 0.1	0.62	7.35	< 0.1	< 0.5	20	€ D,01	31,400	40.5	< 0.1 < 0.1	2.74	< 30	< 0.05 < 0.05	< 0.5	6.09	< 0.05	2.63	< 0.5	485	0.58	< 0,01	4,740	< 0.01	< 0,1	< 10	0,109	1,5	43
	PCL-3	2014 06 16	20.3	< 0.1	0,59	7.35	× 0.1	< 0.5		< 0.01	31,700	< 0.5	4 0.1	2.50	< 30	< 0.05	< 0.5	7.47		2,62	< 0.5	439	0.57	< 0.01	4,600	< 0.01	< 0.1	< 10	0,105	1.2	43
	POL-3	2014 08 17	27.3	40.1	0.83	7.52	« Q.1	< 0.5		< D.01	31.800	< 0.5	s 0.1	2.88	< 30	< 0.05	4 0.5	7.67	-	2.55	< 0.5	426	0.6	< 0.01	4,340	< 0.01	< 0.5	< 10	0,105	1.2	43
	POL-3	2014 08 18	22.8	< 0.1	0.69	7.44	< 0.1	< 0.5		< 0.01	31,000	< 0.5	< 0.1	2.61	< 30	< 0.05	< 0.5	6.86	1	2.58	1 × 0.5	435	0.59	< 0.01	4,720	< 0.01 < 0.01	< 0.1	< 10	0.111	1.1	3
	POL-3X	2014 06 18	22.8	< 0.1	0.5	7.54	<0.1	< 0.5		< 0.01	31,400	< 0.5	< 0.1	2.61	< 30	< 0.05	< 0.5	9.48		2.61	< 0.5		0.58	< 0.01		< 0.01	< 0.1		0.106	1.1	43
		RPD %	HOUSE HAD	RHINGSHI	1111/2/16		recognisting	DENGE HE		STREET, STREET,	1802 1089	GERTHANDS OF	100800	MERCHANIST MARKET	B I DESCRIPTION	BOLLEN BOOK	Carried State	AVERTICAL STREET	a seriorana	acontrol men	CHARGE CO.		U.S.	HITTER BUT	11112	THE PERSON	HONES.	THE RESIDENCE	3.100	PERSONAL DESIGNATION OF THE PERSON OF THE PE	< 3
	POL-3	2014 06 19	22.2	< 0.1	0.83	7.05	< 0.1	4 0.5		< 0.01	32,800	< 0.5	< 0.1	2.81	< 30	< 0.05	< 0.5	6.23	~	2.78	< 0.5	482	0.62	< 0.01	4,070	< 0.01	< 0.1	< 10	0.108	1.2	< 3
	POL-3	2014 08 20	20.4	4 0.1	0.66	8.15	<0.1	€ 0.5		< 0.01	32,700	< 0.5	< 0.1	2.73	< 30	< 0.05	€0.5	7.26	-	2.99	< 0.5	533	0.51	< 0.01	4,850	< 0.01	<0.1	< 10	0.111	1.2	43
	POL-3X	2014 08 20	18.3	€ D.1	0,67	8.32	< 0.1	40.6	23	< 0.01	33,600	< 0.5	< 0.1	2.70	< 30	< 0.05	< 0.6	7.00	-	3,07	< 0.5	546	< 0.5	< 0.01	4.640	< 0.01	< 0.1	<10	0.110	1.3	<3
	DAMOC	RPD WILLIAM		PRINCIPLE	2	2	ERGERT OFF	in the little and the	HUBBRE	SHOW WITH	310	外国信仰 第	Utility (Sec	REPORTED HE	II UHER	MINISTER MARKET	N SERVICE	HOLD CHARLES	B2855900		N HIGH BER		MARKE SERVER	STREET, STREET	CHEZICE	GUUSHUS	200000		CHEZRU	(Uadatan)	S EASTERNANCE
	POL-3	2014 08 21	25.0	< 0.1	0.64	7.61	< 0,1	< 0.5	21	< 0.01	33,000	< 0.5	< 0.1	2.86	< 30	< 0.05	< 0.5	7.39		3	40,5	459	0,59	< 0.01	4,910	< 0.01	< 0.1	< 10	0.114	1.2	< 3
	POL-3	2014 98 27	32.8	< 0.1	0.66	8,78	< 0.1	< 0.5	20	< 0.01	33,900	< 0.5	< 0.1	3.45	₹ 30	< 0.05	< 0.5	9.5		3.24	4 0,5	561	0.62	< 0.01	4.680	< 0.01	< 0.1	< 10	0.118	1.3	<3
	POL-3	2014 09 93	24.5	< 0.1	0.63	9.35	< 0.1	< 0.5	21	< 0.01	32,400	< 0.5	< 0.1	3.36	4 30	< 0.05	< 0.5	8.63	< 0.01	3.62	< 0.5	531	0.72	< 0.01	5.040	< 0.01	< 0.1	< 10	0.131	1.2	43

Associated ALC files: £1496194, £1496799, £1499595, £1499595, £1595901, £1595901, £1595901, £1592406, £1592946, £1593928, £1593928, £1593943, £1593943, £1594967, £1594967, £1595922, £1599597, £1513384.

All laters defined within the body of SNC-Levalin's legan (available upon request).

4 Denutes conseriration loss than indicated detection limit or fPD less than indicated value.

Denotes analysis not conducted, rule Denotes no explicable stenderd.

RPOs are not normally calculated where one or more concernations are less than two times MDC.

MADED Concentration greater than BCWGG Acusto Life (AW) guideline.

BOLD Concentration greater than BCWGG Drinking Water (DW) guideline.

MIADED Concentration greater than BOWGG Aqueto Life (30dey) (AVV) guida me.

APLD Concentration greater than as equal to Concedian Drawking Water Quality (DW) guideline.

* Leitersfory diffection limit out of range.
* British Celumine Approved Water Quality Euclopines 2006 Édition, updahed 2014.
* A Campendium of Wareing Water Quality Guidalines har British Gelumine, updahed August 2006.

* Outdeline vertee with pit and or Temperature or Hardness.

* Health Canada Dunking Water Goldelman 2012 f Guldaline for Mittale spelled,

* Health Canade Dunking Wilder Coldelines (2012

* Swendatry dreview or cruence value, not 30 day mean.

* Outside for Riture signified.

* Outside for the less signified.

* Outside for an explicable for signified and signified for an explicable for signification is a measure signified.

* Coldulated Resed on an helindust sample state, not average of 30 day resolts.

* Ostbutted Resed on an helindust sample state, not average of 30 day resolts.

* Ostbutted Resed on an helindust sample state, not average of 30 day resolts.

#21717/2014 DB 03 CANCEL IT SALE OR 11

TABLE 3a: Summary of Analytical Results for Mount Polley, Polley Lake - Surface Water DRAFT

																	Total Met	afe													(180 10
Sample Lucation	Sample (D	Semple Date (1999y mm dd)	Aluminum (ug/L)	Antimony (µg/L)	Arsenic (kg/L)	Barium (µg/L)	Boryllium (µg/L)	Blamut)	Boron (µg/L)	Cadmium (rg/L)	Calclum (pg/L)	Chromium (ug/L)	Cobalt (µg/L)	Copper (µg/L)	Iron (ug/L)	Lead (kg/L)	Lithium (pg/L)	Manganesa (µg/L)	Marcury (ug/L)	Molyludenum (ugfL)	Nickel (µg/L)	Potassium (pg/L)	Selenises (pp/L)	Silver (sg/L)	Sodkum (µg/L)	Thellium (µg/L)	Tin (pg/L)	20.00	Uranium (pg/L)	Vanadium (µg/L)	Zinc (pg/L)
Gtandards										erneuila - arm										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						71111 4	Contained.		r married to the		
SCWQG Aqu	etic Life (AVV) ^{k±}		n/a	20	5	5,000	n/a	8/9	1,200	0.0265-	ru'a	1 (0((+8))	110	9.9-12.1	1,000	65.3-89*	870	1465-1719	Maltyl	2,000	25-65"	373,000- 432,000	2	0.1-3.0	n/e	0.3	n/a	2.000	300	0	33-45.8
BCWDG Aqu	etic Life (3Dday) (A)	Alpre	n/e	D/s	rs/a	1,000	5.3	n/a	nte	0/6	rive	n/a	4	3.4-4.3	nin	5.9-6.8°	14"	974-1076°	mercury analysis in progress	1,000	n/a	nie	n/e	0.05-1,5	ณ์ต	n/u	n/a	role.	nta	nis	7.5-20.3"
CWDG DOW	king Water (DW)		r/s	14	25	n/e		Na	5.000	n/e	n/a	n/m	nie	500	nte	50	n/a	rela		250	nfa	n/a	10	pie	n/a	2	ria	rd's	nia	n/a	5.000
	nking Water Quality	MAII	100	8	10	1,000	n/a	Na	5 000	5	run	50	nia	1,000	300	10	n/o	50	1	n/a	nta	née	10	n/a	200,000	relu	0/0	nle	20	n/a	5,000
POL-4	POL-4(11:03)	2014 08 08	71,9	< D.1	0.65	7.63	< 0.1	€0.5		< 0.01	31,700	< 0.5	< 0.1	3.48	39	< 0.05	< 0.5	9.6	< 0.05	2.37	< 0.5	404	0.56	< 0.01	4.390	<0.01	× 0.5	< 10	0.106	1.3	5.3
. 02-	POL-4(11:23)	2014 08 08	267	< 0.1	0.71	0.47	<0.1	< 0.5	21	< 0.01	31,800	< 0.5	0.18	REPORT OF	228	0,126	< 0.5	16.2	< 0.05	2.34	< 0.5	482	0.59	< 0.01	4.520	< 0.01	< 0.1	*8	0.106	1.9	<3
	POL-4	2014 CB DD	69.7	< D.1	0.62	7.86	<01	< 0.5	20	< 0.01	31,800	< 0.5	< 0.1	3.21	37	< 0.05	< 0.5	15.1	< 0.05	2.37	< 0.5	434	0.55	< 0.01	4 300	< 0.01	< 9.1	s 10	0.112	1,2	<3
	POL-4	2014 06 11	43.1	< 0.1	0.66	7.44	< 0.1	< 0.5	10	5 0 01	29,900	< 0.5	s 0.1	3.23	₹30	< 0.05	< 0.5	8.43	< 0.05	2.47	< 0.5	470	0.51	< 0.01	4.450	< 0.01	<0.1	610	0.1	1.3	63
	POLH	2014 08 12	35.8	< 0.1	0.48	7.59	< 0.1	40.5	19	< 0.01	30,800	505	< 0.1	3.06	1 4 30	< 0.05	<0.5	6.52	< 0.05	2.43	<05	453	0,54	< 0.01	4.850	5 0.01	50.1	< 10	0.101	1.3	63
	POL-4X	2014 08 12	41.6	< 0.1	0.67	7.63	<0.1	< 0.5	19	< 0.01	31,300	505	5 0.1	3.02	< 30	< 0.05	< 0.5	8.02	₹ 0.05	2.52	< 0.5	450	0.54	< 0.01	4.520	< 0.01	501	510	0.105	1.3	53
	RESIDENCA/OC		BURNING REAL	RHIDDENE!	H BLANCE DICTO	BI PHON	PREFERENCE	HIND NAME	1000	10010131701		THE RESERVE OF THE PARTY OF THE	DOM: NO.	99494G29UU3	H THE LEEP I	alerzon anema	NUMBER OF	STOME, SERVE	S ZODISKO (TVI)	MARKET TERRET	RESIDE	7017 (3110)	AUDIO PRODU	DESCRIPTION OF THE PERSON OF T	STREET WEST	BETTE BESTE	THE REAL PROPERTY.	THE RESERVE	DESIRE CORRE	SHEEL AND LESS	HERMICH
	POL-4	2014 06 13	30.3	< 0.1	0.82	7.75	< 0.1	< 0.5	21	< 0.01	31,000	< 0.5	< 0.1	2.86	< 30	< 0.05	< 0.5	17.9	< 0.09	2.51	< 0.5	458	0.59	< 0.01	4.540	< 0.01	< 0.1	< 10	0.109	1.3	< 3
	POL-4	2014 08 14	31.5	< 0.1	0.63	7.62	< 0.1	< 0.5	22	< 0.01	32,000	< 0.5	< 0.1	2.67	< 30	< 0.05	< 0.5	5.81	< 0.05	2,58	< 0.5	407	0.61	< 0.01	4,480	< 0.01	< 0.1	< 10	0.110	1.4	< 3
	POLH	2014 08 15	22.3	< 0.1	0.65	7.22	< 0,1	< 0.5	30	< 0.01	31,100	< 0.5	< 0.1	2.63	< 30	< 0.05	< 0.5	6.56	-	2.82	< 0.5	439	0,57	< 0.01	4,550	< 0.01	<0.1	< 10	0.101	1.3	<3
	POL-4	2014 08 18	20.5	< 0.1	0.6	7.35	< 0.1	< 0.5	21	< 0.01	32,000	< 0.5	< 0.1	2.49	< 30	< 0.05	< 0.5	8.79		2.49	< 0.5	449	0.58	< 0.01	4,370	< 0.01	₹0.1	< 10	0.108	1.2	< 3
	POL-4	2014 08 17	23.2	< 0.1	0.62	7.56	< 0.1	< 0.5	2,1	< 0,01	32,900	< 0.5	€ 0.1	2.82	< 30	< 0.05	< 0.6	13	-	2.65	< 0.5	468	0.58	< 0.01	4.620	< 0.01	< 0.1	4 10	0.111	1.1	< 3
	POL-4	2014 08 18	24.7	< 0.1	0,61	7,51	< 0.1	< 0.5	21	< 0,01	32,100	< 0.5	< 0.1	2.66	< 30	< 0.05	< 0.5	9,33		2.69	< 0.5	444	0.58	< 0.01	4,570	< 0.01	< 0.1	< 10	0.117	1.2	< 3
	POL-4	2014 08 18	81.4	< 0.1	0.65	8,80	< 0.1	< 5.5		< 0.01	33,300	< 0.5	< 0.1	3,19	72	< 0.05	< 0.6	26.7	-	3.09	< 0.6	509	0.62	< 0.01	4,760	< 0.01	< 0.1	× 10	0.117	1.3	< 3
	POL-4	2014 08 20	22.3	< 0,1	0.68	8,08	< 0,1	< 0.5		< 0.01	32,900	< 0,5	< 0.1	2,68	< 30	< 0.05	< 0.5	9,37	-	3.10	< 0.5	532	0.65	< 0.01	4,810	< 0.01	< 0.1	< 10	0,118	1.2	×3
	POLA	2014 08 21	26	< 0.1	0.64	8.1	€ 0.1	< 0.5		< 0.01	33,700	< 0.5	< 0.1	2.95	< 30	< 0.05	<0.5	7.27	-	3,17	4 0.5	471	0.57	< 0.01	4,510	< 0.01	< 0.1	< 10	0.115	1.3	<3
	POL-4	2014 08 27	25.2	< 0.1	0.69	8.25	< 0.1	< 0.5	23	< 0.01	33,300	< 0.5	< Q.1	3.02	< 30	< 0.05	< 0.5	10.8	-	3.16	< 0.5	562	0.62	0.03	4,720	< 0.01	< 0.1	< 10	0.12	1,3	< 3
	POL-4	2014 09 03	23.7	< 0.5	0.67	10.1	< 0.1	< 0.5	23	< 0.01	34,000	< 0.5	< 0.1	3.47	< 30	€ 0.05	₹ 0.5	12.2	€ 0.01	4.47	< 0.5	605	0.76	< 9.01	5,470	< 0.01	< 0.1	< 10	0.149	1.2	< 3

Associated ALS files, L1486104, L1496709, £1499395, £1499395, £1504501, £1504501, £1504501, £1503040, £1503040, £1503004, £1504001, £1504201, £1504507, £1505033, £1506502, £1506502, £15045076, £1513364

As terms defined within the body of SMC-Levalin's report (evallable upon request).

< Donates concentration less than indicated detection final or MPD less than indicated yellow.

- Donotes analysis not conducted.

nie Danotes no applicable standard. RPDs are not normally calculated where one or more parameterations are sece than two somes MDC.

SHADED Concentration greater than BCWGC Aquetto Life (AW) guidaline.

BOLD Concentration greater than BCVVCC Drinking Water (DVV) guidaline.

SHADED Concentration greater than BCNACG Agunes Life (30day) (AM) guideline.

BDLD Concentration greater than or equal to Canadian Dilinking Water Quality (DW) guidaline.

* Laboratery defection that aut of sange.

British Counthin Asgraved Wister Quality Guissianes 2006 Estilles, updated 2014.

* A Companition of Westing Water Quality Guidelines for British Calembia, updated August 2006.

* Quistoline veries with pre, and as Yampereture or Mareness.

* Health Canada Drinking Water Guidelines 2012. Guidelles für Altrete äpplied.

Secondary chronic or chienis value, not 30 day maps. Cutdeline not applicable for alle placeties.

The model phinospherius guidedite in a measure of faito productivity and in based on apring overture or on average of automate earryles and in not applicable to angle namele number of this punct in how.

**Opticised beand on an individual earryle make, not average of 30 day results.

**Opticised beand on an individual earryle make, not average of 30 day results.

**Opticised beand on an individual earryle make, not average of 30 day results.

TABLE 3b: Summary of Analytical Results for Mount Polley, Polley Lake - Blanks DRAFT

			***************************************		,	Plo	sical Parar	restore	,			Microsiolo	gical Texts					Two by Williams						,
Semple Location	ocation ID (yyyymen d endards		Hardness (mg/L)	pH (field) (pH)	pHi (03f)	Temperaltere (fleid) (C)	Yurbidity (NTU)	Conductivity (p3/cm)	YDS (mgit.)	TES (mg/L)	DDC (mg/L)	Total Coliform (MPM/0.1L)	E. Coll (MPN/N, 1L)	Total Nitrogen (N) (mg/L)	Attenunta Mitrogen (ygiL)	Nitrale Mitrogen (pg/L)	Nitrite Nitrogen (µg/L)	Nitrate+Nitrite Nitrogen jugiti	Chloride (mg/L)	Filsorate (ug/L)	Eulphala (mg/L)	Total Alkalimity (as CaCO5) (mg/L)	Ortho- phosphate (mg/L)	Total Phosphoru (mg/L)
C Standards																					***********			
BCWQG Aqualic	Life (AW)**		eva.	6.5-9.0	6,6-9.0		Change of	n/a	n/e	Change of 25	n/e	n/a	n/a	N's	700-5,680*	32.500	60 (CI<2)	32.800	600	1264-1361*	e/a	n/a	n/a	0,003-0,015
ROWGG Aqualic	Life (30dey) (AVA)*	41	n/e	p/s	We.	change from ambent	Change of	n/9	n/a	Change of 5 ^t	+20% of modian background	n/e	n/a	n/u	135-1 000*	3,000	20 (GI<2)	3,000'	150	5/4	3094	n/e	n/a	n/a
BCWGG Drinking	- Lander Bright	Hamilton Commence	Ne	6.5-8.5	6.5-8.5	lens!	Change of	5/8	Is/a	n/m	0/8	ri/m	D/100ml	nie	rye.	10,000	1,000	10,000	250	1,500	500	n/e	n/e	0.01
Consider Drinking	g Water Quality (D)	M1	n/a	6.5-8.5	6.5-8.5	re/or	NE.	rufa	500	n/u	n/a	n/e ¹	D/100/mi	n/a	with an extension	10,000	1,000	nis	250	1,500	500	rs/e	ry'e	n/a
	CTERRESPECTATION	2014 08 20	× 0.5		5.96		< 0.1	*2	€10	43				< 0.0S	* 5	× 5	4.1		* 0.5	* 20	× 0.5	41	= 0.001	< 0.002*
TRIP BLANK	TRIP BLANK	2014 08 13			6.6		< 0.1	*2	× 10	× 3				≠ 0.05	45	45	41		40.5	₹ 20	× 0.5	<1	< 0.001	< 0.002*

All terms defined within the loody of SNC-Levalin's report (or whiche upon surpres).

Denotes concentration are then indicated defaultion fine) as RPD less than indicated value.

Denotes enalysis not conducted.

n'a Dunctes nu applicable stoneised.

* RPDs as not nationally solubilistic syture into its more concentrations are less than five times MOL.

| Concentration greater than SCHOOL Aquatic Life (ANY) guideline.

Goncentration greates than SCHOO Crieding Water (DW) guideline,

[1] [1] BHICKD [[1]] Concentration greater than SCWQG Aquatic LYs (20day) (AW) guidables. Concentralise greater than or equal to Canadian Orthibos Water Quality (DW) guideline.

Concentrations of what has the CL.

Laboratory destablish infect of range.

Barels Control Approvate West Outling Oxidetines 2006 Edition, inputs on 2014.

A Composition of Whiting Whiter Classicy Collections for Service Colored Collection. 2006 Edition 2006 Edition 2006.

Gardelines settled with pit-1, and of Impresentative in Victorias.

* Health Commis Crieding Water Guidelines, 2012

**Health Countries ary reverse customers (2012)

Countries to the North eaphyrid.

Countries to the North eaphyrid.

**This total phosphaseus publishes in a measure of total presidentity and in toward or spring coverties or exception of luminor exception und in any phosphaseus publishes in a measure of total presidentity and in toward or spring coverties or in least frequently and the spring coverties or in least frequently and the spring coverties or in the spring coverties of the presidentity and the

TABLE 3b: Summary of Analytical Results for Mount Polley, Polley Lake - Blanks OF/AFT

														.,	Dissolved	Metals														
Sample Location	elqms2 G)	Sample Date (yyyy mm dd)	Dissolved Ajuminum (eq/L)	Dissolved Calctan (mgA.)	pron gran		Dissolved Manganese [pg/L]	Dissolved Potassium (mg/L)	711070	Antimony			Beryllium (µg/L)									Malybdenum (yg/L)	Mickel (ug/L)		Billiver (pp/L)			Granium (pg/L)		
C Standards							-							-		_	1 /						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							and the state of
BCVYQG Aquatic	LED (AW) LIF		1004	1/4	350	n/a	n/a	nla	nia	IVa.	rvis	nvu	n/a	r/a	n/a	nje	n/a	nie	n/e	nla	IVs	n/s	n/a	rVa.	Na	9/20	n/a	19/8	n/a	Nu.
BCWGG Aquatic	Life (30day) (AW)	4.0	50*	nie	rt/Rg	n/a	n/a	nia	ela	n/a	r/a	D/D	n/s	n/e	6/8	n/q	6/3	nie	n/e	n/a	r/a	mi	n/a	nza	sia	n/a	n/a	n/a	n/s	rva
BCWOO Drinking	Water (DW)		200	n/a	n/e	n/a	vs/a	es/m	nia	z/a	n/s	IVA	n/s	rva .	0/4	n/s	cia	rsin	rsie	No.	rys.	r/a	n/a	PUB	n/e	n/a	r/e	n/a	n'e	rva
Canadian Drinking	Water Cuality (D)	W)	r/a	n/s	rivin	n/a	rs/a	n/a	n/a	n/a	rve.	rs/e	0/8	IVA	27/8	nie	N/a	rue.	n'e	15/60	rv's	rvin.	n/m	rup	tv/q	79/0	15/6	n/e	n's	CVB
OL-FIELD BLANK	PROFITE MINISTER STATEMENT	2014 08 20									-								-	-	-	*			*				-	
TRIP BLANK	TRIP BLANK	2014 08 13								1.2													-			- Section of the least	, lare or other late	a de la constitue de la consti		1

All terms delined within the budy of SNC-Lavelle's report (ovalidate spen request).

As some control write the long of Efficiency of a long of the control in sport produced in plant produced in plant produced in the PDD less than indicated developed.

Denotes an experience conducted.

Denotes an experience conducted.

Denotes an experience conducted described in the produced in the pr

GOLO Concestration greater than 50AQQ Drinking Water (DW) guideline SHADED Commission grader than SCWCG Aquato Life (30dey) (AIA) guidelina.

* Guidmine varies with pts, soil or Temperature or Herdinsse.

* Health Canade Christop Water Guide troo, 2012,

* Quideline for Microb age plant.

* Outside for extra age of surgives a straight or straight accepts to straight accepts and so straight accepts a straight accepts and so straight accepts a straigh

621717/2014 06 63 LWWyder_Sdiedeld ales GANGE to Jebs-de te PS-DBEJAN-JCC corner Projectionment Policy on any Company will 1971, About Policy of the Standards 19 Date Management (Bounds Philosyphila) Lander

TABLE 3b: Summary of Analytical Results for Mount Polley, Polley Lake - Blanks DRAFT

											,						Total Met	als	414		,			,	,						
Sample Location	Santple (D)	Sample Date (yyyy mm dd)	Aluminum (PRIL)	Antimony (pg/L)	Assenic (pop/L)	Garlam (pg/L)	Seryilium (µg/L)	Bismuth (pgfL)	Boron (rg/L)	Gadmium jugil.)	Calcium (µg/L)	Chromium (pg/L)	Cohalt (pg/L)	Copper (ug/L)	Iron (vg4.)	Lead (pg/L)	Lithiam (pgd.)	Manganese (ug/L)	Marcury (Marcury	Malybdanun (pg/L)	Nickel (ug/L)	Potasalum (pgrt.)	Selenium (pg/L)	Silver (pg/L)	Sodium (ug/L)	Thelitem	Tin (pg/L)	Titanium (µg/L)	Uranium (VVL)	Vanadkun (pg/L)	Zinc (jegrl.)
Standards			-					a Description of													-					constant					
BCWQG Aquatic L	un (AW)		n'a	20	6	6,000	n/a	n/a	1,200	0,0285 0.0351	rva	1 (Cr(+6))	110	0.0-12.1"	1.000	e5.3-e9 ⁴	870	1465-17104	Meslenyi	2,000	25-66"	373,000- 432,000	2	0.1-3.0"	nna	0.3	H/G	2,000	300	6	23-45,6
BCWOG Aguillie L	.sle (30dey) (ANV)*		ri/q.	m/u	n/a	1.000	5.3	n/a	n/a	n/a	nia	rifa	4	3,4-4,5"	rve	5.9-6.8°	14	9741076	brodings wereplays pri	1,000	R/G	n/q	n/a	0.05-1.5	n/a	N/B	n/A	r/a	nia	rs/a	7.5-20.3
BCWQQ Drinking 1	Whiter (DW)		n/a	14	25	n/a	4	rvie	5,000	ri/a	rite	rida	nia	500	rve.	90	rs/a	nva	1	250	nie	15/8	10	sv/a	nia	2	Na S	reia	15/8	15/30	5,000
Canadian Drinking	Weler Quality (DV	97)	100	0	10	1,000	n/a	rue	5,000	5	n/a	50	n/a	1,000	300	10	rva.	50	1	n/s	n/a	r/R	10	n/a	200,000	rva.	n/e	ro's	20	r/a	5,000
OLF CLD GLANK MIN	Mark to the supplementary of t	2014 08 20	4.3	* D.1	< 0.1	< 0.05	< 0.1	< 0.5	× 10	< D.01"	× 50	< 0.5	< 0.1	€0.5	< 39	< 0.05	< 0.5	< 0.05		< 0.05	< 0.5	× 50	< 0.5	× 0.01	< 50	× 0.01	× 0.1	< 10	< 0.01	<1	< 3
TRIP BLANK T	TRIP BLANK	2014 08 13	43	4 D.1	< 0.1	< 0.05	< D.1	<0.5	4 10	* 0.01"	× 50	< 0.5	< 0.1	<05	< 30	< 0.05	< 0.5	< 0.05	< 0.05	< 0.05	< 0.5	< 50	× 0.5	< 0.01	« 50	40.01	5 D.1	e 10	< 0.01	41	4.9

All forms delined within the body of SNC-Landon report products upon request,

Denotes percentantion less than hid based delection less or RPD less than indicated value.

Denotes analysis not conducted.

NO Opinities no applicable standard.
RPDs one not manyally oblindard where one or nece concentrations by less than the times NOS.
RPDs one not manyally oblindard! where one or nece concentrations by less than the times NOS.

GOLD Concentrative greates than BOWGO Driving Water (DW) guideline.

ANADED Conventration greeles then SCWOG Aquato Life (30Asy) (AW) guideline.

Company of the Co

* Health Cannels Dividing Vision Guidelines, 2012,

* Secondary classiful or city units value, not 20 day areas.

* Oxideline for Pittines against

* Oxideline for Pittines against

* Tittine builty benefitine to a criterious of latte productivity will be based on injurity

* Califoline and against a subject of a su

From:

Weir, David J FLNR:EX

Sent:

Monday, September 15, 2014 11:56 AM

To:

Bunce, Hubert ENV:EX

Subject:

RE: garbage that last email.

okay

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Monday, September 15, 2014 11:52 AM

To: Weir, David J FLNR:EX **Subject:** garbage that last email.

You will get the formal version later today, thanks

Hubert Bunce

A/Director, Mount Polley
Environmental Protection, Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

From:

Weir, David J FLNR:EX

Sent:

Monday, September 15, 2014 11:56 AM

To:

Bunce, Hubert ENV:EX

Subject:

RE: garbage that last email.

okay

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David, J. Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Monday, September 15, 2014 11:52 AM

To: Weir, David J FLNR:EX Subject: garbage that last email.

You will get the formal version later today. thanks

Hubert Bunce
A/Director, Mount Polley
Environmental Protection, Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

From:

Sabur, Muhammed A FLNR:EX

Sent:

Monday, September 15, 2014 11:01 AM

To:

Weir, David J FLNR:EX

Subject:

RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dave:

I am available.

Regards, M. Sabur

From: Weir, David J FLNR:EX

Sent: Monday, September 15, 2014 10:44 AM

To: Hoffos, Robin FLNR:EX; Sabur, Muhammed A FLNR:EX; Moe, James W FLNR:EX Subject: FW: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

I apologise for the short notice on this but would you be able to help me take a look at this plan this afternoon? We really don't have much input into this plan but I want to have a good look at it from the operational side as we have already made some significant contributions at that level in their operations and we may have valuable local knowledge to contribute here also.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Friday, September 12, 2014 5:06 PM

To: Demchuk, Tania MEM:EX; McConnachie, Jennifer MEM:EX; Weir, David J FLNR:EX; Metcalfe, Shelley ENV:EX; Babakaiff, Scott C FLNR:EX; 'Douglas (Mobile) Watt'; 'Rick Holmes'; 'Aaron.Higginbottom@williamslakeband.ca';

'nrcoordinator@xatsull.com'; 'kirk.dressler@williamslakeband.ca'

Cc: Hill, Douglas J ENV:EX; McGuire, Jennifer ENV:EX; Fenwick, Leigh-Ann ENV:EX **Subject:** FW: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

In the email below you will find a link to Erosion and Sediment control plan developed by SNC for MPMC. If you can review this document and get your comments back to me as soon as possible that would be appreciated, but by Sept 17 at the latest, as we are keen to get information back to the company so that those acceptable works can be implemented

this information is provided in confidence and is for your consideration only and not for distribution at this time.

I look forward to your comments

Hubert Bunce
A/Mining Director, Environmental Protection
Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

From: Nikl, Lee [mailto:Lee Nikl@golder.com]
Sent: Friday, September 12, 2014 2:54 PM

To: Bunce, Hubert ENV:EX

Cc: Johnson, Gordon; Don Parsons (dparsons@imperialmetals.com); Colleen Hughes; Steve Robertson

Subject: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dear Mr. Bunce,

On behalf of Mount Polley Mining Corporation, I am pleased to submit to you an erosion and sediment control plan for lower Hazeltine Creek, prepared by SNC Lavalin.

This plan is part of Mount Polley's efforts to limit the release of turbid waters to Quesnel Lake. The work proposed is part of our continuing incident response and was presented in summary form to the community of Likely on the evening of September 10th. Ministry staff were also present at that meeting.

We are providing this detailed plan to the Ministry for their review and we would ask that you provide us with prompt and specific feedback as we are planning to proceed with this work without delay. We are concurrently addressing matters such as the Archaeological permit and logisitics with respect to undertaking the physical works described in the plan. In the interest of expediency, we are submitting this to you in electronic form. If you require this in hard copy, please advise.

We look forward to your comments.

To access the file, it can be downloaded from the link below. Please note that this link will work for anyone to whom you forward this email. I have done it that way to facilitate your distribution. However, please be sure that you have confidence that parties receiving this email from you will not forward past the intended audience if access security is to be maintained.

Lee Nikl

File(s) will be available for download until 12 October 2014: File: <u>Erosion Sed Combined</u> Plan MPMC signed Sept112014.pdf, 15,142.90 KB

Lee Nikl (M.Sc., R.P.Bio.) | Principal / Senior Environmental Scientist | Golder Associates Ltd. | 500 - 4260 Still Creek Drive, Burnaby, British Columbia, Canada V5C 6C6
D: +1.604.297.2016 | T: +1.604.296.4200 | F: +1.604.298.5253 | C: +1.778.231.6636 | E: Lee Nikl@golder.com | www.golder.com

Work Safe, Home Safe

This email transmission is configurable that they contain an unfately information for the excutants use of the intended religious models are not the intended the intended religious or copying of the transmission letter than by the Intended recipient, to smooth propriet in the intended transfer that the intended the intended that it is a contained to the intended that it is a contained to the intended that it is a contained to the intended to

Godger Golder Associates and the GA gight decign are trademarks of Golder Associates Corporation.

Please consider the environment before printing this entail.

From:

Sabur, Muhammed A FLNR:EX

Sent:

Monday, September 15, 2014 11:01 AM

To:

Weir, David J FLNR:EX

Subject:

RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dave:

I am available.

Regards, M. Sabur

From: Weir, David J FLNR:EX

Sent: Monday, September 15, 2014 10:44 AM

To: Hoffos, Robin FLNR:EX; Sabur, Muhammed A FLNR:EX; Moe, James W FLNR:EX **Subject:** FW: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

I apologise for the short notice on this but would you be able to help me take a look at this plan this afternoon? We really don't have much input into this plan but I want to have a good look at it from the operational side as we have already made some significant contributions at that level in their operations and we may have valuable local knowledge to contribute here also.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Friday, September 12, 2014 5:06 PM

To: Demchuk, Tania MEM:EX; McConnachie, Jennifer MEM:EX; Weir, David J FLNR:EX; Metcalfe, Shelley ENV:EX; Babakaiff, Scott C FLNR:EX; 'Douglas (Mobile) Watt'; 'Rick Holmes'; 'Aaron.Higginbottom@williamslakeband.ca';

'nrcoordinator@xatsull.com'; 'kirk.dressler@williamslakeband.ca'

Cc: Hill, Douglas J ENV:EX; McGuire, Jennifer ENV:EX; Fenwick, Leigh-Ann ENV:EX Subject: FW: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

In the email below you will find a link to Erosion and Sediment control plan developed by SNC for MPMC. If you can review this document and get your comments back to me as soon as possible that would be appreciated, but by Sept 17 at the latest, as we are keen to get information back to the company so that those acceptable works can be implemented

this information is provided in confidence and is for your consideration only and not for distribution at this time.

Hook forward to your comments

Hubert Bunce
A/Mining Director, Environmental Protection
Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email

From: Nikl, Lee [mailto:Lee Nikl@golder.com]
Sent: Friday, September 12, 2014 2:54 PM

To: Bunce, Hubert ENV:EX

Cc: Johnson, Gordon; Don Parsons (dparsons@imperialmetals.com); Colleen Hughes; Steve Robertson

Subject: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dear Mr. Bunce,

BC Pollution Free

On behalf of Mount Polley Mining Corporation, I am pleased to submit to you an erosion and sediment control plan for lower Hazeltine Creek, prepared by SNC Lavalin.

This plan is part of Mount Polley's efforts to limit the release of turbid waters to Quesnel Lake. The work proposed is part of our continuing incident response and was presented in summary form to the community of Likely on the evening of September 10th. Ministry staff were also present at that meeting.

We are providing this detailed plan to the Ministry for their review and we would ask that you provide us with prompt and specific feedback as we are planning to proceed with this work without delay. We are concurrently addressing matters such as the Archaeological permit and logisitics with respect to undertaking the physical works described in the plan. In the interest of expediency, we are submitting this to you in electronic form. If you require this in hard copy, please advise.

We look forward to your comments.

To access the file, it can be downloaded from the link below. Please note that this link will work for anyone to whom you forward this email. I have done it that way to facilitate your distribution. However, please be sure that you have confidence that parties receiving this email from you will not forward past the intended audience if access security is to be maintained.

Lee Nikl

File(s) will be available for download until 12 October 2014: File: <u>Erosion Sed Combined</u> Plan MPMC signed Sept112014.pdf, 15,142.90 KB

Lee Nikl (M.Sc., R.P.Bio.) | Principal / Senior Environmental Scientist | Golder Associates Ltd. | 500 - 4260 Still Creek Drive, Burnaby, British Columbia, Canada V5C 6C6
D: +1.604.297.2016 | T: +1.604.296.4200 | F: +1.604.298.5253 | C: +1.778.231.6636 | E: Lee Nikl@golder.com | www.golder.com

Work Safe, Home Safe

This exist towards not depend and may contain proprietary information for the productive standard received as well. Any user tileful but on copying of this towards or colors or contains the first and the substitution of the production of the prod

Colder Colder Associates and the GA globe decign or - trademarks of -Sector 5 sociates Corporation

Please consider the environment before printing this enach.

From:

Weir, David J FLNR:EX

Sent:

Monday, September 15, 2014 8:32 AM

To:

Vanderburgh, Ken FLNR:EX

Subject:

FW: Mt Polley permit

FYI

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Friday, September 12, 2014 1:05 PM

To: Forgeng, Eric E FLNR: EX; 'Remi Farvacque'; 'Wendy Slavica'

Cc: Metcalfe, Shelley ENV:EX; Fenwick, Leigh-Ann ENV:EX; Weir, David J FLNR:EX

Subject: RE: Mt Polley permit

Lightning speed, Thanks Eric

Hubert Bunce

A/Mining Director, Environmental Protection

Regional Operations ph (250) 751-3254 fax (250) 751-3103 2080A Labieux Road Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Forgeng, Eric E FLNR:EX

Sent: Friday, September 12, 2014 12:00 PM **To:** 'Remi Farvacque'; 'Wendy Slavica'

Cc: Bunce, Hubert ENV:EX; Metcalfe, Shelley ENV:EX; Fenwick, Leigh-Ann ENV:EX; Weir, David J FLNR:EX

Subject: RE: Mt Polley permit

Hello everyone,

The Mt Polley HCA Section 14 permit has been issued as 2014-0264, documentation is being forwarded right now. You're clear to proceed whenever you're ready.

Please let me know if you have any questions

Best.

Eric Forgeng, MA | Archaeologist / Heritage Resource Specialist

Archaeology Branch | Ministry of Forests, Lands and Natural Resource Operations

Phone: 250-953-3362 | Fax: 250-953-3340 |e-mail: eric.forgeng@gov.bc.ca

Unit 3 - 1250 Quadra Street, Victoria BC V8W 2K7 | PO Box 9816 Stn Prov Govt, Victoria, BC V8W 9W3

Visit our website at: http://www.for.gov.bc.ca/archaeology/index.htm

From: Bunce, Hubert ENV:EX

Sent: Friday, September 12, 2014 09:33

To: Forgeng, Eric E FLNR; EX

Cc: Metcalfe, Shelley ENV:EX; Fenwick, Leigh-Ann FLNR:EX

Subject: RE: Mt Polley permit

Thanks for keeping me in the loop

Hubert Bunce

A/Mining Director, Environmental Protection

Regional Operations ph (250) 751-3254 fax (250) 751-3103 2080A Labieux Road Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Forgeng, Eric E FLNR:EX

Sent: Friday, September 12, 2014 8:32 AM

To: Bunce, Hubert ENV:EX Subject: RE: Mt Polley permit

Application is in hand, I'll keep you posted.

Best. Eric

Eric Forgeng, MA | Archaeologist / Heritage Resource Specialist Archaeology Branch | Ministry of Forests, Lands and Natural Resource Operations Phone: 250-953-3362 | Fax: 250-953-3340 |e-mail: eric.forgeng@gov.bc.ca Unit 3 - 1250 Quadra Street, Victoria BC V8W 2K7 | PO Box 9816 Stn Prov Govt, Victoria, BC V8W 9W3

Visit our website at: http://www.for.gov.bc.ca/archaeology/index.htm

From: Bunce, Hubert ENV:EX

Sent: Thursday, September 11, 2014 16:34

To: Forgeng, Eric E FLNR:EX

Cc: Weir, David J FLNR:EX; Glaum, Doug FLNR:EX; 'Adam.kantakis@williamslakeband.ca'; Fenwick, Leigh-Ann FLNR:EX;

'Nikl, Lee'; Batten, Justine FLNR:EX Subject: RE: Mt Polley permit

Hi Eric, thanks for taking this on

Whatever can be done to speed up this application process would be appreciated. Mount Polley Mine Corporation has received letters of agreement from the Williams Lake and Soda Creek Indian bands thus negating the consultation period for these bands as I understand it. The province, the mine, and the community are keen to see activity move forward on actions to protect against further degradation of the environment

The province has signed a Letter of Understanding with the WLIB and SCIB (attached) to work at a govt to govt level and s.16

Hubert Bunce

A/Mining Director, Environmental Protection

Regional Operations

ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road

Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Weir, David J FLNR:EX

Sent: Thursday, September 11, 2014 12:48 PM

To: Bunce, Hubert ENV:EX Subject: FW: Mt Polley permit

FYI.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Glaum, Doug FLNR:EX

Sent: Thursday, September 11, 2014 12:20 PM

To: Weir, David J FLNR:EX; 'Adam.kantakis@williamslakeband.ca'; Forgeng, Eric E FLNR:EX

Cc: Fenwick, Leigh-Ann FLNR:EX Subject: RE: Mt Polley permit

I've assigned Eric Forgeng to oversee this permit application. He will be your contact.

Doug Glaum

Archaeology Branch

Ministry of Forests, Lands and Natural Resource Operations

1250 Quadra

(250) 953-3357

Visit our website

From: Weir, David J FLNR:EX

Sent: Thursday, September 11, 2014 11:51 AM

To: 'Adam.kantakis@williamslakeband.ca'

Cc: Glaum, Doug FLNR:EX; Fenwick, Leigh-Ann FLNR:EX

Subject: Mt Polley permit

I understand that the permit has not been applied for yet? Please submit the application immediately. If you are worried about its completness please call Doug and I believe he will help you out.

David Weir
Water Section Head,
Ministry of Forest Lands and Natural Resource Operations
Williams Lake, BC
David.J.Weir@gov.bc.ca
(250) 398 4924
Cell 250 267-5925

From:

Weir, David J FLNR:EX

Sent:

Monday, September 15, 2014 2:46 PM

To:

Bunce, Hubert ENV:EX

Subject:

RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Hi Hubert.

I have had time to look these over quickly. I have the following comments, questions, and concerns:

1: A flow of 2.5m3 per second was recorded in Hazeltine creek in 1997; I suspect this year's peak flow exceeded this number.

e 13

I have no concerns with the concept proposed for the sediment control works but ask that the design be beefed up a little. If this will be moving to a habitat restoration project I would like to know when it would be appropriate for our habitat section to be engaged? Also, they mention working with MOF on access issues but it is not clear what is being done in this regard. The new channel is unlikely to allow for putting the old crossing structures back in their original places and may require road relocations and crossings closer to the new stream channel apex.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Friday, September 12, 2014 5:06 PM

To: Demchuk, Tania MEM:EX; McConnachie, Jennifer MEM:EX; Weir, David J FLNR:EX; Metcalfe, Shelley ENV:EX; Babakaiff, Scott C FLNR:EX; 'Douglas (Mobile) Watt'; 'Rick Holmes'; 'Aaron.Higginbottom@williamslakeband.ca';

'nrcoordinator@xatsull.com'; 'kirk.dressler@williamslakeband.ca'

Cc: Hill, Douglas J ENV:EX; McGuire, Jennifer ENV:EX; Fenwick, Leigh-Ann ENV:EX **Subject:** FW: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

In the email below you will find a link to Erosion and Sediment control plan developed by SNC for MPMC. If you can review this document and get your comments back to me as soon as possible that would be appreciated, but by Sept 17 at the latest, as we are keen to get information back to the company so that those acceptable works can be implemented

this information is provided in confidence and is for your consideration only and not for distribution at this time.

Hook forward to your comments

Hubert Bunce
A/Mining Director, Environmental Protection
Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email.
BC Pollution Free

From: Nikl, Lee [mailto:Lee Nikl@golder.com]
Sent: Friday, September 12, 2014 2:54 PM

To: Bunce, Hubert ENV:EX

Cc: Johnson, Gordon; Don Parsons (dparsons@imperialmetals.com); Colleen Hughes; Steve Robertson

Subject: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dear Mr. Bunce.

On behalf of Mount Polley Mining Corporation, I am pleased to submit to you an erosion and sediment control plan for lower Hazeltine Creek, prepared by SNC Lavalin.

This plan is part of Mount Polley's efforts to limit the release of turbid waters to Quesnel Lake. The work proposed is part of our continuing incident response and was presented in summary form to the community of Likely on the evening of September 10th. Ministry staff were also present at that meeting.

We are providing this detailed plan to the Ministry for their review and we would ask that you provide us with prompt and specific feedback as we are planning to proceed with this work without delay. We are concurrently addressing matters such as the Archaeological permit and logisitics with respect to undertaking the physical works described in the plan. In the interest of expediency, we are submitting this to you in electronic form. If you require this in hard copy, please advise.

We look forward to your comments.

To access the file, it can be downloaded from the link below. Please note that this link will work for anyone to whom you forward this email. I have done it that way to facilitate your distribution. However, please be sure that you have confidence that parties receiving this email from you will not forward past the intended audience if access security is to be maintained.

Lee Nikl

File(s) will be available for download until **12 October 2014**: File: <u>Erosion Sed Combined</u> Plan MPMC signed Sept112014.pdf, 15,142.90 KB

Lee Nikl (M.Sc., R.P.Bio.) | Principal / Senior Environmental Scientist | Golder Associates Ltd. | 500 - 4260 Still Creek Drive, Burnaby, British Columbia, Canada V5C 6C6
D: +1.604.297.2016 | T: +1.604.296.4200 | F: +1.604.298.5253 | C: +1.778.231.6636 | E: Lee Nikl@golder.com | www.golder.com

Work Safe, Home Safe

This elds the energiage of controlled and controlled as the redocted for the policities use of the trended recipient. Any use distribution on against of this ment has been the five the ment of the residence of against an analysis and the ment of the sector and delete all copies. Electronic media is successful to a unauthorized modification description of any mark brooked may not be electronic media to the elect

interest, from the contraction of the contraction o

Pinally gall units from extremental tentors commisely than excess.

From:

Bunce, Hubert ENV:EX

Sent:

Monday, September 15, 2014 2:54 PM

To:

'Jack Love'

Cc:

'Dale Reimer'; Hoffman, Al MEM:EX; 'Colleen Hughes'; 'Amy Crook';

'Aaron.Higginbottom@williamslakeband.ca'; 'kirk.dressler@williamslakeband.ca';

'nrcoordinator@xatsulf.com'; Weir, David J FLNR:EX

Subject:

CEIA response for your review

2014-09-12 MOE feedback on MP...

here is the ministry review relative to the MPMC CEIA submitted Aug 29

Hubert Bunce

A/Director, Mount Polley

Environmental Protection, Regional Operations

ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road

Nanalmo BC V9T 6J9
Please consider the environment before printing this email

BC Pollution Free

September 15, 2014 File: Order 107461

Via Email: JLove@imperialmetals.com

Mount Polley Mining Corporation Suite 200 – 580 Hornby St Vancouver BC V6C 3B6

Attention: Jack Love, Environmental Manager

Re: Review of Mount Polley Mining Corporation's Comprehensive Environmental Impact Assessment provided on August 29, 2014 under Order 107461

On August 29, 2014, the Ministry of Environment received Mount Polley Mining Corporation's *Mount Polley Comprehensive Environmental Impact Assessment Work Plan* (the Plan) which was prepared by SNC-Lavalin, dated August 29, 2014 and submitted under Pollution Abatement Order 107461.

The Plan was reviewed by many government staff with varying expertise and this letter is meant to provide Mount Polley Mining Corporation (MPMC) with feedback to assist with finalizing the Plan.

Additional comments from the Environmental Working Group, which includes the Soda Creek Indian Band and Williams Lake Indian Band, could be expected.

	Reviewers
Chapter 1	Kym Keogh, Impact Assessment Biologist, Ministry of Environment
	Gabriele Matscha, R.P.Bio, Impact Assessment Section Head – Mining, Ministry
	of Environment
Chapter 2	Kym Keogh, Impact Assessment Biologist, Ministry of Environment
	Gabriele Matscha, R.P.Bio, Impact Assessment Section Head – Mining, Ministry
	of Environment
	Scott Babakaiff, P.Geo., Fish Hyrdologist, Ministry of Forests, Lands and
	Natural Resource Operations
Chapter 3	Kym Keogh, Impact Assessment Biologist, Ministry of Environment
	Gabriele Matscha, R.P.Bio, Impact Assessment Section Head - Mining, Ministry
	of Environment
Chapter 4	Remi Odense, Risk Assessment Officer, Ministry of Environment
	Peter Kickham, Risk Assessment Officer, Ministry of Environment
	Stephen Dankevy, Senior Contaminated Sites Officer, Ministry of Environment

Kym Keogh, Impact Assessment Biologist, Ministry of Environment
Gabriele Matscha, R.P.Bio, Impact Assessment Section Head – Mining, Ministry
of Environment
Remi Odense, Risk Assessment Officer, Ministry of Environment
Peter Kickham, Risk Assessment Officer, Ministry of Environment
Stephen Dankevy, Senior Contaminated Sites Officer, Ministry of Environment
Joanne McLeod, Habitat Biologist, Ministry of Forests, Lands and Natural
Resource Operations
Kym Keogh, Impact Assessment Biologist, Ministry of Environment
Gabriele Matscha, R.P.Bio, Impact Assessment Section Head – Mining, Ministry
of Environment
Lee Williston, Fish Biologist, Ministry of Forests, Lands and Natural Resource
Operations
Jennifer Puhallo, R.P.Bio, Impact Assessment Biologist, Ministry of
Environment
Gabriele Matscha, R.P.Bio, Impact Assessment Section Head – Mining, Ministry
of Environment
Gabriele Matscha, R.P.Bio, Impact Assessment Section Head - Mining, Ministry
of Environment
Deb Epps, R.P.Bio, Section Head, Provincial Water Quality, Ministry of
Environment

Chapter 1: Cultural and Heritage Impact Assessment

- The Forest Lands and Natural Resource Operation's (FLNRO) planning database has a number of archaeological site locations with GPS information that may not be in the database with the Archaeology Branch. These sites would consist of old mining structures such as ditches.
- There is nothing in this section that addresses what the process would be for any known archaeological sites that were impacted by the tailings storage facility (TSF) breach.

Chapter II: Hydrology Impact Assessment

• This chapter focuses solely on the Hazeltine Creek channel.

s.13

It seems the information is largely collected to determine best stream channel options.
 s.13

- Will there be any work to determine the porosity/permeability of the original creek bed and similarly of the current creek bed?
- Has there been any information collected on the groundwater contribution to Hazeltine Creek? If so, is it considered in the current hydrological evaluations?

The following review of the Work Plan includes the hydrologist's interpretation of onsite conditions viewed on August 16-17 2014, and represents his opinion provided to Statutory Decision Makers within the Ministry of Environment. It should not be interpreted as professional advice given to MPMC, nor as guidance that the independent professionals working on behalf of MPMC are obligated to follow.

The Work Plan makes reference to a Comprehensive EIA & Action Plan (dated August 15 2014), and a subsequent Ministry of Environment (MoE) response (dated August 21 2014). I provided review comments (dated August 17 2014) to MoE staff on the Comprehensive EIA & Action Plan, but I have not been provided a copy of the actual (August 21 2014) MoE response to the proponent. As such, I am not certain if any (or all) of my review comments were provided to the proponent & their consultants, but several of my August 17 2014 review comments do not seem to have been addressed in the Work Plan, and they are reiterated herein.

I have four general comments regarding the Work Plan:

- 1. Formatting adopted in the Work Plan does not allow for efficient reference & review. For instance, Tables in the various sections are not numbered, and the coding for Work Plan sections & pages (roman numerals, dashes & points, numerals) is awkward. For future reporting, the Work Plan authors should adopt more straightforward formatting style (e.g. standards used by the BC Environmental Assessment Office for Applications, or standards used in graduate theses submitted for University Library archiving).
- 2. Section II-3 of the Work Plan commits to generate three reports by the Hydrological Impact Assessment:
 - "A description of the Hazeltine channel prior to and following the breach, the location & description of the tailings, results of hydraulic modelling, and erosion & sedimentation of the tailings";
 - 2. "A description of the hydrology of Hazeltine Creek";
 - 3. "A design report describing the rehabilitation of the channel, supported by engineered drawings & technical specifications".

These three reports seem to correspond to three respective sections tahulated on p.II-3 and p.II-4: "Channel Assessment", "Hydrological Assessment" and "Channel Design & Construction". The three reports are logically sequenced, and the Tasks described on p.II-3 and p.II-4 are generally appropriate,

3. The eleven Tasks in the three sections tabulated on p.II-3 and p.II-4 (ie. six (H-CA-1 to 6) for the Channel Assessment; two (H-HA-1 to 2) for the Hydrological Assessment; three (T-CD-1 to 3) for the Channel Design & Construction) are logical & well-organized,

s.13

s.13

s.13

• I understand and agree with the desire to use historic information to assess the recent evolution of channel form (and to interpret channel process),

- Details regarding the Hydrometric Gauges and Sediment Discharge (Task T-HA-2, which should presumably be named <u>H</u>-HA-2, not T-HA-2) are absent:
 - i. Why is this monitoring being completed? Are there thresholds (e.g. discharge exceeding x m³/s from tailings pond or turbidity exceeding x NTU in Lower Hazeltine Creek) linked to action items?
 - ii. Where (ie. gauge locations) and how (ie. continuous data collection or spot measurements)?

s.13

s.13

Chapter III: Water Quality Impact Assessment

• This chapter remains relatively general, s.13

 A table of sample sites (referenced to a site map) showing sampling frequency, and analysed parameters, sampling periods is included in Appendix II for the current sampling program.

s.13

- · s.13
- The scope of the water quality impact assessment includes the Quesnel River to immediately downstream of Likely.

s.13

- s.13
- •
- •
- •

•

Chapter IV: Soil Quality Impact Assessment

- s.13
- _
- A key initial requirement of contaminated site assessment is to identify all of the Potential Contaminants of Concern (PCOC), and this entails a review of the history, use and preliminary chemistry data from the site.

File: Order 107461

s.13

CSR Technical Guidance

<u>Document 1</u> – Site Characterization and Confirmation Testing provides guidance on sampling and typical sample collection spacing for investigating contaminated sites in BC.

CSR Technical Guidance

<u>Document 12</u> – Statistics for Contaminated Sites provides guidance on using statistics to characterize soils.

Site specific soil conditions, such as pH and organic carbon content, can greatly modify
the bioavailability and mobility of the substances and these soil characteristics are
included in the sampling plan.

s.13

• There are a variety of leachate tests which can be done for soil to estimate the availability of contaminants and leachate tests are proposed in the work plan. The work plan does not provide the test methodology for proposed leachate testing, however for contaminated site screening level risk assessment, the Land Remediation Section has determined that (for soils with a pH greater than 5.5) the USEPA's synthetic precipitation leaching procedure (SPLP), Method 1312, should be used with a weak acid (Fluid #3, with a pH of 5). Another question is bow variable is the tailings composition, i.e. is the initial breach material different from the later hreach material farther down gradient?

s.13

 Determining background soil concentrations of contaminants of concern can be useful in determining applicable clean-up standards at sites especially in mineralized areas and this is proposed as part of the sampling for the 18 soil transects. It is not completely clear where the background soil samples will be collected,

s.13

Chapter V: Sediment Quality Impact Assessment

During the Monitoring Meeting on September 2, a gap was identified for the deep areas
out from Hazeltine Creek. According to the September 2 meeting minutes, MPMC was
going to collect this info, likely through three transects out from Hazeltine at various
depths. \$.13

- Another item from the September 2 meeting were sediment cores. It was discussed that they may be done at a later date for deep sites.
- s.13
- The sediment quality triad is a standard approach for assessing contaminated sediment and it is essential that the three components are sampled together so that correlations can be made between the chemistry, biological assessment and toxicity.
- The Sediment Quality Triad will provide a "snapshot" regarding the condition of sediments at the time of the investigation. There are a number of issues that may manifest over a longer term. For example:
 - What investigations are planned to determine the potential for bioaccumulation and biomagnifications to occur with contaminants of concern deposited in the aquatic environment?
 - What is the potential for mercury deposited in sediments to methylate, and at what point in the future could this issue manifest? Will this be evaluated by the sediment assessment?
 - What is anticipated in terms of geochemical changes over time in lake and stream sediments? Could changes in pH, Eh result in changes to the bioavailability of sediment contaminants of concern?

.

Weight of evidence (WOE) is proposed for the assessment of multiple lines of evidence.
 s.13

Chapter VI: Terrestrial Impact Assessment

- VI-1 Purpose and Scope: The terrestrial areas also affected by the TSF breach include wetland habitat along Hazeltine Creek, the lower reaches of Bootjack Creek, the confluence of Edney and Hazeltine Creeks, and sections of upland forest ecosystems (including CCLUP designated Old Growth Management Areas) adjacent to Hazeltine Creek.
- s.13

• V1-2.3 Analysis and Assessment:

s.13

• VI-3 Reporting: From the Terrestrial Impact Assessment, a Reclamation Plan is proposed for the terrestrial habitat impacted by the TSF breach.

s.13

s.13

 Task ID T-DR-3: The TSF breach impacted legal land use objectives under the Cariboo Chilcotin Land Use Plan, areas designated as Critical Fish Habitat and Old Growth Management Areas (OGMA). Task ID AQ-FP-4b: This task recommends assessing the potential effect of the TSF breach on fish communities.

s.13

Chapter VII: Aquatic Impact Assessment

• CRA refers to commercial, recreational and aboriginal fisheries. These three uses often have different objectives and rely on different species.

s.13

- Quesnel River (which is downstream of Likely) has not been included in this section.
 As the TSF breach was located near the lake outlet and the lake current moves to the Quesnel River, the impacts will potentially affect the river biota.
- Pg. VII-2, 2nd bullet a) includes the estimate of the magnitude loss of spawning fish and associated habitat in Hazeltine Creek, West Arm of Quesnel Lake and Polley Lake.
- Pg. VII-2, 2nd bullet b) identifies fish bioaccumulation as one component to be covered.
 s.13
- Reporting: This chapter states that information will be collected for a year (for 4 quarters) to then be integrated into a comprehensive impact assessment. When will the CEIA be submitted?

s.13

- s.13
- s.13
- AQ-FP-2c Correction sentences are repeated. How will increased predation be determined?
- AQ-FP-2d How is rainbow trout movement going to be monitored?

٠	AQ-FP-4b What is defined as direct mortality? Would that have extended past the initial
	TSF breach? How would the cause of mortality be established? How will increased
	predation due to impaired avoidance response be determined? Will this rely on
	laboratory testing?

- AQ-FP-5bThe first part of the work described does not match the title of Identifying Shoreline and Shallow Benthic Values and appears to be habitat compensation.
- · In general, the activities related to fish collection are vague.

- s.13
- s.13

There are ongoing conservation concerns for Quesnel Lake rainbow trout and bull trout.
 s.13

Chapter VIII: Environmental Risk Assessment

• The plan itself appears to be comprehensive and generally sufficient to deal with the current and potential future risks for use of the area.

s.13

- s.13
- .

• Under Task RA-DR-2 the consultant indicates that they will be evaluating data for inclusion in the risk assessment against data quality objectives that will be presented in the data review and gap analysis report.

s.13

s.13

- Pg. VIII 7, RA-PF-2: In the Standards column BCMWLAP approved and working water quality guidelines are identified. We agree that BCMWLAP water quality guidelines should be used for screening.
- It is expected that the risk assessment problem formulation will be provided to MoE once it is available.

Chapter IX: Current Monitoring Program

 Pg. IX-1: It is indicated that the parameters exceeding BC Water Quality Guidelines (BCWQGs) in the monitoring results would be identified as COPCs.

s.13

- Pg. IX-3, Chapter IX-4 indicates that permits were obtained to sample a number of residential and migratory sport fish. However they are not mentioned in the detailed plans. What are the plans to sample the sport fish (e.g. timelines, methods).
- Pg. IX-4, Chapter IX-5, item 8) indicates that shipping over weekends and holidays should be generally avoided.
- Aquatic toxicity is listed in the table A, pg IX-6 but what is the frequency of these tests. There was also discussion that aquatic toxicity tests were being conducted within the suspended solids plume as well. This is not discussed in report.

s.13

Will sediment sample sites

be added based on results of the plume delineation and plume movement?

• There is no medium and long term plan indicated.

.

 MPMC agreed to install three continuous turbidity monitors in Quesnel Lake for overwinter at key locations, one to the east, one out from Hazeltine and one down towards Likely.

s.13

MPMC agreed to fund zooplankton metals analysis for plankton collected by UNBC.
 And to fund metals analysis and histology for juvenile sockeye that DFO collect in Late Sept. 5.13

Appendix II: Project Schedule:

• I notice that the sediment sampling implementation ends in October. Does this mean there is no more sampling later in the year? Is this due to bad weather/sampling conditions? What is the rationale?

s.13

Generally, the impression of the Plan is that it is still a relatively high level document and while the topics covered look reasonably complete, actual adequacy will depend on how the specific details are fleshed out.

s.13

Yours truly,

Hubert Bunce

A/ Director, Mount Polley

Environmental Protection, Regional Operations

Buller S. S.

cc: Al Hoffman, Chief Inspector, Ministry of Energy and Mines, Al.Hoffman@gov.bc.ca
Dale Reimer, Mine Manager, MPMC, dreimer@mountpolley.com
Colleen Hughes, Environmental Coordinator, MPMC, chughes@mountpolley.com
Amy Crook, Fair Mining Collaborative, amy@fairmining.ca
Aaron Higginbottom, Williams Lake Indian Band,
Aaron.higginbottom@williamslakeband.ca
Kirk Dressler, Willisams Lake Indian Band, kirk.dressler@willisamslakeband.ca
Julia Banks, Xatsull First Nation, nrcoordinator@xatsull.com
David Weir, Water Stewardship, FLNRO, Williams Lake, David.J.Weir@gov.bc.ca

From:

Moe. James W FLNR:EX

Sent:

Tuesday, September 16, 2014 10:54 AM

To:

Weir, David J FLNR:EX Stolar, Harold B FLNR:EX

Subject:

RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

As I was out of the office on Monday, I was unavailable for a joint Review, I have since had a quick look and I do have some concerns, we need to talk.

James Moe, RFT
District Engineering Officer
Ministry Natural Resources Operations
Cariboo-Chilcotin Forest District
Field Services, Engineering Section
(250) 398-4782 phone
(250) 398-4790 fax
mailto:james.moe@gov.bc.ca

From: Weir, David J FLNR:EX

Sent: Monday, September 15, 2014 10:44 AM

To: Hoffos, Robin FLNR:EX; Sabur, Muhammed A FLNR:EX; Moe, James W FLNR:EX

Subject: FW: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

I apologise for the short notice on this but would you be able to help me take a look at this plan this afternoon? We really don't have much input into this plan but I want to have a good look at it from the operational side as we have already made some significant contributions at that level in their operations and we may have valuable local knowledge to contribute here also.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David, J. Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Friday, September 12, 2014 5:06 PM

To: Demchuk, Tania MEM:EX; McConnachie, Jennifer MEM:EX; Weir, David J FLNR:EX; Metcalfe, Shelley ENV:EX; Babakaiff, Scott C FLNR:EX; 'Douglas (Mobile) Watt'; 'Rick Holmes'; 'Aaron.Higginbottom@williamslakeband.ca';

'nrcoordinator@xatsull.com'; 'kirk.dressler@williamslakeband.ca'

Cc: Hill, Douglas J ENV:EX; McGuire, Jennifer ENV:EX; Fenwick, Leigh-Ann ENV:EX Subject: FW: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

In the email below you will find a link to Erosion and Sediment control plan developed by SNC for MPMC. If you can review this document and get your comments back to me as soon as possible that would be appreciated, but by Sept 17 at the latest, as we are keen to get information back to the company so that those acceptable works can be implemented

this information is provided in confidence and is for your consideration only and not for distribution at this time.

Hook forward to your comments

Hubert Bunce
A/Mining Director, Environmental Protection
Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

From: Niki, Lee [mailto:Lee Nikl@golder.com]
Sent: Friday, September 12, 2014 2:54 PM

To: Bunce, Hubert ENV:EX

Cc: Johnson, Gordon; Don Parsons (dparsons@imperialmetals.com); Colleen Hughes; Steve Robertson

Subject: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dear Mr. Bunce,

On behalf of Mount Polley Mining Corporation, I am pleased to submit to you an erosion and sediment control plan for lower Hazeltine Creek, prepared by SNC Lavalin.

This plan is part of Mount Polley's efforts to limit the release of turbid waters to Quesnel Lake. The work proposed is part of our continuing incident response and was presented in summary form to the community of Likely on the evening of September 10th. Ministry staff were also present at that meeting.

We are providing this detaited plan to the Ministry for their review and we would ask that you provide us with prompt and specific feedback as we are planning to proceed with this work without delay. We are concurrently addressing matters such as the Archaeological permit and logisitics with respect to undertaking the physical works described in the plan. In the interest of expediency, we are submitting this to you in electronic form. If you require this in hard copy, please advise.

We look forward to your comments.

To access the file, it can be downloaded from the link below. Please note that this link will work for anyone to whom you forward this email. I have done it that way to facilitate your distribution. However, please be sure that you have confidence that parties receiving this email from you will not forward past the intended audience if access security is to be maintained.

Lee Nikl

File(s) will be available for download until **12 October 2014**: File: <u>Erosion Sed Combined</u> <u>Plan MPMC signed Sept112014.pdf</u>, 15,142.90 KB

Lee Nikl (M.Sc., R.P.Bio.) | Principal / Senior Environmental Scientist | Golder Associates Ltd. | 500 - 4260 Still Creek Drive, Burnaby, British Columbia, Canada V5C 6C6 D: +1.604.297.2016 | T: +1.604.296.4200 | F: +1.604.298.5253 | C: +1.778.231.6636 | E: Lee_Nikl@golder.com | www.golder.com

Work Safe, Home Safe

The environment of the control of the control of precess in the force and the respect of the control of the con

Codaça (Cigilin di Minica de Anali di Deligidos incesçanas e Maletra Raida Sendri Nicere incentra il 18 m

Yez er e membelek oluk a titur tetturt eller i da ockur leig 1994 bestekli

From:

Bunce, Hubert ENV:EX

Sent:

Tuesday, September 16, 2014 9:48 AM

To:

Weir, David J FLNR:EX

Subject:

RE: Mt Polley September 29th Boat Trip Quesnel Lake

I would like to try to get up there for the boat trip. I plan on being in WL this Thursday and Friday so could meet up with you then. Will be in touch

Hubert Bunce

A/Director, Mount Polley

Environmental Protection, Regional Operations

ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road

Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Weir, David J FLNR:EX

Sent: Tuesday, September 16, 2014 8:12 AM

To: Bunce, Hubert ENV:EX; Henley, Margaret TRAN:EX; XT:Carpenter, Penny FLNR:IN; Williston, Lee X FLNR:EX; Hoffos,

Robin FLNR:EX

Cc: Wells, Duane TRAN:EX; Wiebe, Wes J TRAN:EX; Fenwick, Leigh-Ann ENV:EX

Subject: Mt Polley September 29th Boat Trip Quesnel Lake

I would like to arrange a boat trip in order to confirm the state of the debris clean up, look at the Kokanee shore spawning areas, and address as many issues as we can prior to the 2015 spring freshet relating to the cleanup. I am proposing September 29th 2015. Please get back to me concerning this as soon as possible.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC <u>David.J.Weir@gov.bc.ca</u> (250) 398 4924 Cell 250 267-5925

From:

Henley, Margaret TRAN:EX

Sent:

Tuesday, September 16, 2014 8:21 AM

To:

Weir, David J FLNR:EX

Cc:

Bunce, Hubert ENV:EX; XT:Carpenter, Penny FLNR:IN; Williston, Lee X FLNR:EX; Hoffos,

Robin FLNR:EX; Wells, Duane TRAN:EX; Wiebe, Wes J TRAN:EX; Fenwick, Leigh-Ann

ENV:EX

Subject:

Re: Mt Polley September 29th Boat Trip Quesnel Lake

I am available that date.

Sent from Margie's iPhone

On Sep 16, 2014, at 8:11 AM, "Weir, David J FLNR:EX" < David J. Weir@gov.bc.ca > wrote:

I would like to arrange a boat trip in order to confirm the state of the debris clean up, look at the Kokanee shore spawning areas, and address as many issues as we can prior to the 2015 spring freshet relating to the cleanup. I am proposing September 29th 2015. Please get back to me concerning this as soon as possible.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From:

Hoffos, Robin FLNR:EX

Sent:

Tuesday, September 16, 2014 8:19 AM

To:

Weir, David J FLNR:EX

Subject:

RE: Mt Polley September 29th Boat Trip Quesnel Lake

Right now that works for me.

From: Weir, David J FLNR:EX

Sent: Tuesday, September 16, 2014 8:12 AM

To: Bunce, Hubert ENV:EX; Henley, Margaret TRAN:EX; XT:Carpenter, Penny FLNR:IN; Williston, Lee X FLNR:EX; Hoffos,

Robin FLNR:EX

Cc: Wells, Duane TRAN:EX; Wiebe, Wes J TRAN:EX; Fenwick, Leigh-Ann ENV:EX

Subject: Mt Polley September 29th Boat Trip Quesnel Lake

I would like to arrange a boat trip in order to confirm the state of the debris clean up, look at the Kokanee shore spawning areas, and address as many issues as we can prior to the 2015 spring freshet relating to the cleanup. I am proposing September 29th 2015. Please get back to me concerning this as soon as possible.

David Weir
Water Section Head,
Ministry of Forest Lands and Natural Resource Operations
Williams Lake, BC
David.J.Weir@gov.bc.ca
(250) 398 4924
Cell 250 267-5925

From:

Jack Love <JLove@imperialmetals.com> Monday, September 15, 2014 9:48 PM

Sent: To:

Bunce, Hubert ENV:EX

Cc:

Dale Reimer; Hoffman, Al MEM:EX; Colleen Hughes; Amy Crook;

Aaron.Higginbottom@williamslakeband.ca; kirk.dressler@williamslakeband.ca;

nrcoordinator@xatsull.com; Weir, David J FLNR:EX

Subject:

Re: CEIA response for your review

Hello Hubert

We have received the Ministry of Environments comments

Regards,

Jack Love 604-358-2699

On Sep 15, 2014, at 2:53 PM, "Bunce, Hubert ENV:EX" < Hubert.Bunce@gov.bc.ca > wrote:

here is the ministry review relative to the MPMC CEIA submitted Aug 29

Hubert Bunce

A/Director, Mount Polley
Environmental Protection, Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

20 | 0112,1011 | 100

<2014-09-12 MOE feedback on MPMC CEIA.PDF>

From:

Weir, David J FLNR:EX

Sent:

Monday, September 15, 2014 4:05 PM

To:

Vanderburgh, Ken FLNR:EX

Subject:

RE: Expenditures relating to Mt. Polley

I am currently managing Mt Polley off the edge of my desk and no significant after hours time has been committed to it. Although, it is beginning to impact productivity at my end with respect to water licences and approvals.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Vanderburgh, Ken FLNR:EX

Sent: Monday, September 15, 2014 3:46 PM

To: Stewart, Rodger W FLNR; EX; Pedersen, Mike FLNR; EX; Weir, David J FLNR; EX

Subject: FW: Expenditures relating to Mt. Polley

My understanding is this would include cases where we have contributed significant staff time beyond what normal duties or situation would require. Please forward your estimates, if any and I will respond to Mary, Thanks

From: Myers, Mary E CSNR:EX

Sent: Monday, September 15, 2014 3:02 PM

To: Vanderburgh, Ken FLNR:EX **Cc:** Manwaring, Richard G FLNR:EX

Subject: Expenditures relating to Mt. Polley

Ken, the Chief Financial Officer (CFO) for MEM is coordinating costs associated with the Mt. Polley incident. Do we have any costs incurred or planned? Thanks.

Mary Myers A/CFO, A/ED Financial Services Branch, CSNR Supporting the Ministry of FLNR

Phone: 250 952-0229

From:

Penny Carpenter \$.22

Sent:

Tuesday, September 16, 2014 7:55 PM

To:

Weir, David J FLNR:EX

Subject:

RE: Mt Polley September 29th Boat Trip Quesnel Lake

I can make it on that date.

Penny

From: Weir, David J FLNR: EX [mailto:David.J.Weir@gov.bc.ca]

Sent: September-16-14 8:12 AM

To: Bunce, Hubert ENV:EX; Henley, Margaret TRAN:EX; XT:Carpenter, Penny FLNR:IN; Williston, Lee X FLNR:EX; Hoffos,

Robin FLNR:EX

Cc: Wells, Duane TRAN:EX; Wiebe, Wes J TRAN:EX; Fenwick, Leigh-Ann ENV:EX

Subject: Mt Polley September 29th Boat Trip Quesnel Lake

I would like to arrange a boat trip in order to confirm the state of the debris clean up, look at the Kokanee shore spawning areas, and address as many issues as we can prior to the 2015 spring freshet relating to the cleanup. I am proposing September 29th 2015. Please get back to me concerning this as soon as possible.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC <u>David.J.Weir@gov.bc.ca</u> (250) 398 4924 Cell 250 267-5925

From:

Stewart, Rodger W FLNR:EX

Sent:

Tuesday, September 16, 2014 4:37 PM

To:

Weir, David J FLNR:EX

Subject:

INFO: Coordination of planning and practice for Mt. Polley restoration

For your reference.

Rodger Stewart
Director, Resource Management
Ministry of Forests, Lands and Natural Resource Operations
Cariboo Region
400 - 640 Borland Street
Williams Lake, BC
V2G 4T1
cell (250) 305 8536, desk (250) 398 4549
fax (250) 398 4214

From: Bunce, Hubert ENV:EX

Sent: Tuesday, September 16, 2014 4:31 PM

To: Stewart, Rodger W FLNR:EX

Cc: Epps, Deb ENV:EX

Subject: RE: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Restoration of the terrestrial and aquatic areas of the spill impacted areas are still some way off and we are currently working on short term corrective and mitigation strategies as a priority. The seeding of impacted areas occurred late last week but plans for long term vegetation recovery have yet to be defined

Deb Epps is leading our response to the mines proposal on the environmental assessment and restoration biological mine and would be your best point of contact. Environmental Protection is very interested in getting input from other agencies regarding best potential courses of action for the mine impacted areas.

Hubert Bunce

A/Director, Mount Polley
Environmental Protection, Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

From: Stewart, Rodger W FLNR:EX

Sent: Tuesday, September 16, 2014 1:51 PM

To: Bunce, Hubert ENV:EX

Subject: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Hubert, what say you respecting the circumstances FLNR regional operations finds itself in?

Rodger Stewart
Director, Resource Management
Ministry of Forests, Lands and Natural Resource Operations
Cariboo Region
400 - 640 Borland Street

Williams Lake, BC V2G 4T1 cell (250) 305 8536, desk (250) 398 4549 fax (250) 398 4214

From: McGuire, Jennifer ENV:EX

Sent: Tuesday, September 16, 2014 1:11 PM

To: Stewart, Rodger W FLNR:EX; Bunce, Hubert ENV:EX

Cc: Hoffos, Robin FLNR:EX; Vanderburgh, Ken FLNR:EX; Fenwick, Leigh-Ann ENV:EX **Subject:** Re: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Roger,

Hubert would be the best person to speak to. Hubert is the RD - responsible for Mount Polley.

Jennifer

Sent from my BlackBerry 10 smartphone on the TELUS network.

From: Stewart, Rodger W FLNR:EX

Sent: Tuesday, September 16, 2014 1:04 PM

To: McGuire, Jennifer ENV:EX

Cc: Hoffos, Robin FLNR:EX; Vanderburgh, Ken FLNR:EX

Subject: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Jennifer, could you please direct me to the correct contact responsible for coordinating inter-agency deliberations respecting planning and selection of practices for restoration of areas impacted by the My Polley event?

We are aware of the submission made by Imperial Metals in response to the Ministry of Environment pollution abatement order. We know that works undertaken consistent with the pollution abatement submission may serve for purposes of addressing specific pollution abatement matters. However, it would appear that restoration works are a substantively different matter. Or are they? We simply do not know enough at this point.

We at FLNR regional operations face substantive uncertainty as to the schedule of planning for works leading to restoration of terrestrial and aquatic ecosystems at the impact sites (where practicable). It is expected that such enterprise would require inter-agency deliberation, yet we (in a supporting role) have no specific information as to who has lead responsibility for various elements of this project.

Hope you might be able to point us in the correct direction.

Rodger Stewart
Director, Resource Management
Ministry of Forests, Lands and Natural Resource Operations
Cariboo Region
400 - 640 Borland Street
Williams Lake, BC
V2G 4T1
cell (250) 305 8536, desk (250) 398 4549
fax (250) 398 4214

From: Sent: Dale Reimer <dreimer@mountpolley.com> Tuesday, September 16, 2014 12:16 PM

To:

Weir, David J FLNR:EX

Subject: Attachments: FW: Mt Polley Mt Polley.pdf

From: Dale Reimer

Sent: September-16-14 9:32 AM

To: 'Alan.Day@gov.bc.ca'; Hoffman, Al MEM:EX; Steve Rothman; Demchuk, Tania MEM:EX

Cc: Stolar, Harold B FLNR:EX Subject: FW: Mt Polley

Please find attached the engineered drawings for the Gavin Lake road bridge. The drawings for the Ditch Road bridge should ready by this afternoon. We plan to commence work on the approach to the Gavin Lake road bridge late tomorrow or Thursday morning. The site has been inspected by the First Nations Archeologists and has been cleared to proceed. Regards: Dale

Dale Reimer General Manager Mount Polley Mining Corporation Box 12 Likely, B.C. VOL 1NO Ph. 250-790-2600 Cell 250-305-8530

From: Daryl Taylor [mailto:d.taylor@celticengineering.ca]

Sent: September-16-14 9:16 AM

To: 'Russ Gibson'; Dale Reimer; Art Frye; Don Parsons **Cc:** Christine Seinen; <u>d.taylor@celticengineering.ca</u>

Subject: FW: Mt Polley

Please see attached document for the upper crossing.

Daryl

From: Christine Seinen [mailto:c.seinen@celticengineering.ca]

Sent: Tuesday, September 16, 2014 8:59 AM

To: Daryl Taylor Subject: Mt Polley

Christine Seinen

Office Manager Celtic Engineering Ltd #304-383 Oliver Street Williams Lake, BC V2G 1M4

www.celticengineering.ca	
c.seinen@celticengineering.c	a
F 250.483.1907	
P 250.392.5159	

×	This email is free from viruses and malware because <u>avast! Antivirus</u> protection is active.
×	This email is free from viruses and malware because <u>avast! Antivirus</u> protection is active.

IMPERIAL METALS MT. POLLEY **UPPER HAZELTINE**

L-100 60ft BRIDGE DESIGN

PREPARED FOR:

ostuly Imperial Metals - Mt. Polley

PREPARED ON:

Sept 15, 2014

Sheet Number	Sheet Na	me
1	Cover Sheet	
2	Site Pictures	• CHEMINING
3	Bridge Site	
4	Bridge Cross Section, Road	l Profile
5	Town Abutment Detail	The state of the s
6	Woods Abutment Detail	
7	Site Plan, Sediment and Ero	osion Control
8	Notes	
		PURET M MAGE

Celtic Engineering Ltd. design & construction

TOWN APPROACH

LOOKING TO BUSH

UPSTREAM FROM CROSSING

DOWNSTREAM FROM CROSSING

EXISTING ABUTMNET LOCATION

NEW ABUTMENT LOCATION

SHEET NUMBER

PROJECT
MT. POLLEY UPPER HAZELTINE
CROSSING 60ft BRIDGE DESIGN
Marit.
Cita Dialisma

Site Pictures

SCACE.	SURVEY CREW, SW, KB	
DESIGNED BY DT	DATE: Sept 15,2014	
WE SI. YE NWARD	REVISION NUMBER:	
CHECKED N/A	REVISION DATE	
SITE SURVEY, Sept 8, 2014	JOB # P_460	

HYDRO	LOGY
^	11.88 m³/s
C 100	11,000 17,100

B XS - ROAD PROFILE

		RIP	RAP TAB	LE			
CLASS OF	NOMINAL THICKNESS	ROCK GR	ADATION:	PERCENT	ARGER TH	W GIVEN	HASS (kg)
	OF RIPRAP (mm)	65	3%	50	3%	15'	%
25	4GC	2.5 kg	50 (700)	25 kg	300 mm	75 kg	400 mm

L-Stn m.	Cul Dp. m.	Grade %	V Birk	SG Cut V.	SG FIII V.	Mass H. Cu. m.
0.0 43.4 63.9 82.3 94.1 107.4 133.8 168.1	0.1 6.1 -1.6 -1.8 0.1 0.7 0.0	-2 0 0 0 0 94 7 6	0 2 0 1 0 0 0	200.4 22.2 0.0 23.8 96.3 94.6 15.1	15.3 188.4 3.4 133.2 7.2 6.0 42.1	0.0 185.1 18.5 17.1 92.4 - 0.4 85.3 58.3
Cum. Tot.		Carrie o marco	and the second s	452.4	395.7	100000000000000000000000000000000000000

PRICLE	CT						
MT.	PO	LLEY	UF	PE	RHA	ZEL	TINE
CR	oss	ING	60ft	BR	DGE	DE	SIGN
SHEET	-		-	-		********	-
Bric	de C	coss	Se	ction	. Ro	ad F	rofile

	SCALE: As indicated	SURVEY CREW: SW, KB
1	DESIGNED BY: DT	DATE: Sept 15,2014
_	DRAWN BY: JS, SW	REVISION NUMBER:
1	CHECKED: N/A	REVISION DATE:
1	SITE SURVEY: Sept 8, 2014	JOB #: P_460

SHEET NUMBER

ABUTMENT - TOWN

2 LOG CRIB ABUTMENT STEEL

SITE SURVEY: Sept 8, 2014

Celtic Engineering Ltd.

DESIGN & CONSTRUCTION #304-363 Oliver St., Williams Lake, DC, V2G 1M4 250-192-5159 (ph) info@criticengineering.ca

MT. POLLEY UPPER HAZELTINE CROSSING 60th BRIDGE DESIGN

Town Abutment Detail

SCALE: As indicated SURVEY CREW: SW, KB SHEET NUMBER DESIGNED BY: DT DATE: Sept 15,2014 5 DRAWN BY: JS, SW REVISION NUMBER: CHECKED: NA REVISION DATE: JO9 N: P_460

ABUTMENT - WOODS

3 LOG CRIB ABUTMENT STEEL

MT. POLLEY UPPER HAZELTINE CROSSING 60ft BRIDGE DESIGN

Woods Abutment Detail

SCALE: As indicated	SURVEY CREW, SW, KB	SHEET NUMBER
DESIGNED BY: DT	DATE: Sept 15,2014	
DRAWN BY: JS, SW	REVISION NUMBER:	6
CHECKED: N/A	REVISION DATE:	U
SITE SURVEY: Sept 0, 2014	JGB 8: P_460	

TYP. WOOD DECK PANEL BEARING PLATE, TYP. STEEL PLATE GIRDER 8" MIN Ø LOG BALLAST WALL 2 - 25Ø x200 LG. LAG SCREW PER BEARING, TYP. 3 - 24" DIA, TOPPED CRIB LOG 1" DRIFT PIN MIN - 3 PER LOG 0.50 m PACK MIN 0.5m IN FRONT OF **BOTTOM LOG** LEVELING COURSE AS NEEDED.

3 HIGH SILL LOG CRIB ABUTMENT SECTION

Celtic Engineering Ltd.

DESIGN & CONSTRUCTION #304-383 Oliver St., Williams Lake, GC, V2G IM4 250-392-5159 (ph) inforcel/transpiseering ca

Imperial Metals

1 - GEOTECHNICAL

NO SUBSURFACE GEOTECHNICAL INVESTIGATION WAS PERFORMED AT THE SITE, GROUND CONDITIONS MAY VARY, AND AS SUCH, FOUNDATION REQUIREMENTS MAY RESULT IN THE MODIFICATION OF THE CONCEPT BY AN ENGINEER TO ACCOUNT FOR ON SITE CONDITIONS THAT MAY BE ENCOUNTERED DURING CONSTRUCTION. IT WILL BE THE RESPONSIBILITY OF THE FIELD ENGINEER TO DETERMINE THE SUITABILITY OF THE BRIDGE.

2 - HYDROLOGY AND HYDRAULIC ASSESSMENT

- . HYDRAULIC ANALYSIS BASED ON CHANNEL CONDITIONS COULD VARY OVER TIME.
- FIRES BOARD HEIGHT REQUIREMENT SHOWN REFERS TO UPSTREAM FACE OF BRIDGE.
- THE EXTENT OF THE RIPRAP IS BASED ON AVAILABLE INFORMATION. THE EXTENTS SHOULD BE ADJUSTED IN THE FIELD TO ENSURE ADEQUATE SCOUR PROTECTION IS PROVIDED TO THE BRIDGE SUBSTRUCTURE AND ABUTMENTS.

3 - DRIDGE DESIGN

- CONFORM TO CAN/CSA-56-36(MODIFIED) AND THE MINISTRY OF FORESTS AND RANGE, "FOREST SERVICE BRIDGE DESIGN AND CONSTRUCTION MANUAL", 1999.
- A.I. BRIDGE COMPONENTS SHALL CONFORM TO THE MINISTRY OF FORESTS AND RANGE STANDARD DRAWINGS UNLESS APPROVED BY OWNER.
- LOADING: BCL-625(63 730 KG G.V.W.) ECCENTRICITY IN ACCORDANCE WITH S6-06
- FATIGUE: DESIGN TO BE COMPLETED IN ACCORDANCE WITH CAN/CSA-S6-06 500,000 CYCLES.

4 - CONSTRUCTION NOTES:

ALTERATION TO STREAM BANKS AND IN-STREAM WORK MUST BE SUPERVISED BY QUALIFIED PERSON, SEDIMENT MANAGEMENT TO REDUCE SILTATION IS REQUIRED, IN-STREAM MACHINE CROSSINGS ARE NOT PERMITTED WITHOUT PROPER APPROVAL

REMOVE THE MINIMUM AMOUNT OF RIPARIAN VEGETATION NECESSARY TO INSTALL A SAFE STRUCTURE, DIRECT SURFACE WATER AWAY FROM WORK SITE, ENSURE MACHINERY IS CLEAN PRIOR TO ENTERING WATERCOURSE, SILT FENCING, GEOTEXTILE CLOTH FABRIC AND A ROLL OF PLASTIC SHOULD BE ONSITE. STOP WORK DURING EXTREME ADVERSE WEATHER CONDITIONS, SEED AND STRAW DISTURBED SLOPES AS SOON AS POSSIBLE.

ENSURE DITCH WATER AND SURFACE RUNOFF FROM THE ROAD DOES NOT FLOW DIRECTLY INTO STREAM, CONSTRUCT SUMPS AS REQUIRED.

* SUPERSTRUCTURE SUPPLIED BY OTHERS CONFIRM ALL DIMENSIONS PRIOR TO FIELD LAYOUT

5 - MATERIALS

- BASE MATERIAL EXISTING MATERIAL EXPECTED TO BE MINIMUM 200KPB BEARING CAPACITY, TO BE CONFIRMED IN FIELD, NO FILLS EXPECTED FOR ABUTMENTS, LEVELING COURSE AS REQUIRED
- ENDFILL MATERIAL ENDFILL SHALL CONSIST OF WELL GRADED, SELECT, GRANULAR MATERIAL (~75mm), PACKED TO 98% PROCTOR DENSITY IN LIFTS OF 300mm MAX

G-ABUTMENTS

. ENSURE ALL WORKS COMPLY WITH MINISTRY OF FORESTS AND RANGE STANDARDS

8-SAFETY

NONE

9 - ENVIRONMENT

 TEMP CROSSING LOCATED AT CROSSING LOCATION

ON SITE PRESCRIPTIONS MAY HAVE TO BE MODIFIED TO ACCOMMODATE ACTUAL ROAD VERTICAL-MORIZONTAL ALIGNMENT, SLOPE ANGLES ON FILL AND CUT SLOPES, MATERIAL COMPOSITION AND WEATHER

10 - SITE CONDITIONS

FIELD INFORMATION GATHERED DURING SUMMER CONDITIONS

-	SCALE: As indicated	SURVEY CREW SW, KB	SHEET NUMBER
	DESIGNED BY: DT	DATE: Sept 15,2014	
-	DRAWN BY: JS, SW	REVISION NUMBER:	8
	CHECKED N/A	REVISION DATE:	U
	SITE SURVEY Sept 8, 2014	JOB#: P_460	

Weir, David J FLNR:EX

From:

Weir, David J FLNR:EX

Sent:

Wednesday, September 17, 2014 8:22 AM

To:

Epps, Deb ENV:EX; Hoffos, Robin FLNR:EX

Cc:

Stewart, Rodger W FLNR:EX

Subject:

RE: INFO: Coordination of planning and practice for Mt. Polley restoration

Hello Deb.

My specific role is mostly related to the stability and public safety aspects around Mt Polley, Hazeltine Creek and Quesnel Lake. To that affect I issued orders to the company regarding management of the lake level on Polley Lake and debris removal from the water bodies. However, as you are probably aware there is a habitat component in the water act and as part of my due diligence I wish to confirm that this component is addressed. I see that one of our biologists is on the working group. I am concerned in reading the sediment and control plan for Hazeltine Creek that the conversation about habitat compensation might move past the point of meaningful input from our habitat group due to the real need for operational expediency. Can you assure me that you will engage Robin at the appropriate time?

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Stewart, Rodger W FLNR:EX

Sent: Tuesday, September 16, 2014 4:37 PM

To: Weir, David J FLNR:EX

Subject: INFO: Coordination of planning and practice for Mt. Polley restoration

For your reference.

Rodger Stewart
Director, Resource Management
Ministry of Forests, Lands and Natural Resource Operations
Cariboo Region
400 - 640 Borland Street
Williams Lake, BC
V2G 4T1
cell (250) 305 8536, desk (250) 398 4549
fax (250) 398 4214

From: Bunce, Hubert ENV:EX

Sent: Tuesday, September 16, 2014 4:31 PM

To: Stewart, Rodger W FLNR:EX

Cc: Epps, Deb ENV:EX

Subject: RE: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Restoration of the terrestrial and aquatic areas of the spill impacted areas are still some way off and we are currently working on short term corrective and mitigation strategies as a priority. Ie seeding of impacted areas occurred late last week but plans for long term vegetation recovery have yet to be defined

Deb Epps is leading our response to the mines proposal on the environmental assessment and restoration biological mine and would be your best point of contact. Environmental Protection is very interested in getting input from other agencies regarding best potential courses of action for the mine impacted areas.

Hubert Bunce

A/Director, Mount Polley
Environmental Protection, Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

From: Stewart, Rodger W FLNR:EX

Sent: Tuesday, September 16, 2014 1:51 PM

To: Bunce, Hubert ENV:EX

Subject: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Hubert, what say you respecting the circumstances FLNR regional operations finds itself in?

Rodger Stewart
Director, Resource Management
Ministry of Forests, Lands and Natural Resource Operations
Cariboo Region
400 - 640 Borland Street
Williams Lake, BC
V2G 4T1
cell (250) 305 8536, desk (250) 398 4549
fax (250) 398 4214

From: McGuire, Jennifer ENV:EX

Sent: Tuesday, September 16, 2014 1:11 PM

To: Stewart, Rodger W FLNR:EX; Bunce, Hubert ENV:EX

Cc: Hoffos, Robin FLNR:EX; Vanderburgh, Ken FLNR:EX; Fenwick, Leigh-Ann ENV:EX **Subject:** Re: OUESTION: Coordination of planning and practice for Mt. Polley restoration

Roger,

Hubert would be the best person to speak to. Hubert is the RD - responsible for Mount Polley.

Jennifer

Sent from my BlackBerry 10 smartphone on the TELUS network.

From: Stewart, Rodger W FLNR:EX

Sent: Tuesday, September 16, 2014 1:04 PM

To: McGuire, Jennifer ENV: EX

Cc: Hoffos, Robin FLNR:EX; Vanderburgh, Ken FLNR:EX

Subject: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Jennifer, could you please direct me to the correct contact responsible for coordinating inter-agency deliberations respecting planning and selection of practices for restoration of areas impacted by the My Polley event?

We are aware of the submission made by Imperial Metals in response to the Ministry of Environment pollution abatement order. We know that works undertaken consistent with the pollution abatement submission may serve for purposes of addressing specific pollution abatement matters. However, it would appear that restoration works are a substantively different matter. Or are they? We simply do not know enough at this point.

We at FLNR regional operations face substantive uncertainty as to the schedule of planning for works leading to restoration of terrestrial and aquatic ecosystems at the impact sites (where practicable). It is expected that such enterprise would require inter-agency deliberation, yet we (in a supporting role) have no specific information as to who has lead responsibility for various elements of this project.

Hope you might be able to point us in the correct direction.

Rodger Stewart
Director, Resource Management
Ministry of Forests, Lands and Natural Resource Operations
Cariboo Region
400 - 640 Borland Street
Williams Lake, BC
V2G 4T1
cell (250) 305 8536, desk (250) 398 4549
fax (250) 398 4214

Weir, David J FLNR:EX

From:

Bunce, Hubert ENV:EX

Sent:

Wednesday, September 17, 2014 9:28 AM

To:

Weir, David J FLNR;EX

Subject:

RE: Mt Polley September 29th Boat Trip Quesnel Lake

I'll see if I can make something work Thursday

Hubert Bunce

A/Director, Mount Polley

Environmental Protection, Regional Operations ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Weir, David J FLNR:EX

Sent: Wednesday, September 17, 2014 8:32 AM

To: Bunce, Hubert ENV:EX

Subject: RE: Mt Polley September 29th Boat Trip Quesnel Lake

I am in all day Thursday but have an urgent Dam Audit on Friday.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David, J. Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Tuesday, September 16, 2014 9:48 AM

To: Weir, David J FLNR:EX

Subject: RE: Mt Polley September 29th Boat Trip Quesnel Lake

I would like to try to get up there for the boat trip. I plan on being in WL this Thursday and Friday so could meet up with you then. Will be in touch

Hubert Bunce

A/Director, Mount Polley

Environmental Protection, Regional Operations

ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road

Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Weir, David J FLNR:EX

Sent: Tuesday, September 16, 2014 8:12 AM

To: Bunce, Hubert ENV:EX; Henley, Margaret TRAN:EX; XT:Carpenter, Penny FLNR:IN; Williston, Lee X FLNR:EX; Hoffos,

Robin FLNR:EX

Cc: Wells, Duane TRAN:EX; Wiebe, Wes J TRAN:EX; Fenwick, Leigh-Ann ENV:EX

Subject: Mt Polley September 29th Boat Trip Quesnel Lake

I would like to arrange a boat trip in order to confirm the state of the debris clean up, look at the Kokanee shore spawning areas, and address as many issues as we can prior to the 2015 spring freshet relating to the cleanup. I am proposing September 29th 2015. Please get back to me concerning this as soon as possible.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David, J. Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

Weir, David J FLNR:EX

From:

Moe, James W FLNR:EX

Sent:

Wednesday, September 17, 2014 8:40 AM

To:

Weir, David J FLNR:EX

Subject:

RE: Mt Polley

yes

James Moe, RFT
District Engineering Officer
Ministry Natural Resources Operations
Cariboo-Chilcotin Forest District
Field Services, Engineering Section
(250) 398-4782 phone
(250) 398-4790 fax
mailto:james.moe@gov.bc.ca

From: Weir, David J FLNR:EX

Sent: Wednesday, September 17, 2014 8:38 AM

To: Moe, James W FLNR:EX **Subject:** FW: Mt Polley

Can I catch you today or tomorrow?

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Dale Reimer [mailto:dreimer@mountpolley.com]

Sent: Tuesday, September 16, 2014 12:16 PM

To: Weir, David J FLNR:EX Subject: FW: Mt Polley

From: Dale Reimer

Sent: September-16-14 9:32 AM

To: 'Alan.Day@gov.bc.ca'; Hoffman, Al MEM:EX; Steve Rothman; Demchuk, Tania MEM:EX

Cc: Stolar, Harold B FLNR:EX Subject: FW: Mt Polley

Please find attached the engineered drawings for the Gavin Lake road bridge. The drawings for the Ditch Road bridge should ready by this afternoon. We plan to commence work on the approach to the Gavin Lake road bridge late tomorrow or Thursday morning. The site has been inspected by the First Nations Archeologists and has been cleared to proceed. Regards: Dale

From: Daryl Taylor [mailto:d.taylor@celticengineering.ca]

Sent: September-16-14 9:16 AM

To: 'Russ Gibson'; Dale Reimer; Art Frye; Don Parsons **Cc:** Christine Seinen; <u>d.taylor@celticengineering.ca</u>

Subject: FW: Mt Polley

Please see attached document for the upper crossing.

Daryl

From: Christine Seinen [mailto:c.seinen@celticengineering.ca]

Sent: Tuesday, September 16, 2014 8:59 AM

To: Daryl Taylor Subject: Mt Polley

Christine Seinen

Office Manager
Celtic Engineering Ltd
#304-383 Oliver Street
Williams Lake, BC V2G 1M4
P 250.392.5159
F 250.483.1907
c.seinen@celticengineering.ca
www.celticengineering.ca

This email is free from viruses and malware because avast! Antivirus protection is active.

This email is free from viruses and malware because <u>avast! Antivirus</u> protection is active.

IMPERIAL METALS MT. POLLEY UPPER HAZELTINE

L-100 60ft BRIDGE DESIGN

PREPARED FOR:

only Imperial Metals - Mt. Polley

PREPARED ON: Sept 15, 2014

Sheet Number	Sheet Name	
1	Cover Sheet	1
2	Site Pictures	
3	Bridge Site	Canalta w
4	Bridge Cross Section, Road Profile	
5	Town Abutment Detail	
6	Woods Abutment Detail	
7	Site Plan, Sediment and Erosion C	ontrol
8	Notes	
	A TOTAL OF THE PROPERTY OF THE	

Celtic Engineering Ltd.

SHEET NUMBER

Six.

TOWN APPROACH

LOOKING TO BUSH

UPSTREAM FROM CROSSING

DOWNSTREAM FROM CROSSING

EXISTING ABUTMNET LOCATION

NEW ABUTMENT LOCATION

MT. POLLEY UPPER HAZELTINE: CROSSING 60th BRIDGE DESIGN Site Pictures

SCALE	SURVEY CREW: SW, KD	SHEET NUMBER
DESIGNED BY: DT	DATE: Sept 15,2014	
DRAWN BY: JS, SW	REVISION NUMBER.	2
CHECKED NVA	REVISION DATE	
SITE SURVEY: Sept 8, 2014	JOB #: P 460	n minus

HYDRO	LOGY
Q ₁₀₀	11.88 mYs
Velocity	2.2 m/s

B XS - ROAD PROFILE

		RIP	RAP TAB	LE	of a fact or horse-scale in a		
	NOMINAL THICKNESS OF RIPRAP (mm)	extra tentra commente	ADATION:	named by the same of the A	LARGER THA	N GIVEN	
25	460	2.5 kg	50 mm	25 kp	300 mm	75 kg	400 mm

L-Sin m.	Cul Dp.	Grade %	V.Brk %	SG Cut V. Cu, m.	SG FIN V.	Moss H. Cu. m.
0.0 43.4 63.9 82.3 94.1 137.4 133.8 158.1	0.1 0.1 -1.8 -1.6 0.1 0.7 0.0	-2 0 0 0 0 p 4 7 6	0 2 0 1 0 0 0	200.4 22.2 0.0 23.8 96.3 94.6 15.1	15.3 188.4 3.4 133.2 7.2 6.0 42.1	0.6 185.1 18.5 17.1 -92.4 -1.4 85.5 58.7
ium. for.			K. (8)	452.4	395.7	PILADONIO CONTRACTOR

MT. POLLEY UPPER HAZELTINE: CROSSING 60ft BRIDGE DESIGN SHEET: Bridge Cross Section, Road Profile

	SCALE: As indicated	SURVEY CREW: SW, KB	SHEET NUMBER:
	DESIGNED BY: DT	DATE: Sept 15,2014	
-	DRAWN BY: JS, SW	REVISION NUMBER:	4
1	CHECKED: NA	REVISION DATE:	Т.
	SITE SURVEY: Sept 8, 2014	JOB #: P_480	

A ABUTMENT - TOWN

B 2 LOG CRIB ABUTMENT STEEL

C 2 HIGH SILL LOG CRIB ABUTMENT SECTION

1	PHOJECT:
П	MT. POLLEY UPPER HAZELTINE
	MT. POLLEY UPPER HAZELTINE CROSSING 60ft BRIDGE DESIGN
1	SHEET
	Town Abutment Detail

SCALE: As Indicated	SURVEY CREW SW, KO	SHEET NUMBER
DESIGNED BY: DT	DATE: Sept 15,2014	
DRAWN BY: JS, SW	REVISION NUMBER:	5
CHECKED: N/A	REVISION DATE:	0
SITE SURVEY: Sept 8, 2014	JOB #: P_460	

ABUTMENT - WOODS

3 LOG CRIB ABUTMENT STEEL

3 HIGH SILL LOG CRIB ABUTMENT SECTION

MT. POLLEY UPPER HAZELTINE CROSSING 60ft BRIDGE DESIGN

Woods Abutment Detail

SCALE: As indicated	SURVEY CREW: SW, KB	SHEET NUMBER
DESIGNED BY: DT	DATE: Sept 15,2014	_
DRAWN BY: JS, SW	REVISION MUMBER:	6
CHECKED: N/A	REVISION DATE:	U
SITE SURVEY: Sept 0, 2014	JOB #: P_460	

1- GEOTECHNICAL

NO SUBSURFACE GEOTECHNICAL INVESTIGATION WAS PERFORMED AT THE SITE, GROUND CONDITIONS MAY VARY, AND AS SUCH, FOUNDATION REQUIREMENTS MAY RESULT IN THE MODIFICATION OF THE CONCEPT BY AN ENGINEER TO ACCOUNT FOR ON SITE CONDITIONS THAT MAY BE ENCOUNTERED DURING CONSTRUCTION. IT WILL BE THE RESPONSIBILITY OF THE FIELD ENGINEER TO DETERMINE THE SUITABILITY OF THE SOIL CONDITIONS FOR THE FOUNDATION OF THE BRIDGE.

2 - H (DROLOGY AND HYDRAULIC ASSESSMENT

- HYDRAULIC ANALYSIS BASED ON CHANNEL CONDITIONS COULD VARY OVER TIME.
- FREE BOARD HEIGHT REQUIREMENT SHOWN REFERS TO UPSTREAM FACE OF BRIDGE.
- THE EXTENT OF THE RIPRAP IS BASED ON AVAILABLE INFORMATION, THE EXTENTS SHOULD BE ADJUSTED IN THE FIELD TO ENSURE ADEQUATE SCOUR PROTECTION IS PROVIDED TO THE BRIDGE SUBSTRUCTURE AND ABUTMENTS.

3 - 9 FIDGE DESIGN

- CONFORM TO CAN/CSA-56-36(MODIFIED) AND THE MINISTRY OF FORESTS AND RANGE, "FOREST SERVICE BRIDGE DESIGN AND CONSTRUCTION MANUAL", 1999.
- A.L. BRIDGE COMPONENTS SHALL CONFORM TO THE MINISTRY OF FORESTS AND RANGE STANDARD DRAWINGS UNLESS APPROVED BY OWNER.
- LOADING: BCL-625(63 730 KG G.V.W.) ECCENTRICITY IN ACCORDANCE WITH S6-06
- FATIGUE; DESIGN TO BE COMPLETED IN ACCORDANCE WITH CAN/CSA-S6-06 500,000 CYCLES.

4 - CONSTRUCTION NOTES:

ALTERATION TO STREAM BANKS AND IN-STREAM WORK MUST BE SUPERVISED BY QUALIFIED PERSON. SEDIMENT MANAGEMENT TO REDUCE SILTATION IS REQUIRED. IN-STREAM MACHINE CROSSINGS ARE NOT FERMITTED WITHOUT PROPER APPROVAL

REMOVE THE MINIMUM AMOUNT OF RIPARIAN VEGETATION NECESSARY TO INSTALL A SAFE STRUCTURE, DIRECT SURFACE WATER AWAY FROM WORK SITE, ENSURE MACHINERY IS CLEAN PRIOR TO EN TERING WATERCOURSE, SITE FENCING, GEOTEXTILE CLOTH FABRIC AND A ROLL OF PLASTIC SHOULD BE ONSITE. STOP WORK DURING EXTREME ADVERSE WEATHER CONDITIONS. SEED AND STRAW DISTURBED SLOPES AS SOON AS POSSIBLE.

ENSURE DITCH WATER AND SURFACE RUNOFF FROM THE ROAD DOES NOT FLOW DIRECTLY INTO STREAM, CONSTRUCT SUMPS AS REQUIRED.

' SUPERSTRUCTURE SUPPLIED BY OTHERS CONFIRM ALL DIMENSIONS PRIOR TO FIELD LAYOUT

5 - MATERIALS

- BASE MATERIAL EXISTING MATERIAL EXPECTED TO BE MINIMUM 200KP& BEARING CAPACITY. TO BE CONFIRMED IN FIELD, NO FILLS EXPECTED FOR ABUTMENTS, LEVELING COURSE AS REQUIRED
- ENDFILL MATERIAL ENDFILL SHALL CONSIST OF WELL GRADED, SELECT, GRANULAR MATERIAL (<75mm), PACKED TO 98% PROCTOR DENSITY IN LIFTS OF 300mm MAX

6 - ABUTMENTS

ENSURE ALL WORKS COMPLY WITH MINISTRY OF FORESTS AND RANGE. STANDARDS

8 - SAFETY

NONE

3 - ENVIRONMENT

 TEMP CROSSING LOCATED AT CROSSING LOCATION

ON SITE PRESCRIPTIONS MAY HAVE TO BE MODIFIED TO ACCOMMODATE ACTUAL ROAD VERTICAL/HORIZONTAL ALIGNMENT, SLOPE ANGLES ON FILL AND CUT SLOPES, MATERIAL COMPOSITION AND WEATHER.

10 - SITE CONDITIONS

FIELD INFORMATION GATHERED DURING SUMMER CONDITIONS

1	SCALE. As indicated	SURVEY CREW SW, KR	SHEET NUMBER
	DESIGNED BY: DT	DATE: Sept 15,2014	
	ORAWN BY: JS, SW	REVISION NUMBER	8
	CHECKED: N/A	REVISION DATE	0
	SITE SURVEY, Sept B. 2014	JOB #: P 450	

Sent from my BlackBerry 10 smartphone on the TELUS network.

From: Stewart, Rodger W FLNR:EX

Sent: Tuesday, September 16, 2014 1:04 PM

To: McGuire, Jennifer ENV:EX

Cc: Hoffos, Robin FLNR:EX; Vanderburgh, Ken FLNR:EX

Subject: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Jennifer, could you please direct me to the correct contact responsible for coordinating inter-agency deliberations respecting planning and selection of practices for restoration of areas impacted by the My Polley event?

We are aware of the submission made by Imperial Metals in response to the Ministry of Environment pollution abatement order. We know that works undertaken consistent with the pollution abatement submission may serve for purposes of addressing specific pollution abatement matters. However, it would appear that restoration works are a substantively different matter. Or are they? We simply do not know enough at this point.

We at FLNR regional operations face substantive uncertainty as to the schedule of planning for works leading to restoration of terrestrial and aquatic ecosystems at the impact sites (where practicable). It is expected that such enterprise would require inter-agency deliberation, yet we (in a supporting role) have no specific information as to who has lead responsibility for various elements of this project.

Hope you might be able to point us in the correct direction.

Rodger Stewart
Director, Resource Management
Ministry of Forests, Lands and Natural Resource Operations
Cariboo Region
400 - 640 Borland Street
Williams Lake, BC
V2G 4T1
cell (250) 305 8536, desk (250) 398 4549
fax (250) 398 4214

cell (250) 305 8536, desk (250) 398 4549 fax (250) 398 4214

From: Bunce, Hubert ENV:EX

Sent: Tuesday, September 16, 2014 4:31 PM

To: Stewart, Rodger W FLNR:EX

Cc: Epps, Deb ENV:EX

Subject: RE: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Restoration of the terrestrial and aquatic areas of the spill impacted areas are still some way off and we are currently working on short term corrective and mitigation strategies as a priority. Ie seeding of impacted areas occurred late last week but plans for long term vegetation recovery have yet to be defined

Deb Epps is leading our response to the mines proposal on the environmental assessment and restoration biological mine and would be your best point of contact. Environmental Protection is very interested in getting input from other agencies regarding best potential courses of action for the mine impacted areas.

Hubert Bunce

A/Director, Mount Polley
Environmental Protection, Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

From: Stewart, Rodger W FLNR:EX

Sent: Tuesday, September 16, 2014 1:51 PM

To: Bunce, Hubert ENV:EX

Subject: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Hubert, what say you respecting the circumstances FLNR regional operations finds itself in?

Rodger Stewart
Director, Resource Management
Ministry of Forests, Lands and Natural Resource Operations
Cariboo Region
400 - 640 Borland Street
Williams Lake, BC
V2G 4T1
cell (250) 305 8536, desk (250) 398 4549
fax (250) 398 4214

From: McGuire, Jennifer ENV:EX

Sent: Tuesday, September 16, 2014 1:11 PM

To: Stewart, Rodger W FLNR:EX; Bunce, Hubert ENV:EX

Cc: Hoffos, Robin FLNR:EX; Vanderburgh, Ken FLNR:EX; Fenwick, Leigh-Ann ENV:EX Subject: Re: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Roger,

Hubert would be the best person to speak to. Hubert is the RD - responsible for Mount Polley.

Jennifer

Hi Dave.

Thanks for the note and I understand your concerns. Things are moving fast. If you or Robin have any specific comments from the sediment and erosion control document itself, please pass them on to me so we can include them in our response to MPMC. They are on a really tight timeframe with our comments due today by end of day. I will also endeavour to keep you and other FLNRO staff in the loop when reports come in and when discussions are occurring regarding compensation and/or habitat mitigation. I believe FLNRO habitat staff reviewed the comprehensive EIA and provided comments as well.

If you wish to discuss anything please don't hesitate to call or send me an email. I will be in WL on Friday.

Deb

Sent from my BlackBerry Wireless Handheld

From: Weir, David J FLNR:EX

Sent: Wednesday, September 17, 2014 08:22 AM **To**: Epps, Deb ENV:EX; Hoffos, Robin FLNR:EX

Cc: Stewart, Rodger W FLNR:EX

Subject: RE: INFO: Coordination of planning and practice for Mt. Polley restoration

Hello Deb,

My specific role is mostly related to the stability and public safety aspects around Mt Polley, Hazeltine Creek and Quesnel Lake. To that affect I issued orders to the company regarding management of the lake level on Polley Lake and debris removal from the water bodies. However, as you are probably aware there is a habitat component in the water act and as part of my due diligence I wish to confirm that this component is addressed. I see that one of our biologists is on the working group. I am concerned in reading the sediment and control plan for Hazeltine Creek that the conversation about habitat compensation might move past the point of meaningful input from our habitat group due to the real need for operational expediency. Can you assure me that you will engage Robin at the appropriate time?

David Weir
Water Section Head,
Ministry of Forest Lands and Natural Resource Operations
Williams Lake, BC
David J. Weir@gov.bc.ca
(250) 398 4924
Cell 250 267-5925

From: Stewart, Rodger W FLNR:EX

Sent: Tuesday, September 16, 2014 4:37 PM

To: Weir, David J FLNR:EX

Subject: INFO: Coordination of planning and practice for Mt. Polley restoration

For your reference.

Rodger Stewart
Director, Resource Management
Ministry of Forests, Lands and Natural Resource Operations
Cariboo Region
400 - 640 Borland Street
Williams Lake, BC
V2G 4T1

Weir. David J FLNR:EX

From:

Epps, Deb ENV:EX

Sent:

Wednesday, September 17, 2014 9:29 AM

To:

Hoffos, Robin FLNR:EX

Cc:

Stewart, Rodger W FLNR:EX; Weir, David J FLNR:EX; McLeod, Joanne FLNR:EX

Subject:

RE: INFO: Coordination of planning and practice for Mt. Polley restoration

Hi Robin,

Yes I believe that compensation is still on the table, however there is an immediately need to stop further sediment discharge into Quesnel Lake, causing further pollution and potential effects on aquatic life in the lake, now and during rainstorm event and spring melt. We are working to get short term measures in place to deal with this issue and the long term plan will look at compensation and rehabilitation. A lot of those discussions will also have to wait until they can get the impact assessment under way and have a more thorough understanding of the extent and degree of destruction in hazeltine Creek.

I will definitely keep you guys in the loop. The local knowledge you can provide will definitely be needed as we move forward.

Deb

Deborah Epps, M.Sc., RPBio.
Section Head, Provincial Water Quality
Ministry of Environment
2080A Labieux Road
Nanaimo, BC V9T 6J9
Phone: (250) 751-3146
Email: Deb.Epps@gov.bc.ca

From: Hoffos, Robin FLNR:EX

Sent: Wednesday, September 17, 2014 9:09 AM

To: Epps, Deb ENV:EX

Cc: Stewart, Rodger W FLNR:EX; Weir, David J FLNR:EX; McLeod, Joanne FLNR:EX **Subject:** RE: INFO: Coordination of planning and practice for Mt. Polley restoration

Thanks. Joanne McLeod provided some initial comments on the EIA. There were some notable land use designations that the EIA fails to mention and it remains unclear whether a choice has been made in regards to the future of Hazeltine creek. The term "rehabilitation" is used. Depending upon the conditions and costs, it may be far more reasonable to compensate for habitat losses at Hazeltine Ck if provided there are ways of preventing continued sedimentation input to Quesnel Lake. I hope those options are still on the table and we can provide input as appropriate.

Cheers.

From: Epps, Deb ENV:EX

Sent: Wednesday, September 17, 2014 8:43 AM **To:** Weir, David 3 FLNR:EX; Hoffos, Robin FLNR:EX

Cc: Stewart, Rodger W FLNR:EX

Subject: Re: INFO: Coordination of planning and practice for Mt. Polley restoration

This plan is part of Mount Polley's efforts to limit the release of turbid waters to Quesnel Lake. The work proposed is part of our continuing incident response and was presented in summary form to the community of Likely on the evening of September 10th. Ministry staff were also present at that meeting.

We are providing this detailed plan to the Ministry for their review and we would ask that you provide us with prompt and specific feedback as we are planning to proceed with this work without delay. We are concurrently addressing matters such as the Archaeological permit and logisitics with respect to undertaking the physical works described in the plan. In the interest of expediency, we are submitting this to you in electronic form. If you require this in hard copy, please advise.

We look forward to your comments.

To access the file, it can be downloaded from the link below. Please note that this link will work for anyone to whom you forward this email. I have done it that way to facilitate your distribution. However, please be sure that you have confidence that parties receiving this email from you will not forward past the intended audience if access security is to be maintained.

Lee Nikl

File(s) will be available for download until **12 October 2014**: File: <u>Erosion Sed Combined</u> Plan MPMC_signed Sept112014.pdf, 15,142.90 KB

Lee Nikl (M.Sc., R.P.Bio.) | Principal / Senior Environmental Scientist | Golder Associates Ltd. | 500 - 4260 Still Creek Drive, Burnaby, British Columbia, Canada V5C 6C6
D: +1.604.297.2016 | T: +1.604.296.4200 | F: +1.604.298.5253 | C: +1.778.231.6636 | E: Lee_Nikl@golder.com | www.golder.com

Work Safe, Home Safe

ordered for a serior of the control of the control

in 1996, and the control of the feat Margaritan (Section of the Control of the Co

Amount in the contract of the parties of the left of the parties of the left of the left of the contract of

The Gavin Lake Road bridge installation over Hazeltine Creek will begin tomorrow and is planned for completion Friday the 19th. The bridge will allow access to Quesnel Lake and the proposed sediment and erosion control works at the Hazeltine Creek discharge. A local first nation contractor joint venture, Lake Excavating Ltd., has been selected for the work. FLNRO has issued Mount Polley a road use permit authorizing off highway loading of the Gavin Lake Road. On Friday, construction materials will be able to move freely between the mine and Ditch Road. SNC is prepared to supply the supervisors familiar with work of a similar nature as early as Saturday, at which time work can begin.

I would like to start construction of access to the work area as soon as possible. Our intention would be to start the sediment and erosion control works on Saturday.

Please advise.

Regards Don Parsons

From: Bunce, Hubert ENV:EX [mailto:Hubert.Bunce@gov.bc.ca]

Sent: Friday, September 12, 2014 4:46 PM

To: 'Nikl, Lee'

Cc: 'Johnson, Gordon'; Don Parsons; 'Colleen Hughes'; Steve Robertson **Subject:** RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Thanks Lee

I understand from Eric Forgeng of The Archeology Branch that the permit has been issued

I will be distributing the plan to MEM and FLNRO staff for their review and to members of the Env Working Group who have signed confidentiality agreements. I will ask them to provide comments as quickly as possible but no later than Wed Sept 17.

Hubert Bunce

A/Mining Director, Environmental Protection Regional Operations ph (250) 751-3254 fax (250) 751-3103 2080A Labieux Road Nanaimo BC v91 6J9 Please consider the environment before printing this email BC Pollution Free

From: Nikl, Lee [mailto:Lee Nikl@qolder.com]
Sent: Friday, September 12, 2014 2:54 PM

To: Bunce, Hubert ENV:EX

Cc: Johnson, Gordon; Don Parsons (dparsons@imperialmetals.com); Colleen Hughes; Steve Robertson

Subject: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dear Mr. Bunce.

On behalf of Mount Polley Mining Corporation, I am pleased to submit to you an erosion and sediment control plan for lower Hazeltine Creek, prepared by SNC Lavalin.

Weir, David J FLNR:EX

From:

Bunce, Hubert ENV:EX

Sent:

Wednesday, September 17, 2014 11:26 AM

To:

'Don Parsons': 'Nikl, Lee'

Cc:

'Johnson, Gordon'; 'Colleen Hughes'; 'Steve Robertson'; 'Dale Reimer

(dreimer@mountpolley.com)'; Fenwick, Leigh-Ann ENV:EX; Epps, Deb ENV:EX; Metcalfe,

Shelley ENV;EX; Weir, David J FLNR:EX; 'nrcoordinator@xatsull.com';

'Aaron.Higginbottom@williamslakeband.ca'; 'Amy Crook';

'kirk.dressler@williamslakeband.ca'; Demchuk, Tania MEM:EX; Howe, Diane J MEM:EX

Subject:

RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

As noted previously the expectation of the ministry is that every possible action will be taken to mitigate the potential for this bridge installation to impact Hazeltine Creek. This could include, but not be limited to, reducing pumped flows, diverting water around areas, installation of hay bales and silt fences and other temporary treatment features. I trust that the bridge design is appropriately sized to pass the expected flows in Hazeltine Creek in its new configuration.

"Control" and downstream sampling should be undertaken to determine the effectiveness of the temporary mitigation works relative to the installation of the bridge and any other works undertaken within the spill impacted areas. This will allow for improvement of techniques relative to the specific site conditions if necessary

It is helpful that the silt curtain at the mouth of Hazeltine Creek is now in place and the development of additional mitigation and treatment works will be of further assistance in protecting the environment.

As much prior notice of specific "works" development is appreciated.

We expect to have additional comments back on the latest version of the Erosion and Sediment Control plan to MPMC by tomorrow. We are interested in receiving as much detail as possible on the temporary and more permanent treatment and mitigation works and the related monitoring and how these works integrate with the CEIA and the level of treatment achieved at particular locations in the receiving environment

I plan to be in WL Thursday and Friday and will try to be in contact

Hubert Bunce
A/Director, Mount Polley
Environmental Protection, Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

From: Don Parsons [mailto:dparsons@imperialmetals.com]

Sent: Tuesday, September 16, 2014 1:43 PM

To: Bunce, Hubert ENV:EX; 'Nikl, Lee'

Cc: 'Johnson, Gordon'; 'Colleen Hughes'; Steve Robertson; Dale Reimer (dreimer@mountpolley.com)

Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Hubert

Weir, David J FLNR:EX

From:

Weir, David J FLNR:EX

Sent:

Wednesday, September 17, 2014 11:29 AM

To:

Moe, James W FLNR:EX

Subject:

FW: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

FYI, sorry I had to submit the comments on the sediment control yesterday (I will explain in person) I just sent you the bridge design this morning as mentioned below.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Wednesday, September 17, 2014 11:26 AM

To: 'Don Parsons'; 'Nikl, Lee'

Cc: 'Johnson, Gordon'; 'Colleen Hughes'; 'Steve Robertson'; 'Daie Reimer (dreimer@mountpolley.com)'; Fenwick, Leigh-Ann ENV:EX; Epps, Deb ENV:EX; Metcaife, Shelley ENV:EX; Weir, David J FLNR:EX; 'nrcoordinator@xatsull.com';

'Aaron.Higginbottom@williamslakeband.ca'; 'Amy Crook'; 'kirk.dressler@williamslakeband.ca'; Demchuk, Tania MEM:EX;

Howe, Diane J MEM:EX

Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

As noted previously the expectation of the ministry is that every possible action will be taken to mitigate the potential for this bridge installation to impact Hazeltine Creek. This could include, but not be limited to, reducing pumped flows, diverting water around areas, installation of hay bales and silt fences and other temporary treatment features. I trust that the bridge design is appropriately sized to pass the expected flows in Hazeltine Creek in its new configuration.

"Control" and downstream sampling should be undertaken to determine the effectiveness of the temporary mitigation works relative to the installation of the bridge and any other works undertaken within the spill impacted areas. This will allow for improvement of techniques relative to the specific site conditions if necessary

It is helpful that the silt curtain at the mouth of Hazeltine Creek is now in place and the development of additional mitigation and treatment works will be of further assistance in protecting the environment.

As much prior notice of specific "works" development is appreciated.

We expect to have additional comments back on the latest version of the Erosion and Sediment Control plan to MPMC by tomorrow. We are interested in receiving as much detail as possible on the temporary and more permanent treatment and mitigation works and the related monitoring and how these works integrate with the CEIA and the level of treatment achieved at particular locations in the receiving environment

I plan to be In WL Thursday and Friday and will try to be in contact.

Hubert Bunce

A/Director, Mount Polley

Environmental Protection, Regional Operations

ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Don Parsons [mailto:dparsons@imperialmetals.com]

Sent: Tuesday, September 16, 2014 1:43 PM

To: Bunce, Hubert ENV:EX; 'Nikl, Lee'

Cc: 'Johnson, Gordon'; 'Colleen Hughes'; Steve Robertson; Dale Reimer (<u>dreimer@mountpollev.com</u>)

Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Hubert

The Gavin Lake Road bridge installation over Hazeltine Creek will begin tomorrow and is planned for completion Friday the 19th. The bridge will allow access to Quesnel Lake and the proposed sediment and erosion control works at the Hazeltine Creek discharge. A local first nation contractor joint venture, Lake Excavating Ltd., has been selected for the work. FLNRO has issued Mount Polley a road use permit authorizing off highway loading of the Gavin Lake Road. On Friday, construction materials will be able to move freely between the mine and Ditch Road. SNC is prepared to supply the supervisors familiar with work of a similar nature as early as Saturday, at which time work can begin.

I would like to start construction of access to the work area as soon as possible. Our intention would be to start the sediment and erosion control works on Saturday.

Please advise.

Regards

Don Parsons

From: Bunce, Hubert ENV:EX [mailto:Hubert.Bunce@gov.bc.ca]

Sent: Friday, September 12, 2014 4:46 PM

To: 'Nikl, Lee'

Cc: 'Johnson, Gordon'; Don Parsons; 'Colleen Hughes'; Steve Robertson **Subject:** RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Thanks Lee

Lunderstand from Eric Forgeng of The Archeology Branch that the permit has been issued

I will be distributing the plan to MEM and FLNRO staff for their review and to members of the Env Working Group who have signed confidentiality agreements. I will ask them to provide comments as quickly as possible but no later than Wed Sept 17.

Hubert Bunce A/Mining Director, Environmental Protection Regional Operations ph (250) 751-3254 fax (250) 751-3103 2080A Labieux Road Nanaimo BC V9T 6J9

Please consider the environment before printing this email BC Pollution Free

From: Nikl, Lee [mailto:Lee Nikl@golder.com] Sent: Friday, September 12, 2014 2:54 PM

To: Bunce, Hubert ENV:EX

Cc: Johnson, Gordon; Don Parsons (dparsons@imperialmetals.com); Colleen Hughes; Steve Robertson

Subject: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dear Mr. Bunce.

On behalf of Mount Polley Mining Corporation, I am pleased to submit to you an erosion and sediment control plan for lower Hazeltine Creek, prepared by SNC Lavalin.

This plan is part of Mount Polley's efforts to limit the release of turbid waters to Quesnel Lake. The work proposed is part of our continuing incident response and was presented in summary form to the community of Likely on the evening of September 10th. Ministry staff were also present at that meeting.

We are providing this detailed plan to the Ministry for their review and we would ask that you provide us with prompt and specific feedback as we are planning to proceed with this work without delay. We are concurrently addressing matters such as the Archaeological permit and logisitics with respect to undertaking the physical works described in the plan. In the interest of expediency, we are submitting this to you in electronic form. If you require this in hard copy, please advise.

We look forward to your comments.

To access the file, it can be downloaded from the link below. Please note that this link will work for anyone to whom you forward this email. I have done it that way to facilitate your distribution. However, please be sure that you have confidence that parties receiving this email from you will not forward past the intended audience if access security is to be maintained.

Lee Nikl

File(s) will be available for download until 12 October 2014: File: <u>Erosion Sed Combined</u> Plan MPMC signed <u>Sept112014.pdf</u>, 15,142.90 KB

Lee Nikl (M.Sc., R.P.Bio.) | Principal / Senior Environmental Scientist | Golder Associates Ltd. | 500 - 4260 Still Creek Drive, Burnaby, British Columbia, Canada V5C 6C6
D: +1.604.297.2016 | T: +1.604.296.4200 | F: +1.604.298.5253 | C: +1.778.231.6636 | E: Lee_Nikl@golder.com | www.golder.com

Work Safe, Home Safe

The summary of the su

The Control of the Co

Propose manufactors and cover to be a moting 23, mail.

Weir, David J FLNR:EX

From: Bunce, Hubert ENV:EX

Sent: Wednesday, September 17, 2014 11:36 AM

To: 'Douglas (Mobile) Watt'; Demchuk, Tania MEM:EX; McConnachie, Jennifer MEM:EX;

Weir, David J FLNR:EX; Metcalfe, Shelley ENV:EX; Babakaiff, Scott C FLNR:EX; 'Rick Holmes'; 'Aaron.Higginbottom@williamslakeband.ca'; 'nrcoordinator@xatsull.com';

'kirk.dressler@williamslakeband.ca'

Cc: Hill, Douglas J ENV:EX; McGuire, Jennifer ENV:EX; Fenwick, Leigh-Ann ENV:EX

Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Attachments: Mount Polley CEIA & Monitoring Work Plan_140829.pdf

Thanks for these comments Doug

now that the confidentiality agreement is in place attached is the company's CEIA

Hubert Bunce

A/Director, Mount Polley

Environmental Protection, Regional Operations

ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road

Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Douglas (Mobile) Watt s.22

Sent: Wednesday, September 17, 2014 12:50 AM

To: Bunce, Hubert ENV:EX; Demchuk, Tania MEM:EX; McConnachie, Jennifer MEM:EX; Weir, David J FLNR:EX; Metcalfe,

Shelley ENV:EX; Babakaiff, Scott C FLNR:EX; Rick Holmes; 'Aaron.Higginbottom@williamsiakeband.ca';

'nrcoordinator@xatsull.com'; 'kirk.dressler@williamslakeband.ca'

Cc: Hill, Douglas J ENV:EX; McGuire, Jennifer ENV:EX; Fenwick, Leigh-Ann ENV:EX **Subject:** Re: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Hi Hubert.

I have reviewed the MPMC (SNC Lavalin) Lower Hazeltine Creek Erosion and Sediment Control Plan, with the comments listed below:

- 1) There are numerous references and referrals to the Comprehensive Environmental Impact Assessment and Action Plan (Aug 15, 2014), the Comprehensive Environmental Impact Assessment Work Plan (Aug 15, 2014) and the Conceptual Interim Erosion and Sediment Control Plan (Aug 21, 2014), none of which I have seen, nor have they been released publicly to the best of my knowledge.
- 2) I find it difficult to fit this plan into the overall strategy and plan being deployed at MPMC without the overall plan and concepts being available for review as well, not only to the EWG but to the public as well.
- 3) In section 2.4.2, average hydraulic residence time for Polley Lake is estimated at about 16 years, but section 2.4.3 does not mention what it is for Quesnel Lake. Another source I read suggested in the range of 10 11 years for Quesnel Lake, though I don't know if this is true.
- 4) In section 2.5.2 there is a statement comparing a couple of WQ parameters (pH & dissolved solids) to water in Hazeltine Creek and Polley Lake, but no comparison to Quesnel Lake.
- 5) In section 3.3 it mentions that the sedimentation ponds will reduce Hazeltine Creek sediment levels by 80% from current levels, but does not provide information on the present levels, nor what the target sediment level will be for discharge into Quesnel Lake, either during the construction period or after with the new permanent channel is operational.
- 6) Section 5.5.4 mentions constructing fish barriers at the mouth of Edney Creek. What are the plans for the mouth of Hazeltine Creek, both now during salmon spawning, and during the Hazeltine construction period?

- 7) In section 6.2, can the 10 m interval sediment sampling in Hazeltine Creek be conducted safely before Polley Lake is lowered and the plug stabilized? The timing of this is critical to determining and implementing the CEIA management criteria limits.
- 8) Other than in a line in figure 10.1 (Project Schedule), there is little detail of the monitoring plans and how they will be executed and used to control the effects on the environment, in particular the sediment levels discharging into Quesnel Lake.
- 9) Reporting and engineering controls appear to be fairly well covered for the construction by the engineers and contractors with continuous controls and weekly reporting internally, but how is this process going to be monitored by the regulators? Occasional visits by inspectors is unlikely to provide sufficient oversight for the project to ensure that the work is completed in compliance with the CEIA and Work Plan. Is there a plan to continuous on-sight monitoring during construction?

Based on my past experience, it appears that the engineering design and controls appear adequate, but I do expect that this will be a somewhat difficult project to complete based on the terrain and the fact that much of it will need to be completed during the winter months. There will be a very large field fit component during this process, which will make it a challenge to remain within the specifications of the construction plan and the CEIA.

Thanks,
Doug Watt, Likely Chamber Liaison
Likely, BC
Ph 250 790 2446
Cell s.22 (remember, no cell service in Likely)

From: "Bunce, Hubert ENV:EX" < Hubert.Bunce@gov.bc.ca>

Date: Fri, 12 Sep 2014 17:05:33 -0700

Email s.22

To: "Demchuk, Tania MEM:EX" < Tania. Demchuk@gov.bc.ca >, "McConnachie, Jennifer MEM:EX"

<Jennifer.McConnachie@gov.bc.ca>, "Weir, David J FLNR:EX" <David.J.Weir@gov.bc.ca>, "Metcalfe, Shelley ENV:EX"

<<u>Shelley.Metcalfe@gov.bc.ca</u>>, "Babakaiff, Scott C FLNR:EX" <<u>Scott.Babakaiff@gov.bc.ca</u>>, Douglas Watt s.22 Rick Holmes <carenvir@wlake.com>, "'Aaron.Higginbottom@williamslakeband.ca'"

<Aaron.Higginbottom@williamslakeband.ca>, "'nrcoordinator@xatsull.com'" <nrcoordinator@xatsull.com>,

"'kirk.dressler@williamslakeband.ca" <kirk.dressler@williamslakeband.ca>

Cc: "Hill, Douglas J ENV:EX" < Doug.Hill@gov.bc.ca>, "McGuire, Jennifer ENV:EX" < Jennifer.Mcguire@gov.bc.ca>,

"Fenwick, Leigh-Ann ENV:EX" < Leigh Ann. Fenwick@gov.bc.ca >

Subject: FW: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

In the email below you will find a link to Erosion and Sediment control plan developed by SNC for MPMC. If you can review this document and get your comments back to me as soon as possible that would be appreciated, but by Sept 17 at the latest, as we are keen to get information back to the company so that those acceptable works can be implemented

this information is provided in confidence and is for your consideration only and not for distribution at this time.

Flook forward to your comments

Hubert Bunce
A/Mining Director, Environmental Protection
Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

From: Nikl, Lee [mailto:Lee Nikl@golder.com]
Sent: Friday, September 12, 2014 2:54 PM

To: Bunce, Hubert ENV:EX

Cc: Johnson, Gordon; Don Parsons (dparsons@imperialmetals.com); Colleen Hughes; Steve Robertson **Subject:** LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dear Mr. Bunce,

On behalf of Mount Polley Mining Corporation, I am pleased to submit to you an erosion and sediment control plan for lower Hazeltine Creek, prepared by SNC Lavalin.

This plan is part of Mount Polley's efforts to limit the release of turbid waters to Quesnel Lake. The work proposed is part of our continuing incident response and was presented in summary form to the community of Likely on the evening of September 10th. Ministry staff were also present at that meeting.

We are providing this detailed plan to the Ministry for their review and we would ask that you provide us with prompt and specific feedback as we are planning to proceed with this work without delay. We are concurrently addressing matters such as the Archaeological permit and logisitics with respect to undertaking the physical works described in the plan. In the interest of expediency, we are submitting this to you in electronic form. If you require this in hard copy, please advise.

We look forward to your comments.

To access the file, it can be downloaded from the link below. Please note that this link will work for anyone to whom you forward this email. I have done it that way to facilitate your distribution. However, please be sure that you have confidence that parties receiving this email from you will not forward past the intended audience if access security is to be maintained.

Lee Nikl

File(s) will be available for download until **12 October 2014**: File: <u>Erosion Sed Combined</u> Plan MPMC signed Sept112014.pdf, 15.142.90 KB

Lee Nikl (M.Sc., R.P.Bio.) | Principal / Senior Environmental Scientist | Golder Associates Ltd. | 500 - 4260 Still Creek Drive, Burnaby, British Columbia, Canada V5C 6C6
D: +1.604.297.2016 | T: +1.604.296.4200 | F: +1.604.298.5253 | C: +1.778.231.6636 | E: Lee_Nikl@golder.com | www.golder.com

Work Safe, Home Safe

and the second second of the s

in the estimate that the control of the control of

Physical and stadion of the control of the control of the heart of the

PRIVILEGED AND CONFIDENTIAL
Subject to Solicitor Client Privilege and
Property Solicitor Client Privilege and
Property Solicitor of Litigation

MOUNT POLLEY COMPREHENSIVE ENVIRONMENTAL IMPACT ASSESSMENT WORK PLAN

Mount Polley Mining Corporation

SNC-LAVALIN INC.

August 29, 2014

621717

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

Copyright		

From:

Weir, David J FLNR:EX

Sent:

Wednesday, September 17, 2014 12:14 PM

To: Cc:

Bunce, Hubert ENV:EX Moe, James W FLNR:EX

Subject:

RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Comments for the bridge: I spoke with the District Engineering officer and reviewed the temporary bridge design. I have no concerns with the proposal and it is consistent with the Water Act order. My understanding is that the company is committed to resestablishing the permanent access at a different location to be determined with FUNRO. The temporary crossing will now provide access to both sides of the stream channel so the company should probably revisit the Sediment Control structure designs remove the culverts in them and replace them with Rock Weirs?

David Weir Water Section Head. Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Wednesday, September 17, 2014 11:26 AM

To: 'Don Parsons'; 'Niki, Lee'

Cc: 'Johnson, Gordon'; 'Colleen Hughes'; 'Steve Robertson'; 'Dale Reimer (dreimer@mountpolley.com)'; Fenwick, Leigh-

Ann ENV:EX; Epps, Deb ENV:EX; Metcalfe, Shelley ENV:EX; Weir, David J FLNR:EX; 'nrcoordinator@xatsull.com';

'Aaron.Higginbottom@williamslakeband.ca'; 'Amy Crook'; 'kirk.dressler@williamslakeband.ca'; Demchuk, Tania MEM:EX;

Howe, Diane J MEM:EX

Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

As noted previously the expectation of the ministry is that every possible action will be taken to mitigate the potential for this bridge installation to impact Hazeltine Creek. This could include, but not be limited to, reducing pumped flows, diverting water around areas, installation of hay bales and silt fences and other temporary treatment features. I trust that the bridge design is appropriately sized to pass the expected flows in Hazeltine Creek in its new configuration.

"Control" and downstream sampling should be undertaken to determine the effectiveness of the temporary mitigation." works relative to the installation of the bridge and any other works undertaken within the spill impacted areas. This will allow for improvement of techniques relative to the specific site conditions if necessary

It is helpful that the silt curtain at the mouth of Hazeltine Creek is now in place and the development of additional mitigation and treatment works will be of further assistance in protecting the environment.

As much prior notice of specific "works" development is appreciated.

We expect to have additional comments back on the latest version of the Erosion and Sediment Control plan to MPMC by tomorrow. We are interested in receiving as much detail as possible on the temporary and more permanent treatment and mitigation works and the related monitoring and how these works integrate with the CEIA and the level of treatment achieved at particular locations in the receiving environment

I plan to be in WL Thursday and Friday and will try to be in contact

Hubert Bunce

A/Director, Mount Polley

Environmental Protection, Regional Operations

ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road

Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Don Parsons [mailto:dparsons@imperialmetals.com]

Sent: Tuesday, September 16, 2014 1:43 PM

To: Bunce, Hubert ENV:EX; 'Nikl, Lee'

Cc: 'Johnson, Gordon'; 'Colleen Hughes'; Steve Robertson; Dale Reimer (dreimer@mountpolley.com)

Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Hubert

The Gavin Lake Road bridge installation over Hazeltine Creek will begin tomorrow and is planned for completion Friday the 19th. The bridge will allow access to Quesnel Lake and the proposed sediment and erosion control works at the Hazeltine Creek discharge. A local first nation contractor joint venture, Lake Excavating Ltd., has been selected for the work. FLNRO has issued Mount Polley a road use permit authorizing off highway loading of the Gavin Lake Road. On Friday, construction materials will be able to move freely between the mine and Ditch Road. SNC is prepared to supply the supervisors familiar with work of a similar nature as early as Saturday, at which time work can begin.

I would like to start construction of access to the work area as soon as possible. Our intention would be to start the sediment and erosion control works on Saturday.

Please advise.

Regards Don Parsons

From: Bunce, Hubert ENV:EX [mailto:Hubert.Bunce@gov.bc:ca]

Sent: Friday, September 12, 2014 4:46 PM

To: 'Niki, Lee'

Cc: 'Johnson, Gordon'; Don Parsons; 'Colleen Hughes'; Steve Robertson
Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Thanks Lee

Lunderstand from Eric Forgeng of The Archeology Branch that the permit has been issued

I will be distributing the plan to MEM and FLNRO staff for their review and to members of the Env Working Group who have signed confidentiality agreements. I will ask them to provide comments as quickly as possible but no later than Wed Sept 17.

Hubert Bunce

A/Mining Director, Environmental Protection

Regional Operations

ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Nikl, Lee [mailto:Lee Nikl@golder.com]
Sent: Friday, September 12, 2014 2:54 PM

To: Bunce, Hubert ENV:EX

Cc: Johnson, Gordon; Don Parsons (dparsons@imperialmetals.com); Colleen Hughes; Steve Robertson

Subject: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dear Mr. Bunce,

On behalf of Mount Policy Mining Corporation, I am pleased to submit to you an erosion and sediment control plan for lower Hazeltine Creek, prepared by SNC Lavalin.

This plan is part of Mount Polley's efforts to limit the release of turbid waters to Quesnel Lake. The work proposed is part of our continuing incident response and was presented in summary form to the community of Likely on the evening of September 10th. Ministry staff were also present at that meeting.

We are providing this detailed plan to the Ministry for their review and we would ask that you provide us with prompt and specific feedback as we are planning to proceed with this work without delay. We are concurrently addressing matters such as the Archaeological permit and logisitics with respect to undertaking the physical works described in the plan. In the interest of expediency, we are submitting this to you in electronic form. If you require this in hard copy, please advise.

We look forward to your comments.

To access the file, it can be downloaded from the link below. Please note that this link will work for anyone to whom you forward this email. I have done it that way to facilitate your distribution. However, please be sure that you have confidence that parties receiving this email from you will not forward past the intended audience if access security is to be maintained.

Lee Nikl

File(s) will be available for download until 12 October 2014: File: <u>Erosion Sed Combined</u> Plan MPMC signed Sept112014.pdf, 15,142.90 KB

Lee Nikf (M.Sc., R.P.Bio.) | Principal / Senior Environmental Scientist | Golder Associates Ltd. | 500 - 4260 Still Creek Drive, Burnaby, British Columbia, Canada V5C 6C6
D: +1.604.297.2016 | T: +1.604.296.4200 | F: +1.604.298.5253 | C: +1.778.231.6636 | E: Lee_Nikl@golder.com | www.golder.com

Work Safe, Home Safe

The first transport of the control of the control of the second of the s

Discount of the property of the p

Please consider the government before posting this ensui-

From:

Wells, Duane TRAN:EX

Sent:

Wednesday, September 17, 2014 1:04 PM

To:

Weir, David J FLNR:EX Wiebe. Wes J TRAN:EX

Subject:

RE: Mt Polley September 29th Boat Trip Quesnel Lake

5.22

From: Weir, David J FLNR:EX

Sent: Wednesday, September 17, 2014 12:23 PM

To: Wells, Duane TRAN:EX Cc: Wiebe, Wes J TRAN:EX

Subject: RE: Mt Polley September 29th Boat Trip Quesnel Lake

Actually, I sent this to you by error. I meant to send you the meeting request for Pierce Creek for Oct 8th relating to Gibraltor Mines.

David Weir

Water Section Head,

Ministry of Forest Lands and Natural Resource Operations

Williams Lake , BC David, J. Weir@gov.bc.ca

(250) 398 4924 Ceil 250 267-5925

From: Wells, Duane TRAN:EX

Sent: Wednesday, September 17, 2014 11:42 AM **To:** Weir, David J FLNR:EX; Henley, Margaret TRAN:EX

Subject: RE: Mt Polley September 29th Boat Trip Quesnel Lake

If you want me there I could drive up but Margie should be able to answer any questions you might have.

Cheers

Duane

From: Weir, David J FLNR:EX

Sent: Tuesday, September 16, 2014 8:12 AM

To: Bunce, Hubert ENV:EX; Henley, Margaret TRAN:EX; XT:Carpenter, Penny FLNR:IN; Williston, Lee X FLNR:EX; Hoffos,

Robin FLNR:EX

Cc: Wells, Duane TRAN:EX; Wiebe, Wes J TRAN:EX; Fenwick, Leigh-Ann ENV:EX

Subject: Mt Polley September 29th Boat Trip Quesnel Lake

I would like to arrange a boat trip in order to confirm the state of the debris clean up, look at the Kokanee shore spawning areas, and address as many issues as we can prior to the 2015 spring freshet relating to the cleanup. I am proposing September 29th 2015. Please get back to me concerning this as soon as possible.

David Weir

Water Section Head.

Ministry of Forest Lands and Natural Resource Operations

Williams Lake , BC <u>David.J.Weir@gov.bc.ca</u> (250) 398 4924 Cell 250 267-5925

From:

Sent: Wednesday, September 17, 2014 12:26 PM

To: Weir, David J FLNR:EX

Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Don't think that is necessary as he is not directly involved with the Mt Polley file any longer

Bunce, Hubert ENV:EX

Hubert Bunce

A/Director, Mount Polley

Environmental Protection, Regional Operations

ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Weir, David J FLNR:EX

Sent: Wednesday, September 17, 2014 12:16 PM

To: Bunce, Hubert ENV:EX

Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Do you want to invite Doug along on the boat trip?

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Wednesday, September 17, 2014 11:36 AM

To: 'Douglas (Mobile) Watt'; Demchuk, Tania MEM:EX; McConnachie, Jennifer MEM:EX; Weir, David J FLNR:EX; Metcaife,

Shelley ENV:EX; Babakaiff, Scott C FLNR:EX; 'Rick Holmes'; 'Aaron.Higginbottom@williamslakeband.ca';

'nrcoordinator@xatsull.com'; 'kirk,dressler@williamslakeband.ca'

Cc: Hill, Douglas J ENV:EX; McGuire, Jennifer ENV:EX; Fenwick, Leigh-Ann ENV:EX **Subject:** RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Thanks for these comments Doug

now that the confidentiality agreement is in place attached is the company's CEIA

Hubert Bunce

A/Director, Mount Polley

Environmental Protection, Regional Operations

ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road Nanaimo BC V9T 8J9

Please consider the environment before printing this email

BC Pollution Free

From: Douglas (Mobile) Watt s.22

Sent: Wednesday, September 17, 2014 12:50 AM

To: Bunce, Hubert ENV:EX; Demchuk, Tania MEM:EX; McConnachie, Jennifer MEM:EX; Weir, David J FLNR:EX; Metcalfe,

Shelley ENV:EX; Babakaiff, Scott C FLNR:EX; Rick Holmes; 'Aaron.Higginbottom@williamslakeband.ca';

'nrcoordinator@xatsull.com'; 'kirk.dressler@williamslakeband.ca'

Cc: Hill, Douglas J ENV:EX; McGuire, Jennifer ENV:EX; Fenwick, Leigh-Ann ENV:EX Subject: Re: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Hi Hubert,

I have reviewed the MPMC (5NC Lavalin) Lower Hazeltine Creek Erosion and Sediment Control Plan, with the comments listed below:

- 1) There are numerous references and referrals to the Comprehensive Environmental Impact Assessment and Action Plan (Aug 15, 2014), the Comprehensive Environmental Impact Assessment Work Plan (Aug 15, 2014) and the Conceptual Interim Erosion and Sediment Control Plan (Aug 21, 2014), none of which I have seen, nor have they been released publicly to the best of my knowledge.
- 2) I find it difficult to fit this plan into the overall strategy and plan being deployed at MPMC without the overall plan and concepts being available for review as well, not only to the EWG but to the public as well.
- 3) In section 2.4.2, average hydraulic residence time for Polley Lake is estimated at about 16 years, but section 2.4.3 does not mention what it is for Quesnel Lake. Another source I read suggested in the range of 10 11 years for Quesnel Lake, though I don't know if this is true.
- 4) In section 2.5.2 there is a statement comparing a couple of WQ parameters (pH & dissolved solids) to water in Hazeltine Creek and Polley Lake, but no comparison to Quesnel Lake.
- 5) In section 3.3 it mentions that the sedimentation ponds will reduce Hazeltine Creek sediment levels by 80% from current levels, but does not provide information on the present levels, nor what the target sediment level will be for discharge into Quesnel Lake, either during the construction period or after with the new permanent channel is operational.
- 6) Section 5.5.4 mentions constructing fish barriers at the mouth of Edney Creek. What are the plans for the mouth of Hazeltine Creek, both now during salmon spawning, and during the Hazeltine construction period?
- 7) In section 6.2, can the 10 m interval sediment sampling in Hazeltine Creek be conducted safely before Polley Lake is lowered and the plug stabilized? The timing of this is critical to determining and implementing the CEIA management criteria limits.
- 8) Other than in a line in figure 10.1 (Project Schedule), there is little detail of the monitoring plans and how they will be executed and used to control the effects on the environment, in particular the sediment levels discharging into Quesnel Lake.
- 9) Reporting and engineering controls appear to be fairly well covered for the construction by the engineers and contractors with continuous controls and weekly reporting internally, but how is this process going to be monitored by the regulators? Occasional visits by inspectors is unlikely to provide sufficient oversight for the project to ensure that the work is completed in compliance with the CEIA and Work Plan. Is there a plan to continuous on-sight monitoring during construction?

Based on my past experience, it appears that the engineering design and controls appear adequate, but I do expect that this will be a somewhat difficult project to complete based on the terrain and the fact that much of it will need to be completed during the winter months. There will be a very large field fit component during this process, which will make it a challenge to remain within the specifications of the construction plan and the CEIA.

Thanks,
Doug Watt, Likely Chamber Liaison
Likely, BC
Ph 250 790 2446
Cells.22 (remember, no cell service in Likely)
Email s.22

From: "Bunce, Hubert ENV:EX" < Hubert.Bunce@gov.bc.ca>

Date: Fri, 12 Sep 2014 17:05:33 -0700

To: "Demchuk, Tania MEM:EX" < Tania. Demchuk@gov.bc.ca >, "McConnachie, Jennifer MEM:EX" < Jennifer.McConnachie@gov.bc.ca >, "Weir, David J FLNR:EX" < David.J.Weir@gov.bc.ca >, "Metcalfe, Shelley ENV:EX" < Shelley.Metcalfe@gov.bc.ca >, "Babakaiff, Scott C FLNR:EX" < Scott.Babakaiff@gov.bc.ca >, Douglas Watt s.22 Rick Holmes < carenvir@wlake.com >, "'Aaron.Higginbottom@williamslakeband.ca" < Aaron.Higginbottom@williamslakeband.ca >, "'nrcoordinator@xatsull.com" < nrcoordinator@xatsull.com >, "'kirk.dressler@williamslakeband.ca > (Sirk.dressler@williamslakeband.ca >) (Sirk.dressler@williamslakeband.ca >)

2

Cc: "Hill, Douglas J ENV:EX" < Doug. Hill@gov.bc.ca >, "McGuire, Jennifer ENV:EX" < Jennifer. Mcguire@gov.bc.ca >,

"Fenwick, Leigh-Ann ENV:EX" <LeighAnn.Fenwick@gov.bc.ca>

Subject: FW: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

In the email below you will find a link to Erosion and Sediment control plan developed by SNC for MPMC. If you can review this document and get your comments back to me as soon as possible that would be appreciated, but by Sept 17 at the latest, as we are keen to get information back to the company so that those acceptable works can be implemented

this information is provided in confidence and is for your consideration only and not for distribution at this time.

Hook forward to your comments

Hubert Bunce
A/Mining Director, Environmental Protection
Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

From: Nikl, Lee [mailto:Lee Nikl@golder.com]
Sent: Friday, September 12, 2014 2:54 PM

To: Bunce, Hubert ENV:EX

Cc: Johnson, Gordon; Don Parsons (<u>dparsons@imperialmetals.com</u>); Colleen Hughes; Steve Robertson

Subject: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dear Mr. Bunce.

On behalf of Mount Polley Mining Corporation, I am pleased to submit to you an erosion and sediment control plan for lower Hazeltine Creek, prepared by SNC Lavalin.

This plan is part of Mount Polley's efforts to limit the release of turbid waters to Quesnel Lake. The work proposed is part of our continuing incident response and was presented in summary form to the community of Likely on the evening of September 10th. Ministry staff were also present at that meeting.

We are providing this detailed plan to the Ministry for their review and we would ask that you provide us with prompt and specific feedback as we are planning to proceed with this work without delay. We are concurrently addressing matters such as the Archaeological permit and logisitics with respect to undertaking the physical works described in the plan. In the interest of expediency, we are submitting this to you in electronic form. If you require this in hard copy, please advise.

We look forward to your comments.

To access the file, it can be downloaded from the link below. Please note that this link will work for anyone to whom you forward this email. I have done it that way to facilitate your distribution. However, please be sure that you have confidence that parties receiving this email from you will not forward past the intended audience if access security is to be maintained.

Lee Nikl

File(s) will be available for download until **12 October 2014**: File: <u>Erosion Sed Combined</u> Plan MPMC signed Sept112014.pdf, 15,142.90 KB

Lee Niki (M.Sc., R.P.Bio.) | Principal / Senior Environmental Scientist | Golder Associates Ltd. | 500 - 4260 Still Creek Drive, Burnaby, British Columbia, Canada V5C 6C6

D: +1.604.297.2016 | T: +1.604.296.4200 | F: +1.604.298.5253 | C: +1.778.231.6636 | E: <u>Lee_Nikl@golder.com</u> | www.golder.com

Work Safe, Home Safe

Barran engant of krigging of the content of kindstand of the best of the best of the content of the specific o

the lights Appearance and the explorence government and grounds of the beautiful appearance.

Please consider the environment before crinting the small.

From:

Weir, David J FLNR:EX

Sent:

Wednesday, September 17, 2014 1:24 PM

To:

Wiebe, Wes J TRAN:EX Wells, Duane TRAN:EX

Cc: Subject:

RE: Mt Polley September 29th Boat Trip Quesnel Lake

Cheryl is trying to contact you with the meeting details. cwilliston@gibraltarmine.com

As this e-mail string relates to a different mine I won't copy her here.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David, J. Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Wiebe, Wes J TRAN:EX

Sent: Wednesday, September 17, 2014 1:05 PM

To: Weir, David J FLNR:EX **Cc:** Wells, Duane TRAN:EX

Subject: Re: Mt Polley September 29th Boat Trip Quesnel Lake

Hi David do you have a time an location

Thanks

Wes

Sent from my iPhone

On Sep 17, 2014, at 12:23 PM, "Weir, David J FLNR:EX" < David J. Weir@gov.bc.ca> wrote:

Actually, I sent this to you by error. I meant to send you the meeting request for Pierce Creek for Oct 8th relating to Gibraltor Mines.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Wells, Duane TRAN:EX

Sent: Wednesday, September 17, 2014 11:42 AM **To:** Weir, David J FLNR:EX; Henley, Margaret TRAN:EX

Subject: RE: Mt Polley September 29th Boat Trip Quesnel Lake

If you want me there I could drive up but Margie should be able to answer any questions you might have.

Cheers Duane

From: Weir, David J FLNR:EX

Sent: Tuesday, September 16, 2014 8:12 AM

To: Bunce, Hubert ENV:EX; Henley, Margaret TRAN:EX; XT:Carpenter, Penny FLNR:IN; Williston, Lee X

FLNR:EX; Hoffos, Robin FLNR:EX

Cc: Wells, Duane TRAN:EX; Wiebe, Wes J TRAN:EX; Fenwick, Leigh-Ann ENV:EX

Subject: Mt Polley September 29th Boat Trip Quesnel Lake

I would like to arrange a boat trip in order to confirm the state of the debris clean up, look at the Kokanee shore spawning areas, and address as many issues as we can prior to the 2015 spring freshet relating to the cleanup. I am proposing September 29th 2015. Please get back to me concerning this as soon as possible.

David Weir Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC <u>David.J.Weir@gov.bc.ca</u> (250) 398 4924 Cell 250 267-5925

From:

Weir, David J FLNR:EX

Sent:

Wednesday, September 17, 2014 1:34 PM

To:

Hoffos, Robin FLNR:EX; Epps, Deb ENV:EX

Cc:

Stewart, Rodger W FLNR:EX; McLeod, Joanne FLNR:EX

Subject:

David Weir

RE: INFO: Coordination of planning and practice for Mt. Polley restoration

Now that I am confident communication lines are open I no longer need to be cc'd on these.

Water Section Head, Ministry of Forest Lands and Natural Resource Operations Williams Lake, BC David J Weir@gov bc.ca

David.J.Weir@gov.bc.ca (250) 398 4924 Cell 250 267-5925

From: Hoffos, Robin FLNR:EX

Sent: Wednesday, September 17, 2014 9:09 AM

To: Epps, Deb ENV:EX

Cc: Stewart, Rodger W FLNR:EX; Weir, David J FLNR:EX; McLeod, Joanne FLNR:EX **Subject:** RE: INFO: Coordination of planning and practice for Mt. Polley restoration

Thanks, Joanne McLeod provided some initial comments on the EIA. There were some notable land use designations that the EIA fails to mention and it remains unclear whether a choice has been made in regards to the future of Hazeltine creek. The term "rehabilitation" is used. Depending upon the conditions and costs, it may be far more reasonable to compensate for habitat losses at Hazeltine Ck if provided there are ways of preventing continued sedimentation input to Quesnel Lake. I hope those options are still on the table and we can provide input as appropriate.

Cheers.

From: Epps, Deb ENV:EX

Sent: Wednesday, September 17, 2014 8:43 AM **To:** Weir, David J FLNR:EX; Hoffos, Robin FLNR:EX

Cc: Stewart, Rodger W FLNR:EX

Subject: Re: INFO: Coordination of planning and practice for Mt. Polley restoration

Hi Dave.

Thanks for the note and I understand your concerns. Things are moving fast. If you or Robin have any specific comments from the sediment and erosion control document itself, please pass them on to me so we can include them in our response to MPMC. They are on a really tight timeframe with our comments due today by end of day. I will also endeavour to keep you and other FLNRO staff in the loop when reports come in and when discussions are occurring regarding compensation and/or habitat mitigation. I believe FLNRO habitat staff reviewed the comprehensive EIA and provided comments as well.

If you wish to discuss anything please don't hesitate to call or send me an email. I will be in WL on Friday.

Deb

Sent from my BlackBerry Wireless Handheld

From: Weir, David J FLNR:EX

Sent: Wednesday, September 17, 2014 08:22 AM **To**: Epps, Deb ENV:EX; Hoffos, Robin FLNR:EX

Cc: Stewart, Rodger W FLNR:EX

Subject: RE: INFO: Coordination of planning and practice for Mt. Polley restoration

Hello Deb,

My specific role is mostly related to the stability and public safety aspects around Mt Polley, Hazeltine Creek and Quesnel Lake. To that affect I issued orders to the company regarding management of the lake level on Polley Lake and debris removal from the water bodies. However, as you are probably aware there is a habitat component in the water act and as part of my due diligence I wish to confirm that this component is addressed. I see that one of our biologists is on the working group. I am concerned in reading the sediment and control plan for Hazeltine Creek that the conversation about habitat compensation might move past the point of meaningful input from our habitat group due to the real need for operational expediency. Can you assure me that you will engage Robin at the appropriate time?

David Weir
Water Section Head,
Ministry of Forest Lands and Natural Resource Operations
Williams Lake, BC
David.J.Weir@gov.bc.ca
(250) 398 4924
Cell 250 267-5925

From: Stewart, Rodger W FLNR:EX

Sent: Tuesday, September 16, 2014 4:37 PM

To: Weir, David J FLNR:EX

Subject: INFO: Coordination of planning and practice for Mt. Polley restoration

For your reference.

Rodger Stewart
Director, Resource Management
Ministry of Forests, Lands and Natural Resource Operations
Cariboo Region
400 - 640 Borland Street
Williams Lake, BC
V2G 4T1
cell (250) 305 8536, desk (250) 398 4549
fax (250) 398 4214

From: Bunce, Hubert ENV:EX

Sent: Tuesday, September 16, 2014 4:31 PM

To: Stewart, Rodger W FLNR:EX

Cc: Epps, Deb ENV:EX

Subject: RE: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Restoration of the terrestrial and aquatic areas of the spill impacted areas are still some way off and we are currently working on short term corrective and mitigation strategies as a priority. Ie seeding of impacted areas occurred late last week but plans for long term vegetation recovery have yet to be defined

Deb Epps is leading our response to the mines proposal on the environmental assessment and restoration biological mine and would be your best point of contact. Environmental Protection is very interested in getting input from other agencies regarding best potential courses of action for the mine impacted areas.

Hubert Bunce

A/Director, Mount Polley **Environmental Protection, Regional Operations** ph (250) 751-3264 fax (250) 751-3103 2080A Labieux Road Nanaimo BC V9T 6J9 Please consider the environment before printing this email

BC Pollution Free

From: Stewart, Rodger W FLNR:EX

Sent: Tuesday, September 16, 2014 1:51 PM

To: Bunce, Hubert ENV:EX

Subject: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Hubert, what say you respecting the circumstances FLNR regional operations finds itself in?

Rodger Stewart Director, Resource Management Ministry of Forests, Lands and Natural Resource Operations Cariboo Region 400 - 640 Borland Street Williams Lake, BC V2G 4T1 cell (250) 305 8536, desk (250) 398 4549 fax (250) 398 4214

From: McGuire, Jennifer ENV:EX

Sent: Tuesday, September 16, 2014 1:11 PM

To: Stewart, Rodger W FLNR:EX; Bunce, Hubert ENV:EX

Cc: Hoffos, Robin FLNR:EX; Vanderburgh, Ken FLNR:EX; Fenwick, Leigh-Ann ENV:EX Subject: Re: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Roger,

Hubert would be the best person to speak to. Hubert is the RD - responsible for Mount Polley.

Jennifer

Sent from my BlackBerry 10 smartphone on the TELUS network.

From: Stewart, Rodger W FLNR:EX

Sent: Tuesday, September 16, 2014 1:04 PM

To: McGuire, Jennifer ENV: EX

Cc: Hoffos, Robin FLNR:EX; Vanderburgh, Ken FLNR:EX

Subject: QUESTION: Coordination of planning and practice for Mt. Polley restoration

Jennifer, could you please direct me to the correct contact responsible for coordinating inter-agency deliberations respecting planning and selection of practices for restoration of areas impacted by the My Polley event?

We are aware of the submission made by Imperial Metals in response to the Ministry of Environment pollution abatement order. We know that works undertaken consistent with the pollution abatement submission may serve for purposes of addressing specific pollution abatement matters. However, it would appear that restoration works are a substantively different matter. Or are they? We simply do not know enough at this point.

We at FLNR regional operations face substantive uncertainty as to the schedule of planning for works leading to restoration of terrestrial and aquatic ecosystems at the impact sites (where practicable). It is expected that such enterprise would require inter-agency deliberation, yet we (in a supporting role) have no specific information as to who has lead responsibility for various elements of this project.

Hope you might be able to point us in the correct direction.

Rodger Stewart
Director, Resource Management
Ministry of Forests, Lands and Natural Resource Operations
Cariboo Region
400 - 640 Borland Street
Williams Lake, BC
V2G 4T1
cell (250) 305 8536, desk (250) 398 4549
fax (250) 398 4214

From:

Bunce, Hubert ENV:EX

Sent:

Wednesday, September 17, 2014 1:36 PM

To:

Weir, David J FLNR:EX

Subject:

RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Sorry I thought you meant Doug Hill, feel free to invite Doug Watt

Hubert Bunce

A/Director, Mount Polley

Environmental Protection, Regional Operations

ph (250) 751-3254 fax (250) 751-3103

2080A Labieux Road Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Weir, David J FLNR:EX

Sent: Wednesday, September 17, 2014 1:33 PM

To: Bunce, Hubert ENV:EX

Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Doug Watt?

David Weir

Water Section Head,

Ministry of Forest Lands and Natural Resource Operations

Williams Lake , BC

<u>David.J.Weir@gov.bc.ca</u> (250) 398 4924

Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Wednesday, September 17, 2014 12:26 PM

To: Weir, David J FLNR:EX

Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Don't think that is necessary as he is not directly involved with the Mt Polley file any longer

Hubert Bunce

A/Director, Mount Polley

Environmental Protection, Regional Operations

ph (250) 751-3254 fax (250) 751 3103

2080A Labieux Road Nanaimo BC V9T 6J9

Please consider the environment before printing this email

BC Pollution Free

From: Weir, David J FLNR: EX

Sent: Wednesday, September 17, 2014 12:16 PM

To: Bunce, Hubert ENV:EX

Subject: RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Do you want to invite Doug along on the boat trip?

David Weir
Water Section Head,
Ministry of Forest Lands and Natural Resource Operations
Williams Lake, BC
David.J.Weir@gov.bc.ca
(250) 398 4924
Cell 250 267-5925

From: Bunce, Hubert ENV:EX

Sent: Wednesday, September 17, 2014 11:36 AM

To: 'Douglas (Mobile) Watt'; Demchuk, Tania MEM:EX; McConnachie, Jennifer MEM:EX; Weir, David J FLNR:EX; Metcalfe,

Shelley ENV:EX; Babakaiff, Scott C FLNR:EX; 'Rick Holmes'; 'Aaron.Higginbottom@williamslakeband.ca';

'nrcoordinator@xatsull.com'; 'kirk.dressler@williamsiakeband.ca'

Cc: Hill, Douglas J ENV:EX; McGuire, Jennifer ENV:EX; Fenwick, Leigh-Ann ENV:EX **Subject:** RE: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Thanks for these comments Doug

now that the confidentiality agreement is in place attached is the company's CEIA

Hubert Bunce

A/Director, Mount Polley Environmental Protection, Regional Operations ph (250) 751-3254 fax (250) 751-3103 2080A Labieux Road

2080A Labieux Road Nanaimo BC V9T 6J9

Please consider the environment before printing this email BC Pullution Free

From: Douglas (Mobile) Watt, s.22

Sent: Wednesday, September 17, 2014 12:50 AM

To: Bunce, Hubert ENV:EX; Demchuk, Tania MEM:EX; McConnachie, Jennifer MEM:EX; Weir, David J FLNR:EX; Metcalfe,

Shelley ENV:EX; Babakaiff, Scott C FLNR:EX; Rick Holmes; 'Aaron.Higginbottom@williamslakeband.ca';

'nrcoordinator@xatsull.com'; 'kirk.dressler@williamslakeband.ca'

Cc: Hill, Douglas J ENV:EX; McGuire, Jennifer ENV:EX; Fenwick, Leigh-Ann ENV:EX **Subject:** Re: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Hi Hubert,

I have reviewed the MPMC (SNC Lavalin) Lower Hazeltine Creek Erosion and Sediment Control Plan, with the comments listed below:

- 1) There are numerous references and referrals to the Comprehensive Environmental Impact Assessment and Action Plan (Aug 15, 2014), the Comprehensive Environmental Impact Assessment Work Plan (Aug 15, 2014) and the Conceptual Interim Frosion and Sediment Control Plan (Aug 21, 2014), none of which I have seen, nor have they been released publicly to the best of my knowledge.
- 2) I find it difficult to fit this plan into the overall strategy and plan being deployed at MPMC without the overall plan and concepts being available for review as well, not only to the EWG but to the public as well.
- 3) In section 2.4.2, average hydraulic residence time for Polley Lake is estimated at about 16 years, but section 2.4.3 does not mention what it is for Quesnel Lake. Another source I read suggested in the range of 10 11 years for Quesnel Lake, though I don't know if this is true.
- 4) In section 2.5.2 there is a statement comparing a couple of WQ parameters (pH & dissolved solids) to water in Hazeltine Creek and Policy Lake, but no comparison to Quesnel Lake.
- 5) In section 3.3 it mentions that the sedimentation ponds will reduce Hazeltine Creek sediment levels by 80% from current levels, but does not provide information on the present levels, nor what the target sediment level will be for discharge into Quesnel Lake, either during the construction period or after with the new permanent channel is operational.

- 6) Section 5.5.4 mentions constructing fish barriers at the mouth of Edney Creek. What are the plans for the mouth of Hazeltine Creek, both now during salmon spawning, and during the Hazeltine construction period?
- 7) In section 6.2, can the 10 m interval sediment sampling in Hazeltine Creek be conducted safely before Polley Lake is lowered and the plug stabilized? The timing of this is critical to determining and implementing the CEIA management criteria limits.
- 8) Other than in a line in figure 10.1 (Project Schedule), there is little detail of the monitoring plans and how they will be executed and used to control the effects on the environment, in particular the sediment levels discharging into Quesnel Lake.
- 9) Reporting and engineering controls appear to be fairly well covered for the construction by the engineers and contractors with continuous controls and weekly reporting internally, but how is this process going to be monitored by the regulators? Occasional visits by inspectors is unlikely to provide sufficient oversight for the project to ensure that the work is completed in compliance with the CEJA and Work Plan. Is there a plan to continuous on-sight monitoring during construction?

Based on my past experience, it appears that the engineering design and controls appear adequate, but I do expect that this will be a somewhat difficult project to complete based on the terrain and the fact that much of it will need to be completed during the winter months. There will be a very large field fit component during this process, which will make it a challenge to remain within the specifications of the construction plan and the CEIA.

Thanks, Doug Watt, Likely Chamber Liaison Likely, BC Ph 250 790 2446

Cell s.22 (remember, no cell service in Likely)

Email s.22

From: "Bunce, Hubert ENV:EX" < Hubert.Bunce@gov.bc.ca >

Date: Fri, 12 Sep 2014 17:05:33 -0700

To: "Demchuk, Tania MEM:EX" <Tania.Demchuk@gov.bc.ca>, "McConnachie, Jennifer MEM:EX"

<Jennifer.McConnachie@gov.bc.ca>, "Weir, David J FLNR:EX" <David.J.Weir@gov.bc.ca>, "Metcalfe, Shelley ENV:EX"

<<u>Shelley.Metcalfe@gov.bc.ca</u>>, "Babakaiff, Scott C FLNR:EX" <<u>Scott.Babakaiff@gov.bc.ca</u>>, Douglas Watt

s.22 Rick Holmes < carenvir@wlake.com >, "'Aaron.Higginbottom@williamslakeband.ca'"

<Aaron.Higginbottom@williamslakeband.ca>, "'nrcoordinator@xatsull.com'" <nrcoordinator@xatsull.com>,

"'kirk.dressler@williamslakeband.ca'" < kirk.dressler@williamslakeband.ca >

Cc: "Hill, Douglas J ENV:EX" < Doug. Hill@gov.bc.ca>, "McGuire, Jennifer ENV:EX" < Jennifer. Mcguire@gov.bc.ca>,

"Fenwick, Leigh-Ann ENV:EX" <LeighAnn.Fenwick@gov.bc.ca>

Subject: FW: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

In the email below you will find a link to Erosion and Sediment control plan developed by SNC for MPMC. If you can review this document and get your comments back to me as soon as possible that would be appreciated, but by Sept 17 at the latest, as we are keen to get information back to the company so that those acceptable works can be implemented

this information is provided in confidence and is for your consideration only and not for distribution at this time.

Hook forward to your comments

Hubert Bunce
A/Mining Director, Environmental Protection
Regional Operations
ph (250) 751-3254 fax (250) 751-3103
2080A Labieux Road
Nanaimo BC V9T 6J9
Please consider the environment before printing this email
BC Pollution Free

From: Nikl, Lee [mailto:Lee Nikl@golder.com]
Sent: Friday, September 12, 2014 2:54 PM

To: Bunce, Hubert ENV:EX

Cc: Johnson, Gordon; Don Parsons (dparsons@imperialmetals.com); Colleen Hughes; Steve Robertson

Subject: LOWER HAZELTINE EROSION AND SEDIMENT CONTROL PLAN

Dear Mr. Bunce.

On behalf of Mount Polley Mining Corporation, I am pleased to submit to you an erosion and sediment control plan for lower Hazeltine Creek, prepared by SNC Lavalin.

This plan is part of Mount Polley's efforts to limit the release of turbid waters to Quesnel Lake. The work proposed is part of our continuing incident response and was presented in summary form to the community of Likely on the evening of September 10th. Ministry staff were also present at that meeting.

We are providing this detailed plan to the Ministry for their review and we would ask that you provide us with prompt and specific feedback as we are planning to proceed with this work without delay. We are concurrently addressing matters such as the Archaeological permit and logisitics with respect to undertaking the physical works described in the plan. In the interest of expediency, we are submitting this to you in electronic form. If you require this in hard copy, please advise.

We look forward to your comments.

To access the file, it can be downloaded from the link below. Please note that this link will work for anyone to whom you forward this email. I have done it that way to facilitate your distribution. However, please be sure that you have confidence that parties receiving this email from you will not forward past the intended audience if access security is to be maintained.

Lee Nikl

File(s) will be available for download until **12 October 2014**: File: <u>Erosion Sed Combined Plan MPMC signed Sept112014.pdf</u>, 15,142.90 KB

Lee Nikl (M.Sc., R.P.Bio.) | Principal / Senior Environmental Scientist | Golder Associates Ltd. | 500 - 4260 Still Creek Drive, Burnaby, British Columbia, Canada V5C 6C6
D: +1.604.297.2016 | T: +1.604.296.4200 | F: +1.604.298.5253 | C: +1.778.231.6636 | E: Lee Nikl@golder.com | www.golder.com

Work Safe, Home Safe

The profession of the continue of the continue

4

of the month for all and the contract of the second contract of the contract of the second contract of the second

Please a analytic recommodate approximation of the expectation and

APPENDIX B

Construction Specifications

Construction/Installation Specification Erosion and Sediment Control

Page 1 of 14

Revision

No. Date

PA 2014-09-11

621717-LH-GS-001

CLIENT: Mount Polley Mining Corporation

PROJECT: Lower Hazeltine Creek Erosion and Sediment Control Plan

		SIGNATURE	DATE
PREPARED BY (Geotechnical Engineer):	J. Zandbergen	- ALF	
REVIEWED BY (Fluvial Geomorphologist):	L. Burge		
APPROVED BY (Project Manager):	G. Johnson		

ISSUE/REVISION INDEX

					Revision Det	ails
Issue Code	Rev. No.	Prep. By	Rev. By	Арр. Ву	Date	
RR	PA	J.Z.	A.K.	G.J	2014-09-11	Released for Review and Comments
•••						

issue Codes: RC = Released for Construction, RD = Released for Design, RF = Released for Fabrication, RI = Released for Information, RP = Released for Purchase, RQ = Released for Quotation, RR = Released for Review and Comments, RU = Released for use.

Construction/Installation Specification Erosion and Sediment Control

Page 2 of 14

Revision

No. Date

621717-LH-GS-001

PA 2014-09-11

TABLE OF CONTENTS

1.0	INTRODUCTION	3
2.0	RELEVANT CODES & STANDARDS	3
2.1	Codes, Standards & Regulations	3
2.2	Drawings	3
3.0	WORKSITE DESIGN CRITERIA	3
4.0	TECHNICAL REQUIREMENTS	4
4.1	Interface & Coordination	4
4.2	Envîronmental	4
4.3	Delivery, Handling & Storage	
4.4	Protection	
4.5	Tolerances	
4.6	Equipment & Materials	
	4.6.1 Definitions	
4.7	Preparation	
4.8	Access Roads (Existing, Temporary, Permanent)	
4.9	Execution	
.,,	4.9.1 Clearing and Grubbing	
	4.9.2 Mulching	
	4.9.3 Temporary Access Roads	
	4.9.4 Bank Stabilization	
	4.9.5 Creek Channel Works	
	4.9.6 Sedimentation Basins	
	4.9.7 Mulch and Debris Application	
	4.9.9 Seeding	
4.10	Clean-Up	
5.0	QUALITY CONTROL AND QUALITY ASSURANCE1	4
5.1	Samples1	4
5.2	Workmanship	
5.3	Inspection & Testing1	

Construction/Installation Specification Erosion and Sediment Control

Page 3 of 14

Revision

No. Date

PA 2014-09-11

621717-LH-GS-001

1.0 INTRODUCTION

This specification complements the technical requirements for construction of the Lower Hazeltine Creek Erosion and Sediment Control Plan Works.

2.0 RELEVANT CODES & STANDARDS

2.1 Codes, Standards & Regulations

Works to be performed in response to Pollution Abatement Order No 107461. Where a conflict exists between the following regulatory documents and the Order, Notify the Engineer for clarification.

Canada Fisheries Act.
Canada Canada Seed Act.

Canada Fertilizers Act and Fertilizer Regulations

British Columbia Health, Safety and Reclamation Code for Mines in British Columbia.

British Columbia WorksafeBC Health and Safety Regulations.

British Columbia Environmental Management Act.

British Columbia Mines Act.
British Columbia Water Act

British Columbia Forest and Range Practices Act.

British Columbia Forest Act

British Columbia Guidelines by the Native Plant Society of British Columbia, and BC Weed

Control Act and Regulations.

2.2 Drawings

Review these Drawings and report in conjunction with the following project specifications:

LOWER HAZELTINI	E CREEK EROSION AND SEDIMENT CONTROL PLAN	
621717-LH-001	COVERSHEET	
621717-LH-002	EXISTING CONDITIONS	
621717-LH-003	PLAN VIEW OF WORKS	
621717-LH-004	CHANNEL PLAN VIEW ABOVE SEDIMENTATION PONDS	
621717-LH-005	SEDIMENTATION BASINS PLAN VIEW	
621717-LH-006	RIVER SECTIONS AND CHANNEL REACH PROFILE	
621717-LH-007	SEDIMENTATION BASIN SECTIONS	
621717-LH-008	SEDIMENTATION BASINS AND CREEK REACH PROFILES	
621717-LH-009	17-LH-009 TEMPORARY ACCESS ROADS PLAN VIEW AND CROSS SECTION	
621717-LH-010	BANK STABILIZATION - PLAN VIEW AND DETAILS	

3.0 WORKSITE DESIGN CRITERIA

In accordance with the report entitled Lower Hazeltine Creek Erosion and Sediment Control Plan.

Page 4 of 14

Revision

No. Date

PA 2014-09-11

621717-LH-GS-001

4.0 TECHNICAL REQUIREMENTS

4.1 Interface & Coordination

Inspect existing facilities and work previously completed by others. Take all necessary field measurements to ensure new work ties in to and matches existing installations.

Provide written notification to the Engineer of all discrepancies including between drawings and field conditions and propose any rectification, remedial works, or adjustments and obtain the Engineer's written approval prior to proceeding with the work.

Coordinate and schedule the Works with the work of others or as directed by the Engineer.

Check that clearing, grubbing and other site preparation, if any, are satisfactory for the Works of this specification to proceed.

4.2 Environmental

During execution of the Works, protect the general environment from damage by complying with environmental guidelines and regulations.

Notify the Engineer and appropriate agencies and parties immediately in the event of any environmental spills or potential incidents.

Maintain silt fences and any protective measures installed by others to prevent silt run-off from work areas to the environment. If necessary, install additional silt fences or other measures as directed by the Engineer.

4.3 Delivery, Handling & Storage

Receive at site all equipment and materials necessary to complete the work. Handle equipment and materials to prevent damage and store in designated areas.

Store aggregates and granular materials separately from other materials. Stockpile and protect all materials from contamination and prevent segregation prior to their usage. Deliver, stockpile and handle materials using proper equipment.

Remove from site or relocate on site all the materials that become segregated or contaminated with foreign matter as directed by the Engineer. Alternatively, any segregated material can be remixed to provide uniform gradation.

4.4 Protection

Protect the work and the work of others from damage during construction/installation. Make good all damage caused at no cost to the Owner. Immediately notify the Owner of any contact or damage to buried utilities or structures.

Support, brace, and protect utilities, structures and properties adjacent to and within all excavations.

Protect the excavations from the inflow of water from natural surface drainage. Obtain approval of the Engineer for the construction of temporary berms and/or ditches to divert water away from excavations.

Page 5 of 14

Revision

No. Date

PA 2014-09-11

621717-LH-GS-001

4.5 Tolerances

Work complying with the following horizontal location tolerances will be accepted.

Stripping and bulk excavations:

Perimeter location +/- 1 m

Placement of embankments, berms and mass fill:

Perimeter location +/- 1 m

Excavation of ponds, drainage ditches and diversion channels

Centre line location +/- 1 m

4.6 Equipment & Materials

The Contractor is responsible for providing and maintaining all equipment and for taking all measures to ensure the safety of operations and equipment is free of leaks and contamination.

Contractor is responsible for advance testing of all materials proposed to be incorporated at the site by the Contractor. Engineer to approve of all fill materials prior to placement.

4.6.1 Definitions

Earthworks

Include stripping and stockpiling, rough grading, common excavation, disposal of unsuitable ground material and excess material, placing and compacting of fill, borrowing of suitable fill material as required to complete the works.

Common Excavation

Excavation of all materials such as earth, muck, clay, hardpan, soft shale, sand, gravel and any material that can be removed without drilling and blasting, except those materials classified under stripping and rock excavation.

Authorized Over-excavation

Additional excavation defined and required as a result of unsuitable natural soil conditions. Replacement fill shall be placed and compacted in accordance with this specification.

Unauthorized Over-excavation

Additional excavation obtained by the result of the Contractor's operation or over-excavation by Contractor's error. Replacement fill shall be placed and compacted in accordance with this specification, but at no additional cost to the Owner.

Page 6 of 14

Revision

No. Date

621717-LH-GS-001

PA 2014-09-11

Unstable or Unsuitable Ground

As applied to existing ground, means either materials in a loose state, materials which are too wet, frozen, materials containing organic or other deleterious matter, materials having poor characteristics of grading and compaction, materials having other characteristics which would result in undesirable ground movement under loading from foundations, fills or other superimposed loads, or materials which do not meet the requirements of the specifications provided. However, this definition permits compacting, drying, dewatering and any other remedial work, improvements or processing where such action is required or permitted by the specifications or the Engineer.

Unstable or Unsuitable Fill

As applied to fill material, means either too wet, too dry, containing organic or other deleterious matter, having poor characteristics of grading and compaction, having other characteristics which result in undesirable settlement or other movement of the fill or within the fill, or otherwise not meeting the requirements of the specifications. However, this definition permits soil-conditioning (drying, dewatering, watering), compaction, and any other processing or reprocessing to make the material stable and suitable prior to incorporating it into the fill as permitted by the specifications or the Engineer.

Sound or Suitable Ground

As applied to existing ground, means undisturbed materials, being compact and having the required bearing capacity, stability and other required characteristics as determined by the Engineer.

Sound or Suitable Fill

Meaning material free of deleterious matter, suitably graded and can be compacted to a stable mass after any handling or re-handling and have the required bearing capacity and stability characteristics as determined by the specifications or the Engineer.

4.6.2 Construction Excavation, Fill, In-Situ Materials, Geosynthetics

The majority of the granular materials will be obtained by excavating and screening materials from the sedimentation basins, cutting the creek embankments or from Mount Polley Mine.

Mine waste rock will be screened, graded and separated into stockpiles.

Mine waste rock for use in the Works shall consist of material cleared as not having potential to generate acid or metal leaching.

River gravet will be graded and separated into stockpiles with grain sizes > 200 mm, 75 to 200 mm, 20 to 75 mm and < 20 mm.

Rip rap: 10 kg Class, angular shaped rock conforming with BC Ministry of Transportation and Infrastructure, Standard Specifications for Highway Construction, Tables 205-A and 205-B.

Organic materials and debris will consist of logs, tree limbs, shrubs and organic mulch.

Geogrid - Layfield RX1200 geogrid or equivalent.

Woven geotextile - Propex 2000 or equivalent.

Non-woven geotextile - Propex 4510 or equivalent.

Erosion control blankets - North American Green Bionet SC150BN or equivalent.

Page 7 of 14

Revision

No. Date

PA 2014-09-11

621717-LH-GS-001

4.7 Preparation

In addition to Section 4.1 Interface and Coordination, prior to commencing the works, thoroughly examine existing facilities and work previously completed by others upon which these works are dependent. Provide written notification to the Engineer of all discrepancies that affect the works, and propose any rectification, remedial works, or adjustments, and obtain the Engineer's written approval prior to proceeding. Check that cleaning, grubbing, and other site preparation works, if any, are satisfactory for the works under excavation and fill-general to proceed.

Set out the works and maintain all control points and bench marks to ensure accuracy of the works.

The locations of existing buried pipelines, cables, conduits and structures, shall be located before commencing the Works and clearly marked to prevent disturbance during the work. Record the site venified location of all existing, abandoned or re-routed utilities on the applicable as-built drawings.

Any trial excavations deemed necessary for locating the position of underground services shall be excavated by hand, by hydrovac, or by other appropriate measures in accordance with Worksafe BC regulations and/or Mount Polley Mining Corporation (MPMC) policy and/or the Health, Safety and Reclamation Code for Mines in BC.

If damages to existing facilities or structures occurred during earthworks operations; repair all damages at no additional cost to the Owner.

Unless otherwise directed, perform no permanent structural fill placement when the ground is frozen, during periods of snow, rain, or other unsuitable conditions.

4.8 Access Roads (Existing, Temporary, Permanent)

Work with MPMC to obtain approval from the Minister of Forests, Lands and Natural Resource Operations for use of and construction on an adjacent to the Ditch Road/Horsefly Likely Forest Service Road.

Any existing access roads used by the Contractor shall be maintained by the Contractor.

Maintain all existing, temporary and permanent access roads for the duration of performance of contract.

Maintenance consists of making good any wear, tear and damage arising out of construction operations. It also includes the removal of snow and ice, dust control and the provision of all signs, fences, barricades, gatemen, flagpersons, flares, lights, and other required measures.

Construct and maintain any additional temporary access roads as may be required to perform excavation and fill activities. The location of temporary access roads, not shown on the drawings, will be approved in writing by the Engineer.

Construction of additional access roads includes improvement of existing roads which the Contractor may require to perform the work.

Page 8 of 14

Revision

No. Date

PA 2014-09-11

621717-LH-GS-001

._____

4.9 Execution

4.9.1 Clearing and Grubbing

Clearing is to consist of

- Collection of organic debris as a result of the TSF breach;
- Cutting and slashing trees (except merchantable timber);
- Cutting and slashing brush;
- · Cutting and decking merchantable timber within the designated area.

Before starting work, conduct with the Engineer a condition survey of existing First Nations, cultural and heritage resources, bench marks and monuments, buried utilities, service poles, wires, structures, buildings, trees, wetlands, active nests or other species and other plants or structures which need to be preserved that may be affected by work.

Defineate the area to be cleared by use of flagging or other survey marks. Obtain approval from the Engineer prior to clearing.

Clear the area within the limits of all vegetation, both living and dead, all minor man-made structures, all rubbish and other materials which, in the opinion of the Engineer, are unsuitable for use in the works.

Cut off trees, brush and vegetation to within 150 mm above the natural grade. Process and set aside trees as required for root wads and other habitat structures in Hazeltine Creek as shown on the drawings. Remaining trees shall be de-limbed and segregated where larger than 150 mm average diameter. Cut remaining tree trunks to lengths between (3) three to (4) four meters or as directed by the MPMC or the Engineer. Neatly stockpile de-limbed tree trunks. Pile up and remove to disposal area the balance of cut trees, tree limbs, brush and vegetation as approved by the Engineer.

Ensure that that there is no damage to any trees outside the limits of clearing specified or directed by the Engineer. Cleared material is not to be cut or bulldozed into areas not specified to be cleared.

Grubbing is to consist of the removal and stockpiling of wood or root matter including stumps, roots and root systems on and below the ground surface.

Clear all undergrowth, brush and debris remaining from tree clearing operations.

The grubbing operations include the stripping of topsoil material and stockpiling for re-use in reclamation.

Collect all material and stockpile near the edge of the worksite or as directed by the Engineer. Remove all surface boulders and stockpile them for re-use in creek rehabilitation works (rock riffles etc).

Do not bury any materials resulting from clearing and grubbing operations. Dispose of all materials, except merchantable wood, as directed by the Engineer. Disposal of materials in areas other than those designated by the Engineer is not permitted.

4.9.2 Mulching

A woodchip mulch shall be developed and stockpiled from the woody debris that was collected during clearing and grubbing, for re-use in rectamation.

Page 9 of 14

Revision

No. Date

PA 2014-09-11

621717-LH-GS-001

4.9.3 Temporary Access Roads

Roads will be constructed on the fluvial delta that was affected by the TSF breach along the alignment proposed in the drawings.

Field fit temporary access road alignment to relatively high firm ground. Remove weak material and fill with adequate fill as directed by the Engineer.

Place non-woven geotextile in accordance with Manufacturer's Instructions on the subgrade surface in lower, soft and/or wet areas that may be prone to subgrade failure during trafficking. Place geogrid on the compacted first lift, in two parallel rolls parallel to the road centerline along the alignments proposed in the drawings, side by side, with a 300 mm overlap spanning 7.5 m. Place temporary road gravel in a single, continuous lift, grade and compact to develop a smooth trafficable surface. Cover the geogrid with at least 250 mm of the imported 75 mm minus granular fill and compact it to the satisfaction of the Engineer.

Proof roll with a loaded haul truck to ensure deflection does not exceed 100 mm. Where soft spots and excess deflection are observed during proof rolling or afterward during construction of the Works, repair the areas as directed by the Engineer. Repair may comprise subexcavation to the subgrade in areas without non-woven geotextile, followed by placement of non-woven geotextile and granular fill and geogrid. Thicker granular fill may be locally required. As well, subsurface drainage or lead-off ditches or other subgrade improvement techniques may be employed in collaboration with the Engineer.

Place corrugated steel pipe culverts under the segment of the access road between the two proposed sedimentation basins as shown on the drawings.

4.9.4 Bank Stabilization

The method for bank stabilization will be selected in the field by the Engineer during implementation to account for the conditions that are encountered. The drawings provide typical sections and locations of bank stabilization methodology.

Cut and fill all embankments to a slope no greater than 2H:1V.

Place materials as directed by the Engineer for the chosen method for bank stabilization.

In the case of construction adjacent to the creek channel, do not free drop materials into water.

Ensure embankments are smooth and free of debris from potentially rolling down slope.

4.9.5 Creek Channel Works

- 1. All in-stream work shall be undertaken with written consent from the appropriate agencies which may be during an approved fisheries construction window or other time.
- 2. All equipment used near the stream shall be clean, free of leaks and in good operating condition. Spill kits must be carried at all times, and workers must be trained in their use.
- Riffle to be constructed of angular, well-graded competent rock and/or riprap as specified.
 Riprap shall be competent and resistant to physical breakage and abrasion as well as degradation and dissolution in water. Shale, sandstone, thinly bedded rock, volcanic rock shall not be utilized.

Page 10 of 14

Revision

No. Date

PA 2014-09-11

621717-LH-GS-001

- 4. Larger boulders used to anchor the riffle face dissipate energy and create low flow channels. V-shape the crest and face it inwards down to the centre-line of the riffle to concentrate low flow. Ensure a gentle transition into existing substrates at the downstream edge of the riffle.
- Begin construction at riffle crest using large keystones (80 cm diameter or larger). Key riffle
 crest into existing large keystones or bedrock or into a shallow trench approximately 30 cm
 deep in sediment. Build riffle crest across the stream with large diameter keystone boulders;
 place a second row of next largest stones downstream.
- 6. Construct riffle crest slightly higher (10 to 15 cm) than design grades to allow for settling in and adjustment of the rocks in the first few post-construction, high flow events.
- 7. Cable keystones to bedrock where bedrock is competent on the banks or bed. Large riffle rocks to be cabled together to increase riffle structure resistance. Drill holes through keystones and pull cable through like the string of a necklace and anchor on channel banks to bedrock. String large second row keystones same as above. Additional row keystones (5-8) to be cabled to upstream keystones using rock bolts in a line or V.
- 8. A resin or grout-anchored rock bolt, at least 300 mm embedment depth into the rock and/or riprap particles is to be used for bedrock. The bolts may be installed untensioned, and fully grouted along their length. Use Dywidag Threadbar Reinforcing Steel or equivalent, Grade 60 or better, 19 mm diameter or greater. Use 152mm long and 13mm diameter anchor eye bolts for keystones. Drill hole diameters and lengths for the anchors and perform resin or grout anchoring according to the manufacturer's instructions based on the grade and diameter of the rock bolt. Competent riprap or bedrock is important to hold anchors in place and retain the large diameter. Use minimum 10mm galvanized cable (MIL-DTL-83420M or similar).
- 9. Materials: Riffle contains a range of rock sizes, gravels and sands to ensure that interstices between large rocks are infilled and compacted. Riffle riprap to be a range of size from 10cm to 80cm. The volume of materials required is 30% greater than the riffle volume to allow for in-filling and packing around large rocks and cobbles. Sand and gravel 30% of volume.
- 10. Infill the volume with the whole range of rip rap rock sizes. Infill the spaces between rocks with cobbles and gravels so that there are no voids in riffle structure. Finish the upper surfaces of the downstream face with large (round if available) emergent rocks to create 3 or 4 paths through the riffle at different stages.
- 11. For tie-ins of riprap at upstream and downstream of construction limits and riffle crest: anchor/embed each rock as required into the existing streambed, with custom holes for each rock or trenches of rocks, and bucket-tamped into place, and backfilled with excavated material.
- Randomly place rocks on the downstream face to dissipate energy and create low flow fish
 passage channels. Place rocks in contact with large rocks downstream to increase structure
 resistance.
- **→**
- 13. On the banks: rip-rap both banks with embedded boulders and cobbles to at least 2 m elevation above the riffle crest elevation. Size of riprap to be 33cm (D₅₀). For keying riprap into channel banks: remove by sub-excavating locally unsuitable materials then place riprap onto channel banks. Riprap minimum thickness 50 cm.
- 14. Tree root wads will be added into the rip rap so that the trunk of the tree faces downstream at an angle of approximately 15 to 30° away from the river flow direction. Tree trunks will be at least 6 meters long and preferably 8 meters long and a minimum diameter of 30 cm and

Page 11 of 14	
Revision	
No.	Date
РА	2014-09-11

621717-LH-GS-001

preferably 40 cm. The trunk will be buried in a trench the depth of the average future creek water level and backfilled with hand tamping using excavated soil.

- 15. Each trunk will be anchored in place with large (>80 cm) boulders placed upstream and downstream of the tree trunk at the root wad-trunk interface.
- 16. Tree trunks with root wads will be held in place with chains/wire rope anchored into the large boulders using a rock bolt. Install rock bolts according to the manufacturer's instructions. Competent rock in boulders is important to hold anchors in place and retain the large diameter. Use galvanized spikes to attach cables to tree trunks.
- 17. 6 meter to 8 meter long longs with minimum diameter of 30 cm that include branches will be chained/cabled onto the upstream and downstream sides of the tree trunks with root wads.

4.9.6 Sedimentation Basins

Two large sedimentation basins will be excavated into the alluvial fan of the creek, with construction of berms, at the locations illustrated in the drawings.

The basins shall be constructed by excavating or filling to the embankment base elevations on the drawings, and field adjusted appropriately in collaboration with the Engineer.

These sedimentation basins will be excavated to a depth of approximately 2 m below the ultimate water level of the creek, or to the maximum practical depth, whichever is less. The excavated materials will be sorted into sizes (e.g. > 200 mm, 75 to 200 mm, 20 to 75 mm and < 20 mm). The coarser materials will then be used to construct the in-stream embankments as described

The embankments shall be placed by placing coarse material cores (>200 mm particles) in horizontal lifts with maximum thickness of 400 mm and compacted with several passes of a vibrating roller compactor.

The upstream/inboard sections of the embankments shall be placed using maximum 400 mm thick horizontal lifts of the 75 to 200 mm material and 20 to 75 mm material, at approximately 40 % each of the horizontal width of the filter layers as shown on the drawings. The lifts shall be compacted with several passes of a vibrating roller compactor.

The top lift embankment layer on the basin side, and on the face of cut slopes forming the basins' walls, shall consist of a minimum 300 mm thickness of 20 mm minus well graded fill material compacted on the 2H:1V sideslope using thorough bucket tamping and/or track-packing methods to the satisfaction of the Engineer.

Culverts shall be placed as shown on the drawings on a compacted and prepared, smooth, well graded, compacted bedding material. Embedment material shall be placed under the haunches and over the pipe with thorough hand-tamping and small walk-behind mechanical compactors. The fill overlying the culverts shall be placed and compacted in one lift of minimum 400 mm thickness. Where thicker overlying material is placed, a second lift shall be placed such that the first lift is no thicker than 400 mm.

Culvert inlet and outlet areas shall be prepared by placement of geosynthetic products and rip rap as shown on the drawings. Geotextiles shall be placed in accordance with the manufacturers' instructions.

Spillways shall be constructed as shown on the drawings. Geotextiles shall be placed as shown such that they line the full footprint of the spillway surface on the crest and downstream face, and at least 1 m vertically down the upstream face.

Page 12 of 14

Revision

No. Date

PA 2014-09-11

621717-LH-GS-001

Rip rap shall be carefully placed so as to protect underlying geotextiles from damage and in a manner such that voids are minimized and to make use of the well graded nature of the material. Rip rap shall be placed on the inlet channel segments of the sedimentation basins, the spillway upstream faces and crests and downstream faces, and on the segment of channel connecting the sedimentation basins and crossed over by the temporary access road. On the downstream basin embankment faces and in the channel connecting the two basins, the lateral edges of the rip rap shall be bermed up at least 3 m wide and 1 m high. The lateral channel containment berms shall comprise low soil berms covered with geotextile and in turn covered with at least 0.35 m thick layer of the rip rap.

Following commissioning of the sedimentation basins, trapping efficiency and deposition rates shall be monitored. Upon direction of the Engineer, modifications to the embankments, construction of in-basin baffles, or other measures may be required to optimize sedimentation processes.

Sediment cleanout/removal access and planning shall be undertaken and constructed prior to commissioning in collaboration with the Engineer.

4.9.7 Mulch and Debris Application

Mulch will be applied to disturbed areas along the riparian area of the creek to decrease surface erosion by reducing impact from rainfall, and to act as a long term carbon source for soil development, as described in the Erosion and Sediment Control Plan.

In addition to woodchips, a portion of the coarse woody debris deposited in the area due to the tailings breach will be spread in the Riparian Habitat Reclamation areas. In addition to providing vertical structure and creating the associated habitats, this woody debris will retain moisture and provide shade, creating enhanced microsites for vegetation growth and acting as a long-term soil carbon source.

4.9.8 Trees and Plants

Imported plant material shall be accompanied by all necessary permits and import licences, and shall conform to federal and provincial regulations.

It shall be the Contractor's responsibility to ensure that all regulations pertaining to the import of plant materials or their movement to or from a particular region of the province are adhered to, and all inspection certificates required by the Ministry of Agriculture are completed to the satisfaction of the Engineer.

Transportation of trees and plants to site, unloading and handling procedures, storage on site, procurement of plant and tree specimens, preplanting operations, locations of planting, area preparation, planting procedures, timing of planting and maintenance of plants shall conform to the procedures described in the Ministry of Transportation and Infrastructure's Standard Specifications for Highway Construction (2012), Section 754. Specific requirements of Section 754 may be adjusted or reduced at the discretion of the Engineer.

All trees, shrubs, groundcovers, vines, and designated grass areas, shall be watered immediately after planting, and regular watering shall continue as required for plant health until final acceptance of the work. Water used for planting and maintenance shall be clean and potable.

Page 13 of 14

Revision

No. Date

PA 2014-09-11

621717-LH-GS-001

When required, various other materials such as soil amendments, erosion control products, hydraulic mulches, etc. shall be supplied in accordance with latest version of the Erosion and Sediment Control Plan and drawings.

4.9.9 Seeding

Seed quality and type and application rates shall conform to that specified in the Erosion and Sediment Control Plan. All seed, fertilizers and other dry materials shall be stored in a dry, weather proof storage place and shall be protected from damage by heat, moisture, rodents or other causes until the time of seeding.

All seed supplied either as individual species, or as a seed mix, shall comply with the requirements of the *Canada Seed Act* and Regulations, and the grade standards for that particular crop kind. Grass and legume seed shall meet or exceed Common No.1 grade prior to mixing with other species. Seed shall be free of propagules of plant species designated as noxious under the BC *Weed Control Act* & Regulations.

Water used for seeding shall be clean and potable.

Fertilizer, if used, shall comply with the provisions of the Canada Fertilizers Act and Fertilizer Regulations.

When required, various other materials such as soil amendments, erosion control products, hydraulic mulches, etc. shall be supplied in accordance with latest version of the Erosion and Sediment Control Plan and drawings.

Seed mixes used shall be as described in the Erosion and Sediment Control Plan.

Hydraulic mulch, if and where utilized, shall be a wood fibre type, specifically designed for hydraulic seeding, and having demonstrated satisfactory past performance for this purpose. The product shall be dyed green for appearance and ease of monitoring application.

The use of tackifiers, water, other materials, as well as seeding and construction scheduling, procedures and methods shall conform to the Ministry of Transportation and Infrastructure's Standard Specifications for Highway Construction (2012), Section 757. Specific requirements of Section 757 may be adjusted or reduced at the discretion of the Engineer.

4.10 Clean-Up

During the course of the work keep the work area clean and remove all waste and surplus materials no longer required.

At the completion of the works, leave the work areas clean, free of debris and remove all equipment, waste and surplus materials from the whole site and leave the Site in a clean and safe condition to the satisfaction of the Engineer.

Ensure all surfaces are sloped to prevent standing water and ponding. Roll and compact all depressions to the required density.

The Contractor is to prevent spillage of oil, fuel or other contaminants. If any spillage occurs, promptly clean up the spillage, and disposal to be at controlled dumpsite. The Contractor is liable for all spillages.

Remove and replace contaminated soil to the satisfaction of the Engineer.

Page 14 of 14

Revision

No. Date

PA 2014-09-11

621717-LH-GS-001

Dispose of used oil, used filters and other contaminants to designated areas and in a manner satisfactory to the Engineering Consultant.

5.0 QUALITY CONTROL AND QUALITY ASSURANCE

5.1 Samples

Samples

Submit a sample not less than 45 kg, typical of each type of fill material from each proposed source. With each sample, submit test results confirming that the material complies with the gradation and physical requirements specified.

The Engineer's review and acceptance of any sample will not mean approval of the entire source. All materials supplied from any source are subject to further sampling, testing and approval/rejection, whether incorporated into the work or not.

Test Reports and Certificates

Submit test reports showing the results of gradation, moisture content, compaction, physical requirements and other tests.

5.2 Workmanship

Perform all work using only trained and experienced personnel who hold certificates valid for the Work.

Review by the Owner or Engineer of Contractors drawings or other documents, or release of material for shipment by the Owner's inspector, shall not relieve the Contractor of responsibility for compliance with the contract.

5.3 Inspection & Testing

Submit an Inspection and Test Plan in accordance with this specification.

The Engineer is responsible for Quality Assurance and the Contractor is responsible for Quality Controt.

The Engineer's acceptance may be withheld subject to final testing or inspection.

No additional compensation or extension of time for completion is permitted due to time required to make tests and to interpret results.

Inform the Engineer in advance when the Work is ready for inspection, Quality Assurance and Proof-Roll testing. Provide adequate and safe access for the Engineer, QA and QC testing and inspection personnel to all parts and areas of the Work.

Where the Work fails to meet the test requirements of this specification, the Contractor is to undertake appropriate corrective action and adjustments at its own cost and to the satisfaction of the Engineer.

END OF DOCUMENT

MOUNT POLLEY MINING CORPORATION

LOWER HAZENTINE CREEK,

QUESNEL LAKE, BC

DRAWINGS

PRAYING NUMBER	DRAWING TITLE
621717-LH-001	COVERSHEET
621717-LH-002	EXISTING CONDITIONS
621717-LH-003	PLAN VIEW OF WORKS
621717-134-004	CHANNEL PLAN VIEW ABOVE SEDIMENTATION PONDS
621717-LH-005	SEDIMENTATION BASINS PLAN VIEW
621717-LH-006	RIVER SECTIONS AND CHANNEL REACH PROFILE
621717-LH-007	SEDIMENTATION BASIN SECTIONS
621717-LH-008	SEDIMENTATION BASINS AND CREEK REACH PROFILES
621717-LH-009	TEMPORARY ACCESS ROADS - PLAN VIEW AND CROSS SECTION
621717-LH-010	BANK STABILIZATION - PLAN VIEW AND DETAILS

Mount Polley Mining Corporation

September 10, 2014

Ministry of Environment
Ministry of Energy and Mines
Ministry of Forests, Lands and Natural Resource Operations

Re: REVIEW OF INTERIM MEASURES BEING IMPLEMENTED FOR POLLEY LAKE DRAW-DOWN

Dear Sirs.

As you are aware from our correspondence of August 13, 2014, Mount Polley Mining Corporation (MPMC) have been reducing the water level of Polley Lake behind a plug formed from the Tailings Storage Facility (TSF) Breach of August 4, 2014. This dewatering was deemed necessary by our engineering advisors, 8GC Engineering Inc. and is consistent with an order under the Water Act.

As you are no doubt aware, the process of dewatering Polley Lake has resulted in the discharge of turbid water into Quesnel Lake. We are concerned that these actions may conflict with other statutory obligations. MPMC has been working expeditiously towards developing an Erosion and Sediment Control Plan (ESCP) for Hazeltine Creek which we hope will reduce the sediment loads into Quesnel Lake as we continue to reduce the water level of Polley Lake. We are seeking your direction to assist us in confirming or revising our present actions.

At present, Polley Lake is approximately 1.3 m above its natural water level and our engineers are concerned that this might pose a safety and property risk. In particular, they are concerned that the stability of the sediment plug could be comprised by:

- Internal erosion caused by seepage of water through the sediment plug.
- Erosion from external surface water flow onto the sediment plug leading to downcutting.
- Because fall rains are expected to add to Polley Lake, the dewatering of the lake remains necessary to create freeboard in advance.

In these circumstances, we are concerned that continuing with our dewatering programs to fulfill certain regulatory requirements may result in non-compliance with other current statutory

BOX 12 * LIKELY * BC * V0L INO * PHONE: 250-790-2215 * FAX: 250-790 * 2268

obligations. Given that we have been working with you with respect to our response programs, we respectfully request, on an urgent basis, that you provide us with clear direction as to the actions we are taking.

Mount Polley Mining Corporation

Dale Reimer

General Manager

Vanderburgh, Ken FLNR:EX

From:

Vanderburgh, Ken FLNR:EX

Sent:

Wednesday, September 10, 2014 10:37 AM

To:

Pedersen, Mike FLNR:EX

Subject:

Fw: Timber Rights guestion: Mount Polley-related

From: Demchuk, Tania MEM:EX

Sent: Wednesday, September 10, 2014 10:32 AM

To: Vanderburgh, Ken FLNR:EX

Subject: Timber Rights question: Mount Polley-related

Hi Ken,

I'm not sure who best to direct this question to, so please forward me to the right person if necessary.

Follow-up coming out of the Senior Officials Committee meeting (government and First Nations), included a question about timber salvage rights and who owns the Timber Rights. Are you able to provide me with an answer? Please feel free to call.

Thank-you! Tania

Tania Demchuk, MSc, GIT Senior Environmental Geoscientist Mines and Mineral Resources Division Ministry of Energy and Mines 250-952-0417

Vanderburgh, Ken FLNR:EX

Cc: s.22

From: Stolar, Harold B FLNR:EX Sent: Friday, August 22, 2014 1:54 PM To: Venos, Gerry FLNR:EX; Vanderburgh, Ken FLNR:EX; Stewart, Rodger W FLNR:EX; MacDougall, Gerry L FLNR:EX Cc: Hamm, Mark FLNR:EX Subject: FW: Emailing: Mount Polley Debris Clean Up in Quesnel Lake Attachments: Mount Polley Debris Clean Up in Quesnel Lake.pdf Inspiring Stewardship through Respectful Conversation Harold ----Original Message-----From: Penny Carpenter \$.22 Sent: Friday, August 22, 2014 9:37 AM To: dparsons@imperialmetals.com; 'Dale Reimer'; Russell Gibson; Weir, David J FLNR:EX; Stolar, Harold B FLNR:EX Subject: FW: Emailing: Mount Polley Debris Clean Up in Quesnel Lake ----Original Message-----From: Emily Cheung [mailto:echeung@dwbconsulting.ca] Sent: August-22-14 7:56 AM To: 'Don Parsons' Cc: s.22 Brian Aitken: Josef Lerch Subject: RE: Emailing: Mount Polley Debris Clean Up in Quesnel Lake Please find attached the revised report with the minor changes for clarification in the fabric and rock gradation. Emily Cheung, MASc, PEng, FEC **Engineering Manage** DWB Consulting Services Ltd. Office: (250) 562-5541 (ext 239) Cell: (250) 961-5262 Fax: (250) 562-5561 echeung@dwbconsulting.ca www.dwbconsulting.ca All information and content in this email is private and confidential and intended for the recipient only. ----Original Message-----From: Mark Thompson Sent: August-21-14 2:55 PM To: 'Don Parsons'

1

Emily Cheung; Brian Aitken

Subject: RE: Emailing: Mount Polley Debris Clean Up in Quesnel Lake

Dear Mr. Parsons,

A revised copy of the document is attached with the recommended changes including newly appended ARD test results.

Sincerely,

Mark Thompson, MSc, MEd, RPBio Ecologist

DWB Consulting Services Ltd. Office: (2SO) 562-5541 (ext 279)

Cell: (250) 961-9520 Fax: (250) 562-5561

mthompson@dwbconsulting.ca

www.dwbconsulting.ca

```
-----Original Message-----
```

From: Brian Aitken [mailto:baitken@dwbconsulting.ca]

Sent: Thursday, August 21, 2014 2:07 PM

To: Don Parsons

Cc: s.22 Emily Cheung; Mark Thompson

Subject: Re: Emailing: Mount Polley Debris Clean Up in Quesnel Lake

We will revise and send out immediately. Penny we will leave it to you to submit to floro.

Brian

Sent from my iPhone

```
> On Aug 21, 2014, at 1:32 PM, "Don Parsons" < <a href="mailto:dparsons@imperialmetals.com">dparsons@imperialmetals.com</a> wrote:
```

>

> Penny

- > A good practical report. We should not have difficulty meeting the recommendations. Change Russ Parsons to Russ Gibson. I will check with our Enviro group for a standard spill plan. I will forward the ARD calcs soon.
- > Thanks
- > Don
- > D0u
- > Don Parsons, Chief Operating Officer
- > dparsons@imperialmetals.com
- > 604.488.2652 | mobile 778.836.2652

>

- > Imperial Metals Corporation
- > 200-580 Hornby Street, Vancouver, BC V6C3B6
- > 604.669.8959 | www.imperialmetals.com

```
>
>
> ----Original Message-----
> From: Brian Aitken [mailto:baitken@dwbconsulting.ca]
> Sent: Thursday, August 21, 2014 8:17 AM
                             Don Parsons
> To: 5.22
> Cc: Emily Cheung
> Subject: Emailing: Mount Polley Debris Clean Up in Quesnel Lake
> Report attached. Let me know if you require any changes.
>
> Brian Aitken, RPBio, PAg, CPESC
> Environmental Manager
> DWB Consulting Services Ltd.
> Office: (250) 562-5541
> Cell: (250) 961-0043
> Fax: (250) 562-5561
> baitken@dwbconsulting.ca
>
>
```

ENGINEERING . ENVIRONMENTAL . FORESTRY . DRAFTING

August 20, 2014

Ministry of Forests, Lands and Natural Resource Operations Water Stewardship Cariboo Region 400-640 Borland Street Williams Lake, BC, V2G 4T1

DWB File No 14274-219

Attention: David Weir, PAg - Water Section Head

RE: Monnt Polley Tailings Pond Failure Debris Clean-Up in Quesnel Lake

The Mount Polley mine tailings pond failure occurred on August 4, 2014 when the tailings pond partially breached, releasing water and tailings slurry into downstream waters. The resulting debris torrent caused by the sudden release of water and sediment behind the dam carried felled trees, mud and debris scoured away the banks of Hazeltine Creek which flows out of Polley Lake and continued into the nearby Quesnel Lake. The debris torrent significantly eroded Hazeltine Creek and the associated riparian vegetation causing a large amount of sediment and woody debris to be deposited into Quesnel Lake.

DWB Consulting Services Ltd (DWB) was contacted on August 15th by Penny Carpenter (Eaglecrest) and Russel Gibson (Imperial Metals) and requested to attend the site at Quesnel Lake for a meeting and to provide professional recommendations concerning environmental and engineering aspects of the proposed woody debris clean-up operations. Brian Aitken, RPBio and Emily Cheung, PEng of DWB attended the site August 19th to meet with Imperial and Ministry of Forest, Lands and Natural Resource Operations (MFLNRO) staff to discuss the scope of the services required. MFLNRO staff in attendance included David Weir - Water Section Head, Robin Hoffos -Section Head Habitat Management and Lee Williston. The clean-up of the woody debris within the lake was already well underway with significant progress made in the clean-up effort prior to DWB's site meeting.

The reason why DWB was retained by Imperial Metals was to provide engineering and environmental expertise to the efforts in support of an extension to the Order originally granted to Imperial Metals by MFLNRO to clean up the woody debris in Quesnel Lake under emergency conditions. This original Order expires August 21st and must be extended to allow the clean-up works to continue.

The clean-up of the woody debris in Quesnel Lake is currently being undertaken by a host of local individuals/property owners, machine operators, forests licenses, first nations, consultants and contractors working under the direction of Penny Carpenter (Eaglecrest) and Russel Gibson (Imperial Metals). Clean up of Quesnel Lake to date consisted of: (1) booming the debris along the shoreline in heavy debris areas, (2) using boats to pick up and boom loose floating debris, (3) mapping the shoreline to determine extent and density of the rafted woody debris, (4) piling shoreline woody debris by hand and/or small machinery and (5) using a tug boat and boom sticks to transport some of the woody debris to the exiting

ENGINEERING . ENVIRONMENTAL . FORESTRY . DRAFTING

West Fraser log sort/load out (52° 29' 56" Lat and 121° 12' 4" Long) where it has been contained within log booms. Moving forward, DWB has been asked to provide the following scope of services:

- A. Environmental mitigation and monitoring for the debris containment and clean up along the shoreline by both hand/machines and the transport of this material to the West Fraser load out utilizing tugs via barge/boom,
- B. Engineering expertise to design and construct a suitable load out ramp at the West Fraser site that will allow wood debris to be removed from the boomed storage area at least until the end of October under the receding water levels in the lake. Once removed from the water, the woody debris will sorted and stored upland for uses yet to be determined,
- C. Environmental mitigation and monitoring for the design/construction of the load out ramp described above and also the decommissioning of the ramp in 2015 when it is no longer required.

The following report provides the required engineering and environmental information in the order which it is presented above.

(A) Environmental mitigation and monitoring requirements for the debris clean up in Quesnel Lake

Clean up operations are well underway and it appears they have been completed in an environmentally sensitive manner thus far. During the inspection with MFLNRO on August 19th, very little floating debris was observed in the lake between the West Fraser load out and Hazeltine Creek that was not already contained within high density debris areas which were enclosed within booms. The largest floating accumulations are in Mitchel Bay and the bay at Hazeltine Creek which is a no work area due to safety constraints concerning the unstable tailings dam at Mount Polley upslope of this location. The majority of the remaining wood debris was rafted along the shoreline due to the receding water levels. A significant portion of this material has been piled along the shoreline via hand labour and small machines. To date, most of the affected shoreline (est 40-50km) has been assessed for debris accumulations and categorized as light, moderate or heavy based on the debris density. Also one load of debris enclosed within a large log boom has been transported to the West Fraser load out location and secured to the existing piles for eventual removal from the lake.

Moving forward, the following Best Management Practices (BMP's) and environmental mitigation will be incorporated into the woody debris clean up and transport to the load out:

1) It is recommended that the entire existing shoreline which was affected by debris accumulations be video recorded before and after the clean-up operations. This will not only provide evidence that the shoreline was adequately cleaned up, but will also provide proof in the spring that there was significant older natural woody debris which was present before the dam failure along the

ENGINEERING . ENVIRONMENTAL . FORESTRY . DRAFTING

shoreline. At this time the difference between wood that recently came down due to the failure and the older natural occurring wood is very evident.

- All debris possible, both floating and rafted needs to be removed from Quesnel Lake by the end.
 of October.
- 3) All debris accumulation areas along the foreshore which are flat enough to allow access by light tracked equipment via barge and have been mapped and <u>categorized as heavy or medium</u> will be re-visited to determine beach conditions. Any area of beach that is soft and will lead to significant rutting by machinery will be flagged as 'Machine Free Zones'. Any area of these beaches which provide enough ground support that significant rutting will not occur may be accessed by light tracked equipment and debris piled as close to the existing shoreline as possible to allow efficient collection of debris by a barge. Some beaches may not be suitable for tracked machinery at all and may require all hand labour. Only remove new debris from the recent event (ie do not remove older greyed woody debris that was clearly present before the dam failure which provides important aquatic habitat). Each beach should have at least one landing location flagged so that the barge knows where to off-load any equipment during drop off or pick up.
- 4) Any dehris accumulation areas along the foreshore that have been mapped and <u>categorized as light</u> or that are too steep for machinery will be removed by hand (no equipment permitted on the beach). This debris will be removed from the foreshore and scattered above the high water mark (HWM) of the lake or picked directly from the water via barge. Any debris which is too large to move by hand will be bucked into manageable pieces before it is placed above the HWM. Only remove new debris from the recent event (ie do not remove older greyed woody debris that was clearly present before the dam failure which provides important aquatic habitat).
- 5) EXCEPTION TO POINTS 3 AND 4 FOR CARIBOO ISLAND. Those affected areas along Cariboo Island will all be hand labour only. No machinery permitted on foreshore. Due to archeological considerations, First Nation monitoring required for any works on the island and all woody debris will be removed even in light density areas as per methodology described in bullet 6, paragraph II.
- 6) Once material has been piled on the beach, it will be removed via barge and tug boat with an excavator (or in the case of Mitchell Bay may be partially accessed from the land with a dump truck). Where the beach has been determined to be stable, the barge will nose into the shore and ramp lowered to the foreshore. The excavator will disembark from the barge and load the debris onto the deck. The debris will be piled carefully onto the barge ensuring that all pieces are secured so that they do not fall off during transport. If the barge is full, the excavator may be left at the beach until the barge arrives back for final pick up. If this should occur, the excavator must be parked as far back from the water as possible, preferably in an area which does not drain directly hack into the lake. All equipment in operation within the HWM of the lake will have fully stocked spill kits in them should a spill arise. Refer to spill plan in bullet 12. Once the beach has been fully cleared of debris, the excavator will prepare to leave the beach, ensuring that any

ENGINEERING . ENVIRONMENTAL . FORESTRY . DRAFTING

significant ruts or beach disturbances have been fully recontoured to natural grade before reboarding the barge.

Where the beach has been determined to be too soft for machinery, the barge will nose into the shore and the ramp will be lowered to the foreshore. The excavator will be allowed to drive down and sit on the ramp, but will not leave the ramp (i.e., no tracks on beach). All material will be reached from the barge. Once all debris is removed or the barge is full, the excavator will move back up the ramp and leave with the barge.

- 7) Mitchell Bay has been identified by MFLNRO as an area of special concern due to the presence of shore spawning kokanee. Shore spawning kokanee are present in Quesnel Lake in critical convergence zones near the mouth of creeks and where upwelling or significant subsurface flows are present. They prefer gravel to moderate sized cobble bottom substrate which is present in Mitchell Bay. Hazeltine Creek area has also been identified as one of these shore spawning locations; however, due to the amount of sediments deposited at the mouth of this creek the habitat has been affected and is less of a concern at this time. MFLNRO has identified a critical spawning period for kokanee starting mid-September in this area. A detailed report by the Province of BC in 2003 entitled, 'Summary of Quesnel Lake Kokanee and Rainbow Trout Biology Stock Management Report No 17' identifies a later period for Quesnel Lake shore spawning kokanee between October and November. In any case, all boating/barging activities along the near shore area in Mitchell Bay need to be completed before this time period to ensure that spawning kokanee populations are not affected. This area should be the highest priority for removing the debris piles before any other area.
- 8) While barging woody debris down the lake, all debris will secured so that it does not fall back into the water. The onboard excavator and toe tug will have spill kits in them as per bullet 12. It will be transported to the West Fraser load out and preferably off loaded directly onto the load out ramp when it arrives as described later in this document. If this is not possible, then the debris will be offloaded into a contained boom area secured to the existing dolphin piles for later removal. Care must be taken to avoid loss of small woody debris into the lake during this process.
- 9) All floating woody debris that is temporarily contained in booms will be barged down the lake in a large boom (ie rather than on a barge). Carc must be taken in removing any floating debris that is embedded in the bottom substrate. If it can be removed easily without significant bottom disturbance and/or is a boat hazard it should be removed, otherwise leave the wood embedded and do not remove. Only remove new debris from the recent event (i.e., do not remove older greyed woody debris that was clearly present before the dam failure which provides important aquatic habitat). Once all the floating debris has been corralled, it will be pushed together and enclosed in a large towing boom which will be transported down the lake. It is important that no small woody debris escape during this transport and a follow up boat may be required to pick up straggler pieces that have broken off. Once the boom arrives at the West Fraser off load site, the boom will be secured to the existing dolphin piles for later removal.

ENGINEERING * ENVIRONMENTAL * FORESTRY * DRAFTING

- 10) The debris removal around the mouth of Hazeltine Creek will require extensive works; however no works can proceed until the safety concerns at the upslope tailings dam at Mount Polley are addressed. It is hoped that this area will be cleared for work by safety within the next month. If the area around the mouth of Hazeltine Creek cannot be accessed due to safety concerns prior to winter freeze up, it must be secured so that no wood can escape into the lake in the spring. It is fully expected that more woody debris will be deposited into Quesnel Lake from Hazeltine Creek during any flood or heavy rain events due to the instability of the scoured channel. Currently the entire mouth of Hazeltine Creek is contained with a log boom. It is recommended that a second log boom be constructed and left in place until at least next summer for added security during heavy rain events and spring runoff. It has been requested that all works at the mouth of Hazeltine Creek have a first nation monitor present.
- 11) Debris storage at the West Fraser load out will be contained fully within a secured boomed area and anchored to the existing dolphin piles until such time as it can be removed from the water. It is important to conduct a bottom survey before additional debris is stored at this location so that the pre-use condition is known. This area has been previously used for many years as a load out and so it is expected that there is woody accumulations already present to some degree. All small woody debris and any sunken debris as a result of the temporary storage at this location must be removed. Once all debris has been removed and the project complete, a comparison bottom survey must also be completed to provide evidence of this.
- 12) Throughout the debris collection, transport and removal process it is very important that all involved in the clean-up follow general spill prevention and response procedures should a spill be encountered. This is especially important around aquatic environments. All equipment must carry stocked spill kits and crews must be trained in their use and the reporting requirements. In addition, several large drum aquatic spill kits should be present in key locations (i.e., on the barge and at the load out at a minimum). If Imperial has a standard spill plan that can be used, then it should be adopted for this project, otherwise it is recommended that a detailed spill plan be prepared for the project.

(B) Engineering considerations for the design and construction of a load out ramp

Once the wood debris has been transported to the West Fraser load out site, it will be temporarily stored in booms secured to the existing dolphin piles. From this storage area it will be pushed to the shallow with a tug where it will be lifted out of the water by a button top log loader. The log loader will deck this material behind the machine where it will be grasped with a front end loader and transported to the upland sort area for sorting and storage until an appropriate use can be determined. As the lake bottom is very soft/shallow and receding at this location, a causeway ramp has been proposed to be constructed in order to be able to reach the wood without having to drive a machine into the water. The temporary ramp will be constructed of rock and will be designed to allow a minimum depth of water at the end during the lowest expected flow so that the wood can be floated to this location for removal.

ENGINEERING . ENVIRONMENTAL . FORESTRY . DRAFTIN

General Design

Design considerations for the causeway ramp have been formulated from the site visit conducted August 19, 2014. No site survey information was available at the time of this report; however, due to the nature of the emergency conditions and the requirement to remove the debris as quickly as possible from the lake, the design has been formulated with the use of prescriptions (3 pages inclusive) that include photographs and diagrams outlining the location, size and specifications for the causeway ramp. A site inspection report is also included for reference. The intention of the ramp is to facilitate the removal of the logs and debris with the use of machinery out of the water. It is expected that the ramp will require 1.3m of height to remain out of the water during activities.

Currently the lake level is estimated to be at 1.0-1.3m below the high water mark and historically has an average yearly maximum daily fluctuation of 2.23m with a historical minimum fluctuation of 1.576m and historical maximum of 3.008m. Lake levels historically continue to fluctuate through August and September but the trend shows levels will continue to drop from August through until spring when levels are expected to rise again typically in April (Water Survey of Canada gauged water level station 08KH011 1956-2012). Due to the short term use and unknown water levels in the upcoming seasons, the ramp is not designed to meet a specific control lake level or return period elevation, but simply to provide clearance from lake elevations for the emergency works operations in the next weeks. Spring removal of logs and debris that may be required in 2015 may not be able to commence until lake levels reach below the constructed ramp surface. Lake depths from the present water level measured during the site visit past the toe of the ramp near the boom was 4m or 13ft. Although this was measured beyond the toe of the ramp, it may indicate that additional rock may be required to achieve operating levels if water surface elevations do not continue to drop.

The access causeway ramp design consists of a rock ramp from the existing load out to approximately 25m into Quesnel Lake. The ramp will be wide enough (12m) to accommodate an excavator and trucks for hauling rock in or debris out of the lake. The ramp is to extend from the existing load out access straight out into the lake. The ramp profile will be constructed from a rock base overlain with non-woven geotextile and capped with surfacing material that will seal preventing spills into the rock base below. Additional details are provided in the design specifications and depicted in the prescriptions attached.

Construction Procedure

The upslope existing load out access is to be stripped of organics and sufficient base material preferably shot rock, shall be placed to stabilize the access to the present lake water level. Rock thickness shall taper from a minimum 300mm to required thickness estimated at 1000mm at the toe of the ramp. If additional length is required or depths vary from the assumed depths, additional thickness of rock will be required as depths at this location were not confirmed. Once rock has been placed, a non-woven geotextile shall be overlaid on the rock and a cap of granular or shot rock material placed on top to provide a running surface and prevent any spills from entering into the lake from on top of the ramp.

A rock source has been located approximately 1 km from the load out site and samples have been sent to Imperial Metals laboratory to test for acid leaching potential. This rock has been deemed suitable due to its size and angularity but results from the tests were not available at the time of the report.

ENGINEERING . ENVIRONMENTAL . FORESTRY . DRAFTING

Design Specifications

Specifications for construction consist of the following:

Riprap rock for ramp base material	Class 50 kg rock	600 m3
Maximum rock side slopes at toe	1.5:1 (H:V)	-
Maximum rock side slopes along ramp	2:1 (H:V)	-
Ramp footprint on lake	-	380 m2
Non Woven geotextile	Armtec 200 or approved equivalent	360 m2
Surfacing material or shot rock capping	3" minus clean gravel or pit shot rock	54 m3

Riprap rock shall be clean angular rock that is consistent with the following gradation requirements:

Class 50kg rock - Approx. Average dimension

85% of rock to have average dimension >155mm 50% of rock to have average dimension >330mm 15% of rock to have average dimension >475mm

The rock must be well graded meaning that all dimensions must be represented in the material supplied. This will provide a more stable ramp consisting of smaller and larger rocks that will fit together.

The rock shall be laid on the lake bottom and not keyed in. Due to the nature of the short term usage of the ramp, the rock is expected to withstand normal wave action and not intended for permanent installation or protection. If unusual events are to occur within the period of time that the ramp is in place, repair work may be required.

All quantities provided are for works within the lake and have allowed for waste for supply quantities. These quantities are supplied for the purpose of procurement and are not an indication of maximum or required quantities. Final requirements will be determined by the design engineer or her representative on site. Any variations from the materials specified, must be approved by the design engineer. Material quantities for preparation of upland slope area have not been provided. Quantities are based on the area agreed upon during the site visit to a maximum of 25m extension into the lake; however, this may be altered at the discretion of the Imperial Metals representative. If further length of ramp is required to meet the required depth of 1.0m above the lake bottom, additional volume of these materials will be required.

Conformance

All materials shall meet or exceed the specifications as listed in the table. A site supervisor representative from DWB shall determine suitability of materials should there be any variations or substitutions. Documentation by the site supervisor will be provided to the design engineer along with a constructed volume survey for purpose of reporting. Tracking of volumes shall be completed including truck loads delivered for shot rock, capping material, and riprap rock delivered to site.

ENGINEERING . ENVIRONMENTAL . FORESTRY . DRAFTING

Decommissioning Plan

Upon determination through the agencies and Imperial Metals Corp., once the required debris removal operations are completed, the ramp shall be removed. The ramp is to be dismantled by removing the far toe of the ramp furthest in the lake first. If salvage of the rock is required, removal of the capping material should be completed first and then followed by the removal of the geotextile and finally the rock. All materials shall be removed, stored, stockpiled, or disposed of in accordance with Imperial Metals policy and the environmental requirements discussed in this report.

(C) Environmental considerations for the design, construction, operation and decommissioning of the load out ramp

The following environmental mitigation will be implemented during the engineered design, construction, operation and decommissioning of the load out.

Design Phase

During the design, the location was chosen at an historic existing load out location. The footprint of the new structure will be minimized, along with the rock volume so that it can be used until Oct-Nov, but will likely be partially submerged during spring conditions. This design limits the amount of rock required, but also will reduce the decommissioning at the end of its use. All rock used in the ramp construction planned for placement in or near the lake has been tested for ARD (test results appended). The design also incorporates larger rock on the bottom/base of the ramp separated with geofabric and smaller rock/fines on the running surface. The smaller material on the surface will act as a filter to soak any minor leaks or drips that may occur during operation, rather than using purely coarse material where spills would directly enter the lake if they should occur.

Construction Phase

Construction will proceed under appropriate weather conditions and will occur under a compressed timeline of 3-4 days. As machinery will be working around water, all equipment will be inspected for leaks/drips prior to be allowed to work on the project. For the construction phase of the project, an environmental monitor (EM) will be present to conduct these inspections and carry out the balance of the environmental duties described below. Firstly, a construction prework will be held by all parties involved with the construction at which time the EM will go over the conditions of the MFLNRO Order and the mitigation that has been proposed. Then before the ramp is constructed within the lake, a floating silt curtain will be installed around the ramp location. This will prevent any fines from negatively affecting local water quality. The EM will conduct turbidity monitoring inside and outside the floating silt curtain to record its effectiveness. In addition, the EM will conduct fish salvage as required during construction. There will be no stop nets, but the site will be enclosed by the floating silt curtain. An attempt will be made to set minnow traps each night in the isolated area. If fish are caught, they will be recorded and released outside of the enclosed area. The EM will be responsible for implementing/following the Spill Plan (refer to bullet 12) and reporting as required. It should be noted that some heavy leachate was noted to the right of the proposed ramp which appeared to be draining from an adjacent wet draw seeping from an historic log sort area covered with bark. This was not a result of any activities associated with this

ENGINEERING . ENVIRONMENTAL . FORESTRY . DRAFTING

project. Following construction, the EM will prepare a short post construction report with photo documentation of the measures implemented. A component of this report will be an asbuilt with estimated footprint and rock volumes used in construction.

Operation Phase

Once constructed, it is expected that the ramp will immediately be utilized to start removing debris from the water. As with construction, all equipment must be inspected for leaks/drips before being allowed to be used near the water and on the ramp. Should a spill occur, follow the Spill Plan (refer to bullet 12) and report as required. All employees working near the water need to be trained in spill response. An aquatic spill drum with floating spill boom must be present near the ramp location where it can be quickly deployed in the case of a spill. During woody debris removal with the button top, be careful not to lose small wood pieces into the lake. Should this occur, they will need to be collected and removed. All wood removed from the water will be transported and stored in the upland sort area where it will be sorted/graded for future yet to be determined use.

Decommissioning Phase

The ramp will be left in place until the summer of 2015. As previously described, it is expected that additional woody debris will be deposited from Hazeltine Creek into Quesnel Lake during the spring runoff in 2015. This woody debris will also need to be removed next year. Once Imperial is confident that all woody debris has been captured and removed, the load out will be fully decommissioned and returned to its predisturbance condition. This should coincide with low water levels in the lake and appropriate fisheries timing windows to minimize environmental impacts. As with the construction phase, an EM will be present and will aid in deploying the floating silt curtain during the rock removal. Turbidity monitoring will also be conducted. Once all the rock has been removed from the lake, a diversion ditch will be installed at the top of the grade to divert surface runoff from the freshly deactivated foreshore. Also, all exposed soils will be seeded. A final bottom survey will be conducted where the woody debris was stored to ensure that no additional wood has sunken. Once complete, an environmental close-out report will be completed, with photos and estimated total volume of wood removed.

ENGINEERING . ENVIRONMENTAL . FORESTRY . LITAL

Should you have any questions regarding this report, please do not hesitate to contact either of the undersigned at your convenience.

Sincerely,

Brian Aitken, RPBio, PAg, CPESC Corporate Environmental Manager

Emily Cheung, MASc, PEng, FEC Corporate Engineering Manager

Cc Penny Carpenter (Eaglecrest), Russel Parsons (Imperial Metals), Robin Hoffos (MFLNRO) and Lee Williston (MFLNRO)

Priority: Immediate

Quesnel Lake, BC

Site:

Quesnel Lake Load out Preparation Prescription Z Road

20-Aug-14

Works to be completed:

Upland

Specifications:

- 1 Prepare ramp down to lake level including stripping
- 2 Place shot rock to firm up foundation for access
- 3 Prepare site in accordance with environmental plan for isolation
- 4 Build up land ramp with shot rock and rock to the present water level
- 5 Use of riprap rock and shot rock required where thickness exceeds 200mm
- 1 Clean shot rock for foundation
- 2 Removed organics placed in an appoved location
- 3 Minimum 150mm thick shot rock to provide stabilisation
- 4 Class 50kg riprap

PRED RAMP RETIONE ORGHINES.

75 00 0500

MIN 150 mm THK.

LONGITUPINAL SECTION TO LAKE

page 1 of 3

By. EAC

DWB Consulting Services Ltd.

Quesnel Lake, BC Imperial Metals Corporation **Emergency Works Prescriptions** Priority: Immediate 20-Aug-14 Quesnel Lake Load out Z Road Construction within Lake Water Prescription Approx dimensions 12m wide x 25m long Ramp location ramp down Specifications Within Water Construction 1 Clean shot rock for foundation 1 Rock to be placed from shore side and built up into the lake 2 Continue to place rock at minimum 300mm thickness at shoreline 2 Expected max 1.3m deep at toe 3 Class 50kg approved riprap rock 3 Gradually build out rock to desired approximate 25m off shore 4 Final ramp top width =12m 4 Side slopes to be constructed at 2:1 (H:V)I outer toe 1.5:1 5 Place non-woven geotextile over rock layer 5 Larger rock on bottom of ramp 6 Armtec 200/Mirafi 160N/Geotex 601 or 6 Cap ramp with clean gravel or shot rock to a minimum 150mm approved equivalent non woven geotextile 7 Ensure ramp is tracked and packed sufficient to support truck loads and prevent spillage into lake waters Phas (NP) EXISTING BUDH. AATTLE PAINS 25 m LEWISTH

TRAM VIEW

By: EAC

page 2 of 3

DWB Consulting Services Ltd.

Imperial Metals Corporation **Emergency Works Prescriptions**

Priority: Immediate

Quesnel Lake, BC

Site :

Quesnel Lake Load out **Construction Details**

Z Road

20-Aug-14

Acceptable well graded rock available at local quarry (pending testing).

Works to be completed:

- 1 Upland ramp access along load out access
- 2 Ramp in lake water from present water to approx. 25m
- 3 For detail section of ramp see sketch below
- 4 Side slopes to be constructed at 2:1 (H:V)
- 5 Provide smooth transition from upslope to in lake ramp construction
- 6 Smaller material must be sloped gradually to prevent erosion

Specifications:

1 Riprap rock Class 50kg

85% avg dimension > 155mm

50% avg dimension > 330mm

15% avg dimension > 475mm

NON WOVEN SHOT ROCK OR GRAVELS. RAMP SECTION (TYP) LARGER ROCK ON BOTTOM

page 3 of 3

BY: EAC

DWB Consulting Services Ltd.

SITE INSPECTION REPORT

DATE OF SITE VISIT: August 19, 2014 DATE OF REPORT: August 20, 2014

OWNER: Imperial Metals Coporation

CONTRACTOR: Eaglecrest

Project: Quesnel Lake Log Salvage

Purpose of Site Visit: Inspection of the log load out location and condition of log salvage operations for the design of the causeway ramp for load out of barged and towed log booms on Quesnel Lake as a result of material brought down Hazeltine Creek to Quesnel Lake. Scope includes determining suitability of location for ramp including design for ramp. Photo 1 shows the proposed location and existing logs ready for load out.

Due to the nature of the works and requirements for quick removal of the material from the lake, emergency prescriptions including design requirements for the ramp are to be prepared for use in construction.

Photo 1: Existing boom of salvaged logs and proposed load out rump location

DWB File: 14274-219

August 20, 2014

Historical Information: Works are planned to begin with the ramp down to the high water mark and then to the present water levels for construction of the causeway ramp. The location was used previously as a log sort and load out and evidence of these operations are still clearly visible.

Photo 2: Load out up lake from present water level

Field Visit: The site visit was conducted to determine feasibility of a ramp into Quesnel Lake in order to remove the boomed logs and additional logs waiting to be towed/barged to the load out location. A boat tour was conducted down the lake along the shores to examine the logs and debris that has not been collected yet as well as the material already piled and the material boomed at the mouth of Hazeltine Creek.

Location of Works: Along Quesnel Lake, BC, with load out location at 52° 29' 56" Lat and 121° 12' 4". Hazeltine Creek is located west of the load out location approximately 20 km along Quesnel Lake. The ramp location from the eurrent shoreline to the end of the ramp is estimated at 25m long by 12m wide for use by an excavator and trucks.

DWB File: 14274-219 August 20, 2014

Photo 3: Mouth of Hazeltine Creek with boom at foreground

Recommendations:

The following recommendations are steps in planning for the design of the ramp works.

- 1. Provide a report and prescriptions for emergency works.
- 2. Plans for immediate construction of ramp including environmental monitoring and supervision.
- 3. Complete hydrotechnical study of lake levels and effects on design.
- 4. Complete ramp works design based on site information collected.
- 5. Provide a design summary report for construction.
- 6. Complete a removal plan for short term installation of ramp.
- 7. Liason with agencies to achieve all permits and approvals required to complete works.
- 8. Construction and completion of works including supervision.

It is expected that the installation of the ramp will be completed within the next week and will remain in place until fall of 2015. This will allow for additional removal of material in the spring and summer of 2015 after freshet.

Emily Cheung, MASC, PEng, FEC DWB Consulting Services Ltd.

ANALYSIS CERTIFICATE - MOUNT POLLEY

Job Number: 8000-AUG14

Reference:

Client: Geology

Received Date: 21 August 2014

Report Date: 21 August 2014

		Į.			1
	4.19	9.167	0.110	2 188	0.070
ZY is	3.28	13.334	0.160	4.062	0.130
	2.67	6 667	0.080	2.500	0.080
	4.80	7.500	0.090	1.562	0.050
	19.05	41.669	0.500	2.188	0.070
a more of	11.00	27.502	0.330	2.500	0.080
	6.97	28.335	0.340	4.062	0.130

Bill Smith Laboratory Manager

Certificate of Analysis

Mount Polley - KM4354

Date: August 20, 2014

metallurqu 💆 😅

Sample		Elements								
	S	С								
MPMC IA	0.07	0.11								
MPMC 2A	0.13	0.16	•	i						
MPMC 3A	0.08	0.08								
MPMC 4A	0.05	0.09								
MPMC 5A	0.07	0.50								
MPMC 6A	0.08	0.33								
Gavin Lk Rd	0.13	0.34								
)									
	- 1				l					
	1						!			
									İ	
		1								
		.								
•			ŀ							
		i							1	
	1								ľ	
									[
									1	
		!	}						!	
	%	%								

Norman Monteith, Certified Assayer

NDORESS 2957 Bowers Place, Kamloops, BC VES 1W5 | PHONE +1 250 828 6157 | FALS+1 250 828 6159 FES CANADA LYO | Part of the ALS Group ALS Canada Ltd. (8N 100938885)

RIGHT SOLUTIONS MIGHT PARTIES

